Example #1
0
    def get_path(self, start, end, board, cost_estimate=get_distance):

        t0 = time.time()

        explored = set()
        previous = {}
        previous[start] = None
        moves = {}
        moves[start] = 0

        frontier = PriorityQueue()
        frontier.insert(start, cost_estimate(start, end))

        if VERBOSE_ASTAR: print 'get_path start, end:', start, end

        while not frontier.is_empty():

            if (time.time() - t0 > PATHFINDER_TIMEOUT):
                print 'PATHFINDING TIMEOUT: Averting disconnect...'
                print '    get_path: Probably could not find a valid path from', start, 'to', end
                return [start, start]

            if VERBOSE_ASTAR: print 'get_path frontier:', frontier

            current = frontier.remove()
            explored.add(current)

            if VERBOSE_ASTAR: print 'get_path explored set', explored
            if VERBOSE_ASTAR: print 'get_path current pos:', current

            if (current == end):
                if VERBOSE_ASTAR: print 'Found end loc'
                break
            else:
                neighbors = get_neighboring_locs(current, board)

                if VERBOSE_ASTAR: print 'get_path neighbors:', neighbors

                for n in neighbors:
                    if n not in explored and (board.passable(n)
                                              or n in (start, end)):
                        moves[n] = moves[current] + MOVE_COST
                        frontier.insert(n, cost_estimate(n, end) + moves[n])
                        previous[n] = current

        # found goal, now reconstruct path
        i = end
        path = [i]
        while i != start:
            if (i in previous):
                path.append(previous[i])
                i = previous[i]
            else:
                print 'get_path error: probably could not find a valid path from', start, 'to', end
                return [start, start]  # return something valid

        path.reverse()

        return path
Example #2
0
    def get_path(self, start, end, board, cost_estimate=get_distance):
    
        t0 = time.time()

        explored = set()
        previous = {}
        previous[start] = None
        moves = {}
        moves[start] = 0

        frontier = PriorityQueue()
        frontier.insert(start, cost_estimate(start, end))

        if VERBOSE_ASTAR: print 'get_path start, end:', start, end

        while not frontier.is_empty():
        
            if (time.time() - t0 > PATHFINDER_TIMEOUT):
                print 'PATHFINDING TIMEOUT: Averting disconnect...'
                print '    get_path: Probably could not find a valid path from', start, 'to', end
                return [start, start] 

            if VERBOSE_ASTAR: print 'get_path frontier:', frontier

            current = frontier.remove()
            explored.add(current)

            if VERBOSE_ASTAR: print 'get_path explored set', explored
            if VERBOSE_ASTAR: print 'get_path current pos:', current

            if (current == end):
                if VERBOSE_ASTAR: print 'Found end loc'
                break
            else:
                neighbors = get_neighboring_locs(current, board)

                if VERBOSE_ASTAR: print 'get_path neighbors:', neighbors

                for n in neighbors:
                    if n not in explored and (board.passable(n) or n in (start, end)):
                        moves[n] = moves[current] + MOVE_COST
                        frontier.insert(n, cost_estimate(n, end) + moves[n])
                        previous[n] = current

        # found goal, now reconstruct path
        i = end
        path = [i]
        while i != start:
            if (i in previous):
                path.append(previous[i])
                i = previous[i]
            else:
                print 'get_path error: probably could not find a valid path from', start, 'to', end
                return [start, start]    # return something valid

        path.reverse()

        return path
Example #3
0
    def choose_best(self, locs):
        best = None
        q = PriorityQueue()

        print 'choose best, locs:', locs

        if locs != None:
            for loc in locs:
                q.insert(loc, -self.score_loc(loc))  # by highest score
            best = q.remove()

        print 'choose best, best:', best

        return best
Example #4
0
def astar(grid, start, goal):
    '''Return a path found by A* alogirhm 
       and the number of steps it takes to find it.

    arguments:
    grid - A nested list with datatype int. 0 represents free space while 1 is obstacle.
           e.g. a 3x3 2D map: [[0, 0, 0], [0, 1, 0], [0, 0, 0]]
    start - The start node in the map. e.g. [0, 0]
    goal -  The goal node in the map. e.g. [2, 2]

    return:
    path -  A nested list that represents coordinates of each step (including start and goal node), 
            with data type int. e.g. [[0, 0], [0, 1], [0, 2], [1, 2], [2, 2]]
    steps - Number of steps it takes to find the final solution, 
            i.e. the number of nodes visited before finding a path (including start and goal node)

    >>> from main import load_map
    >>> grid, start, goal = load_map('test_map.csv')
    >>> astar_path, astar_steps = astar(grid, start, goal)
    It takes 7 steps to find a path using A*
    >>> astar_path
    [[0, 0], [1, 0], [2, 0], [3, 0], [3, 1]]
    '''
    
    debug_draw = False

    path = []
    steps = 0
    found = False

    map = map2d(grid)

    frontier = PriorityQueue()
    frontier.put(start, map.get_manhattan_distance(start, goal))

    came_from = {}
    came_from[tuple(start)] = {
        'from': None,
        'cost': 0
    }

    while not frontier.is_empty():
        (curr_cost, current) = frontier.get()
        frontier.remove()
        if tuple(goal) in came_from.keys():
            found = True
            break

        for neighbor in map.get_neighbors(current):
            if neighbor is None or map.get_value(neighbor) == 1:
                continue
            neighbor_cost = curr_cost - map.get_manhattan_distance(current, goal) + \
                map.get_manhattan_distance(current, neighbor) + \
                map.get_manhattan_distance(neighbor, goal)
            if tuple(neighbor) not in came_from or \
               neighbor_cost < came_from.get(tuple(neighbor)).get('cost'):
                frontier.put(neighbor, neighbor_cost)
                came_from[tuple(neighbor)] = {
                    'from': current,
                    'cost': neighbor_cost
                }
        if debug_draw: map.draw_path(start = start, goal = goal, path = path, came_from = came_from)
        
    # found = True
    steps = len(came_from) - 1
    curr_point = goal
    while curr_point != start:
        path.append(curr_point)
        curr_point = came_from.get(tuple(curr_point)).get('from')
    path.append(start)
    path.reverse()

    if found:
        print(f"It takes {steps} steps to find a path using A*")
    else:
        print("No path found")
    return path, steps
Example #5
0
class AStar():
    '''
    Properties:

    public:
    - world: 2D array of Nodes

    internal:
    - size: (width, height) tuple of world
    - open: Nodes queue to evaluate (heap-based priority queue)
    '''

    #----------------------------------------------------------------------
    def __init__(self, world):
        self.world = world
        self.size = (len(world), len(world[0]))
#        self.open = SortedList()
        self.open = PriorityQueue()
        self.openValue = 1
        self.closedValue = 2

    #----------------------------------------------------------------------
    def initSearch(self, start, goal, obstacles):
        ''' first, check we can achieve the goal'''
        if goal.type in obstacles:
            return False

        ''' clear open list and setup new open/close value state to avoid the clearing of a closed list'''
        self.open.clear()
        self.openValue += 2
        self.closedValue += 2
        
        ''' then init search variables'''
        self.start = start
        self.goal = goal
        self.obstacles = obstacles
        self.start.cost = 0
        self.addToOpen(self.start)
        self.goal.parent = None
        return True

    #----------------------------------------------------------------------
    def search(self):
        while not self.openIsEmpty():
            current = self.popFromOpen()
            if current == self.goal:
                break
            self.removeFromOpen(current)
            self.addToClosed(current)

            ''' generator passes : look at the 8 neighbours around the current node from open'''
            for (di, dj) in [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)]:
                neighbour = self.getNode(current.i + di, current.j + dj)
                if (not neighbour) or (neighbour.type in self.obstacles):
                    continue

                '''the cost to get to this node is the current cost plus the movement
                cost to reach this node. Note that the heuristic value is only used
                in the open list'''
                nextStepCost = current.cost + self.getNeighbourCost(current, neighbour)
                
                '''if the new cost we've determined for this node is lower than 
                it has been previously makes sure the node has not been
                determined that there might have been a better path to get to
                this node, so it needs to be re-evaluated'''
                
                if nextStepCost < neighbour.cost and (self.inOpenList(neighbour) or self.inClosedList(neighbour)):
                    self.invalidateState(neighbour)
                        
                '''if the node hasn't already been processed and discarded then
                step (i.e. to the open list)'''
                if (not self.inOpenList(neighbour)) and (not self.inClosedList(neighbour)):
                    neighbour.cost = nextStepCost
                    neighbour.heuristic = self.getHeuristicCost(neighbour, self.goal)
                    neighbour.parent = current
                    self.addToOpen(neighbour)

            ''' exit with None = path not yet found'''
            yield None

        '''since we've run out of search 
        there was no path. Just return'''
        if self.goal.parent is None:
            return
        
        '''At this point we've definitely found a path so we can uses the parent
        references of the nodes to find out way from the target location back
        to the start recording the nodes on the way.'''
        path = []
        goal = self.goal
        while goal is not self.start:
            path.insert(0, (goal.i, goal.j))
            goal = goal.parent
        
        ''' done, exit with path'''
        yield path

    #-----------------------------------------------------------------------------
    def getNode(self, i, j):
        if i >=0 and i < self.size[0] and j >= 0 and j < self.size[1]:
            return self.world[i][j]
        else:
            return None

    #----------------------------------------------------------------------
    def getNeighbourCost(self, n1, n2):
        return (abs(n2.i - n1.i) + abs(n2.j - n1.j))
    
    #----------------------------------------------------------------------
    def getHeuristicCost(self, n1, n2):
        return (abs(n2.i - n1.i) + abs(n2.j - n1.j))
    
    #----------------------------------------------------------------------
    def invalidateState(self, node):
        node.state = 0

    #----------------------------------------------------------------------
    def popFromOpen(self):
#        return self.open.first()
        return self.open.pop()

    #----------------------------------------------------------------------
    def addToOpen(self, node):
#        self.open.add(node)
        self.open.insert(node)
        node.state = self.openValue
        
    #----------------------------------------------------------------------
    def inOpenList(self, node):
        return node.state is self.openValue
   
    #----------------------------------------------------------------------
    def removeFromOpen(self, node):
#        self.open.remove(node)
        self.open.remove(node)
        node.state = 0

    #----------------------------------------------------------------------
    def openIsEmpty(self):
#        return not self.open.size()
        return self.open.isEmpty()
        
    #----------------------------------------------------------------------
    def addToClosed(self, node):
        node.state = self.closedValue
        
    #----------------------------------------------------------------------
    def inClosedList(self, node):
        return node.state is self.closedValue
Example #6
0
class AStar():
    '''
    Properties:

    public:
    - world: 2D array of Nodes

    internal:
    - size: (width, height) tuple of world
    - open: Nodes queue to evaluate (heap-based priority queue)
    '''

    #----------------------------------------------------------------------
    def __init__(self, world):
        self.world = world
        self.size = (len(world), len(world[0]))
        #        self.open = SortedList()
        self.open = PriorityQueue()
        self.openValue = 1
        self.closedValue = 2

    #----------------------------------------------------------------------
    def initSearch(self, start, goal, obstacles):
        ''' first, check we can achieve the goal'''
        if goal.type in obstacles:
            return False
        ''' clear open list and setup new open/close value state to avoid the clearing of a closed list'''
        self.open.clear()
        self.openValue += 2
        self.closedValue += 2
        ''' then init search variables'''
        self.start = start
        self.goal = goal
        self.obstacles = obstacles
        self.start.cost = 0
        self.addToOpen(self.start)
        self.goal.parent = None
        return True

    #----------------------------------------------------------------------
    def search(self):
        while not self.openIsEmpty():
            current = self.popFromOpen()
            if current == self.goal:
                break
            self.removeFromOpen(current)
            self.addToClosed(current)
            ''' generator passes : look at the 8 neighbours around the current node from open'''
            for (di, dj) in [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1),
                             (1, -1), (1, 0), (1, 1)]:
                neighbour = self.getNode(current.i + di, current.j + dj)
                if (not neighbour) or (neighbour.type in self.obstacles):
                    continue
                '''the cost to get to this node is the current cost plus the movement
                cost to reach this node. Note that the heuristic value is only used
                in the open list'''
                nextStepCost = current.cost + self.getNeighbourCost(
                    current, neighbour)
                '''if the new cost we've determined for this node is lower than 
                it has been previously makes sure the node has not been
                determined that there might have been a better path to get to
                this node, so it needs to be re-evaluated'''

                if nextStepCost < neighbour.cost and (
                        self.inOpenList(neighbour)
                        or self.inClosedList(neighbour)):
                    self.invalidateState(neighbour)
                '''if the node hasn't already been processed and discarded then
                step (i.e. to the open list)'''
                if (not self.inOpenList(neighbour)) and (
                        not self.inClosedList(neighbour)):
                    neighbour.cost = nextStepCost
                    neighbour.heuristic = self.getHeuristicCost(
                        neighbour, self.goal)
                    neighbour.parent = current
                    self.addToOpen(neighbour)
            ''' exit with None = path not yet found'''
            yield None
        '''since we've run out of search 
        there was no path. Just return'''
        if self.goal.parent is None:
            return
        '''At this point we've definitely found a path so we can uses the parent
        references of the nodes to find out way from the target location back
        to the start recording the nodes on the way.'''
        path = []
        goal = self.goal
        while goal is not self.start:
            path.insert(0, (goal.i, goal.j))
            goal = goal.parent
        ''' done, exit with path'''
        yield path

    #-----------------------------------------------------------------------------
    def getNode(self, i, j):
        if i >= 0 and i < self.size[0] and j >= 0 and j < self.size[1]:
            return self.world[i][j]
        else:
            return None

    #----------------------------------------------------------------------
    def getNeighbourCost(self, n1, n2):
        return (abs(n2.i - n1.i) + abs(n2.j - n1.j))

    #----------------------------------------------------------------------
    def getHeuristicCost(self, n1, n2):
        return (abs(n2.i - n1.i) + abs(n2.j - n1.j))

    #----------------------------------------------------------------------
    def invalidateState(self, node):
        node.state = 0

    #----------------------------------------------------------------------
    def popFromOpen(self):
        #        return self.open.first()
        return self.open.pop()

    #----------------------------------------------------------------------
    def addToOpen(self, node):
        #        self.open.add(node)
        self.open.insert(node)
        node.state = self.openValue

    #----------------------------------------------------------------------
    def inOpenList(self, node):
        return node.state is self.openValue

    #----------------------------------------------------------------------
    def removeFromOpen(self, node):
        #        self.open.remove(node)
        self.open.remove(node)
        node.state = 0

    #----------------------------------------------------------------------
    def openIsEmpty(self):
        #        return not self.open.size()
        return self.open.isEmpty()

    #----------------------------------------------------------------------
    def addToClosed(self, node):
        node.state = self.closedValue

    #----------------------------------------------------------------------
    def inClosedList(self, node):
        return node.state is self.closedValue
Example #7
0
def find(mapdata, width, height, start, end):
    """ mapdata is a one-dimensional list of values, start and end are vectors of size 2 """
    # WRITE THIS FUNCTION

    open = PriorityQueue()
    closed = []
    curTile = MapTile(start, None, None, None, None)
    print(width, height, start, end)

    while curTile.coords != end:
        if onMap(curTile.coords, width, height):
            n = north(curTile.coords)
            nter = terraintype(mapdata, width, height, n)
            ntile = MapTile(n, LAT_COST, mandistance(n, end), nter, curTile)
            if nter and (ntile not in closed):
                print(ntile)
                open.insert(ntile)

            s = south(curTile.coords)
            ster = terraintype(mapdata, width, height, s)
            stile = MapTile(s, LAT_COST, mandistance(s, end), ster, curTile)
            if ster and (stile not in closed):
                print(stile)
                open.insert(stile)

            e = east(curTile.coords)
            eter = terraintype(mapdata, width, height, e)
            etile = MapTile(e, LAT_COST, mandistance(e, end), eter, curTile)
            if eter and (etile not in closed):
                print(etile)
                open.insert(etile)

            w = west(curTile.coords)
            wter = terraintype(mapdata, width, height, w)
            wtile = MapTile(w, LAT_COST, mandistance(w, end), wter, curTile)
            if wter and (wtile not in closed):
                print(wtile)
                open.insert(wtile)

            nw = northwest(curTile.coords)
            nwter = terraintype(mapdata, width, height, nw)
            nwtile = MapTile(nw, DIAG_COST, mandistance(nw, end), nwter, curTile)
            if nwter and (nwtile not in closed):
                print(nwtile)
                open.insert(nwtile)

            ne = northeast(curTile.coords)
            neter = terraintype(mapdata, width, height, ne)
            netile =  MapTile(ne, DIAG_COST, mandistance(ne, end), neter, curTile)
            if neter and (netile not in closed):
                print(netile)
                open.insert(netile)

            sw = southwest(curTile.coords)
            swter = terraintype(mapdata, width, height, sw)
            swtile = MapTile(sw, DIAG_COST, mandistance(sw, end), swter, curTile)
            if swter and (swtile not in closed):
                print(swtile)
                open.insert(swtile)

            se = southeast(curTile.coords)
            seter = terraintype(mapdata, width, height, se)
            setile = MapTile(se, DIAG_COST, mandistance(se, end), seter, curTile)
            if seter and (setile not in closed):
                print(setile)
                open.insert(setile)

        closed.append(curTile)
        print(open)
        curTile = open.remove()

    path = []
    if curTile.coords == end:
        while curTile.parent is not None:
            path.append(curTile.parent)
            curTile = curTile.parent
        print(path)