Example #1
0
        combinations = itertools.product(\
                matched['ratios'].items(),\
                pulses, \
                range(settings.get('nTrials'))
                )

        simulationRoot = rootDirectory

        print(f"Making {simulationRoot}")
        os.makedirs(simulationRoot, exist_ok=1)

        settings['equilibrium'] = matched
        # make settings
        print(settings['graph'])
        IO.savePickle(os.path.join(simulationRoot, 'settings'),\
                settings)
    # load settings file
    elif os.path.isdir(file):
        print('reading settings')
        # load old settings
        # if root in settings

        # read settings
        oldSettings = None
        for (root, dir, files) in os.walk(file):
            for f in files:
                fn = os.path.join(root, f)
                if f.endswith('settings.pickle'):
                    oldSettings = fn
                    break
        if not oldSettings:
    settings = dict(
                    repeats       = repeats,\
                    deltas        = deltas,\
                    nSamples      = nSamples,\
                    step          = step,\
                    burninSamples = burninSamples,\
                    pulseSizes    = pulseSizes,\
                    updateType    = updateType,\
                    nNodes        = graph.number_of_nodes(),\
                    nTrials       = nTrials,\
                    # this is added

                    graph         = graph,\
                    mapping       = model.mapping,\
                    rmapping      = model.rmapping,\
                    directory     = targetDirectory,\
                    nudgeType     = nudgeType,\
                    CHECK = CHECK,\
                    tempres = tempres, \
                    magSide = magSide,\
                    targetDirectory = targetDirectory,\
                    start = start, \
                    now = now,\
                    )
    runFile = genDataFile(idx)
    IO.savePickle(runFile, settings)

    cmd = f"sbatch control_slurm.sh {runFile}".split()
    subprocess.call(cmd)
        corrTimeSettings = IO.loadResults(targetDirectory, 'corrTimeSettings')
        burninSteps = mixingResults['burninSteps']
        distSamples = mixingResults['distSamples']

    # try to load neighbourhood shell data. If it doesn't exist yet, generate it
    try:
        if len(args.neighboursDir) > 0:
            neighboursG = IO.loadPickle(args.neighboursDir, 'neighboursG')
        else:
            neighboursG = IO.loadPickle(targetDirectory, 'neighboursG')
    except:
        print(f'determining neighbours')
        neighboursG = model.neighboursAtDistAllNodes(nodes, maxDist)
        if len(args.neighboursDir) > 0:
            os.makedirs(args.neighboursDir, exist_ok=True)
            IO.savePickle(args.neighboursDir, 'neighboursG', neighboursG)
        else:
            IO.savePickle(targetDirectory, 'neighboursG', neighboursG)


    snapshotSettings = dict( \
        nSamples    = args.numSamples, \
        burninSteps = burninSteps, \
        distSamples = distSamples, \
        maxDist     = maxDist, \
        nBins       = args.bins
    )

    # repetitive runs of the MI estimation procedure
    for r in range(args.runs):
Example #4
0
    # m.equilibriate(magRatios, eqSettings)
    combinations = itertools.product(\
        m.matched['ratios'].items(),\
        pulseSizes, \
        range(settings.get('nTrials'))
    )
    settings['graph'] = g
    # setup filepaths
    now = datetime.datetime.now().isoformat()
    simulationRoot = os.path.join(\
                    rootDirectory, now)
    print(f"Making {simulationRoot}")
    os.makedirs(simulationRoot, exist_ok=1)

    settings['equilibrium'] = m.matched
    IO.savePickle(os.path.join(simulationRoot, 'settings'),\
                settings)

    for (ratio, pulse, trial) in combinations:

        # tmp added properties
        settings['trial'] = trial
        settings['ratio'] = ratio

        if pulse:
            for node in m.graph.nodes():
                tmp = copy.deepcopy(m)
                tmp.t = ratio[1]
                intervention = {node: pulse}
                tmp.nudges = intervention

                settings['pulse'] = intervention