def drop_old_duplicate_entries_from_table(migrate_engine, table_name, use_soft_delete, *uc_column_names): """Drop all old rows having the same values for columns in uc_columns. This method drop (or mark ad `deleted` if use_soft_delete is True) old duplicate rows form table with name `table_name`. :param migrate_engine: Sqlalchemy engine :param table_name: Table with duplicates :param use_soft_delete: If True - values will be marked as `deleted`, if False - values will be removed from table :param uc_column_names: Unique constraint columns """ meta = MetaData() meta.bind = migrate_engine table = Table(table_name, meta, autoload=True) columns_for_group_by = [table.c[name] for name in uc_column_names] columns_for_select = [func.max(table.c.id)] columns_for_select.extend(columns_for_group_by) duplicated_rows_select = sqlalchemy.sql.select( columns_for_select, group_by=columns_for_group_by, having=func.count(table.c.id) > 1) for row in migrate_engine.execute(duplicated_rows_select).fetchall(): # NOTE(boris-42): Do not remove row that has the biggest ID. delete_condition = table.c.id != row[0] is_none = None # workaround for pyflakes delete_condition &= table.c.deleted_at == is_none for name in uc_column_names: delete_condition &= table.c[name] == row[name] rows_to_delete_select = sqlalchemy.sql.select( [table.c.id]).where(delete_condition) for row in migrate_engine.execute(rows_to_delete_select).fetchall(): LOG.info( _LI("Deleting duplicated row with id: %(id)s from table: " "%(table)s"), dict(id=row[0], table=table_name)) if use_soft_delete: delete_statement = table.update().\ where(delete_condition).\ values({ 'deleted': literal_column('id'), 'updated_at': literal_column('updated_at'), 'deleted_at': timeutils.utcnow() }) else: delete_statement = table.delete().where(delete_condition) migrate_engine.execute(delete_statement)
def drop_old_duplicate_entries_from_table(migrate_engine, table_name, use_soft_delete, *uc_column_names): """Drop all old rows having the same values for columns in uc_columns. This method drop (or mark ad `deleted` if use_soft_delete is True) old duplicate rows form table with name `table_name`. :param migrate_engine: Sqlalchemy engine :param table_name: Table with duplicates :param use_soft_delete: If True - values will be marked as `deleted`, if False - values will be removed from table :param uc_column_names: Unique constraint columns """ meta = MetaData() meta.bind = migrate_engine table = Table(table_name, meta, autoload=True) columns_for_group_by = [table.c[name] for name in uc_column_names] columns_for_select = [func.max(table.c.id)] columns_for_select.extend(columns_for_group_by) duplicated_rows_select = sqlalchemy.sql.select( columns_for_select, group_by=columns_for_group_by, having=func.count(table.c.id) > 1) for row in migrate_engine.execute(duplicated_rows_select): # NOTE(boris-42): Do not remove row that has the biggest ID. delete_condition = table.c.id != row[0] is_none = None # workaround for pyflakes delete_condition &= table.c.deleted_at == is_none for name in uc_column_names: delete_condition &= table.c[name] == row[name] rows_to_delete_select = sqlalchemy.sql.select( [table.c.id]).where(delete_condition) for row in migrate_engine.execute(rows_to_delete_select).fetchall(): LOG.info(_LI("Deleting duplicated row with id: %(id)s from table: " "%(table)s") % dict(id=row[0], table=table_name)) if use_soft_delete: delete_statement = table.update().\ where(delete_condition).\ values({ 'deleted': literal_column('id'), 'updated_at': literal_column('updated_at'), 'deleted_at': timeutils.utcnow() }) else: delete_statement = table.delete().where(delete_condition) migrate_engine.execute(delete_statement)
def is_backend_avail(backend, database, user=None, passwd=None): try: connect_uri = get_connect_string(backend=backend, database=database, user=user, passwd=passwd) engine = sqlalchemy.create_engine(connect_uri) connection = engine.connect() except Exception as e: # intentionally catch all to handle exceptions even if we don't # have any backend code loaded. LOG.info(_LI("The %s backend is unavailable: %s"), backend, e) return False else: connection.close() engine.dispose() return True
def is_backend_avail(backend, database, user=None, passwd=None): try: connect_uri = get_connect_string(backend=backend, database=database, user=user, passwd=passwd) engine = sqlalchemy.create_engine(connect_uri) connection = engine.connect() except Exception as e: # intentionally catch all to handle exceptions even if we don't # have any backend code loaded. msg = _LI("The %(backend)s backend is unavailable: %(exception)s") LOG.info(msg, {"backend": backend, "exception": e}) return False else: connection.close() engine.dispose() return True