Exemple #1
0
    def plot_obs_trends(self, dataset, **kwargs):
        X = self.OBS[string.upper(dataset)]
        west = X.reshaped["west"]
        east = X.reshaped["east"]
        if "start" not in kwargs.keys():
            start = cmip5.start_time(east)
            start = cdtime.comptime(start.year, start.month, 1)
        else:
            start = kwargs.pop("start")

        if "stop" not in kwargs.keys():
            stop = cmip5.stop_time(east)
            stop = cdtime.comptime(stop.year, stop.month, 30)
        else:
            stop = kwargs.pop("stop")
        west = west(time=(start, stop))
        east = east(time=(start, stop))
        west.getAxis(0).id = "time"
        east.getAxis(0).id = "time"
        plt.plot(cmip5.get_linear_trends(west).asma(),
                 label="WEST",
                 color=get_colors("west"),
                 **kwargs)
        plt.plot(cmip5.get_linear_trends(east).asma(),
                 label="EAST",
                 color=get_colors("east"),
                 **kwargs)
        months = [
            "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP",
            "OCT", "NOV", "DEC"
        ]
        plt.xticks(np.arange(12), months)
Exemple #2
0
def for_figure_4(self,start_time,stop_time=None,overlapping=True,include_trees=True,include_dai=False,include_cru=False,include_piControl=False,noisestart=None,solver=None):
        data={}
        if stop_time is None:
            stop_time=cmip5.stop_time(self.get_tree_ring_projection())
        target_obs = self.get_tree_ring_projection()(time=(start_time,stop_time))
        L=len(target_obs)
        modslopes,noiseterm = self.sn_at_time(start_time,L,overlapping=True,noisestart=noisestart,solver=solver)
        ns=np.std(noiseterm)
        signal = float(cmip5.get_linear_trends(target_obs))
        data["noise"]=noiseterm
        data["modslopes"]=modslopes
        data["tree_rings"]=signal
        
        if include_dai:
            dai_proj = self.project_dai_on_solver(start=start_time,solver=solver)
            daitrend = cmip5.get_linear_trends(dai_proj(time=(start_time,stop_time)))
            data["dai"]=daitrend
           
        if include_cru:
            cru_proj = self.project_cru_on_solver(start=start_time,solver=solver)
            crutrend = cmip5.get_linear_trends(cru_proj(time=(start_time,stop_time)))
            data["cru"]=crutrend
            
        if include_piControl:
            p=self.project_piControl_on_solver(solver=solver)
            noiseterm_mod=bootstrap_slopes(p,L)
            data["picontrol"]=noiseterm_mod
Exemple #3
0
def pdsi_SN_figure(D,start_time=None,stop_time=None,use_dai=True):
    noise_cru=[]
    noise_dai=[]
    noise_tree=[]
    noise=[]
    signal_cru=[]
    signal_dai=[]
    signal_tree=[]
    
    if start_time is None:
        start_time=cdtime.comptime(1981,1,1)
    if stop_time is None:
        stop_time=cdtime.comptime(2017,12,31)
    
    stop_cru=cdtime.comptime(2017,12,31)
    stop_dai=cdtime.comptime(2014,12,31)
    start_cru = cdtime.comptime(1901,1,1)
    start_dai=cdtime.comptime(1901,1,1)
    pcru=D.ALL.project_cru_on_solver(start=start_cru)
    pdai=D.ALL.project_dai_on_solver(start=start_dai)
    start_tree=cdtime.comptime(1400,1,1)
    stop_tree=cdtime.comptime(1975,12,31)
    nt=stop_cru.year-start_time.year
    nmodel=D.ALL.P.shape[0]
    H85=np.ma.zeros((nmodel,nt))
    t=start_time.add(1,cdtime.Years)
    i=0
    cru_time=[]
    tree_time=[]
    dai_time=[]
    while t.cmp(stop_time)<0:
        
        L=t.year-start_time.year+1
        modslopes,noiseterm = D.ALL.sn_at_time(start_time,L)
        H85[:,i] = modslopes
        noise+=[np.std(noiseterm)]
        if (t.cmp(stop_cru)<=0) and (t.cmp(start_cru)>0):
            signal_cru += [float(cmip5.get_linear_trends(pcru(time=(start_time,t))))]
            cru_time+=[t.year]
            noise_cru += [np.std(noiseterm)]
        if (t.cmp(stop_dai)<=0) and (t.cmp(start_dai)>0):
            signal_dai += [float(cmip5.get_linear_trends(pdai(time=(start_time,t))))]
            dai_time+=[t.year]
            noise_dai += [np.std(noiseterm)]
        if t.cmp(stop_tree)<=0:
            signal_tree += [float(cmip5.get_linear_trends(D.ALL.projection(time=(start_time,t))))]
            tree_time +=[t.year]
            noise_tree += [np.std(noiseterm)]
        t=t.add(1,cdtime.Years)
        i+=1
    timex=np.arange(start_time.year+1,start_time.year+1+nt)
    

    #for i in range(nmodel):
     #   plt.plot(timex,H85[i]/np.array(noise),c="k",lw=1,alpha=.2)
    plt.plot(cru_time,np.array(signal_cru)/np.array(noise_cru),label="CRU",color=get_dataset_color("cru"),lw=3)
    if use_dai:
        plt.plot(dai_time,np.array(signal_dai)/np.array(noise_dai),label="Dai",color=get_dataset_color("dai"),lw=3)
    plt.plot(tree_time,np.array(signal_tree)/np.array(noise_tree),label="Tree Rings",color=get_dataset_color("tree"),lw=3)
Exemple #4
0
    def DA_histogram(self,
                     experiment,
                     direction,
                     start=None,
                     stop=None,
                     datasets=None):
        fingerprint = getattr(self, experiment)

        if start is None:
            start = cmip5.start_time(self.gpcp.reshaped["east"])
            start = cdtime.comptime(start.year, start.month, 1)
        if stop is None:
            stop = cmip5.stop_time(self.gpcp.reshaped["east"])
            stop = cdtime.comptime(stop.year, stop.month, 30)

        #get the h85 projections over the same time period
        H85m = self.model_projections(experiment,
                                      direction)(time=(start, stop))
        H85 = cmip5.cdms_clone(np.ma.mask_rows(H85m), H85m)
        H85_trends = cmip5.get_linear_trends(H85)
        #get the piControl projection time series
        noise = self.noise_projections(experiment, direction)
        L = stop.year - start.year + 1
        noise_trends = da.get_slopes(noise, L)

        #plot
        plt.hist(H85_trends.compressed(),
                 25,
                 color=da_colors("h85"),
                 alpha=.5,
                 normed=True)
        plt.hist(noise_trends,
                 25,
                 color=da_colors("piC"),
                 alpha=.5,
                 normed=True)
        da.fit_normals_to_data(H85_trends,
                               color=da_colors("h85"),
                               lw=3,
                               label="H85")
        da.fit_normals_to_data(noise_trends,
                               color=da_colors("piC"),
                               lw=3,
                               label="piControl")
        # plt.axvline(obs_trend,label=obs.dataset,color=da_colors(obs.dataset))

        #Project the observations
        if datasets is None:
            datasets = ["gpcp", "cmap", "precl"]
        if type(datasets) != type([]):
            datasets = [datasets]
        for dataset in datasets:

            obs_proj = self.obs_projections(experiment, dataset,
                                            direction)(time=(start, stop))
            obs_trend = cmip5.get_linear_trends(obs_proj)
            plt.axvline(obs_trend, label=dataset, color=da_colors(dataset))
            print dataset + "S/N is: " + str(obs_trend / np.std(noise_trends))
Exemple #5
0
def DA_histogram(fingerprint,
                 obslist,
                 h85,
                 piC,
                 direction,
                 start=None,
                 stop=None):
    if type(obslist) == type([]):
        obs = obslist[0]
    else:
        obs = obslist
    if start is None:
        start = cmip5.start_time(obs.reshaped["east"])
        start = cdtime.comptime(start.year, start.month, 1)
    if stop is None:
        stop = cmip5.stop_time(obs.reshaped["east"])
        stop = cdtime.comptime(stop.year, stop.month, 30)
    #project the observations onto the fingerprint
    obs_proj = obs_projections(fingerprint, obs, direction)(time=(start, stop))
    obs_trend = cmip5.get_linear_trends(obs_proj)
    #get the h85 projections over the same time period
    H85m = model_projections(fingerprint, h85, direction)(time=(start, stop))
    H85 = cmip5.cdms_clone(np.ma.mask_rows(H85m), H85m)
    H85_trends = cmip5.get_linear_trends(H85)
    #get the piControl projection time series
    noise = noise_projections(fingerprint, piC, direction)
    L = len(obs_proj)
    noise_trends = da.get_slopes(noise, L)

    #plot
    plt.hist(H85_trends.compressed(),
             25,
             color=da_colors("h85"),
             alpha=.5,
             normed=True)
    plt.hist(noise_trends, 25, color=da_colors("piC"), alpha=.5, normed=True)
    da.fit_normals_to_data(H85_trends,
                           color=da_colors("h85"),
                           lw=3,
                           label="H85")
    da.fit_normals_to_data(noise_trends,
                           color=da_colors("piC"),
                           lw=3,
                           label="piControl")
    plt.axvline(obs_trend, label=obs.dataset, color=da_colors(obs.dataset))
    if type(obslist) == type([]):
        for obs in obslist[1:]:

            obs_proj = obs_projections(fingerprint, obs,
                                       direction)(time=(start, stop))
            obs_trend = cmip5.get_linear_trends(obs_proj)
            plt.axvline(obs_trend,
                        label=obs.dataset,
                        color=da_colors(obs.dataset))
    return H85, noise, obs_proj
Exemple #6
0
def Smodel_trends(D):
    m=b.landplot(cmip5.get_linear_trends(D.ALL.mma))
    m.fillcontinents(color="gray",zorder=0)
    plt.colorbar(orientation="horizontal",label="1900-2099 trend (PDSI/decade)")
    
    
    plt.ylim(-60,90)
Exemple #7
0
def proj_aerosols(AA, piControl, H85, start=None, stop=None):

    if start is None:
        start = cdtime.comptime(1945, 1, 1)
    if stop is None:
        stop = cdtime.comptime(1984, 12, 31)
    data = [H85.reshaped["west"], H85.reshaped["east"]]
    nmod, nyears, nmonths = H85.reshaped["west"].shape
    P = MV.zeros((nmod, nyears))
    msolver = AA.solvers["multi"]
    fac = da.get_orientation(msolver)

    for i in range(nmod):
        to_proj = [H85.reshaped["west"][i], H85.reshaped["east"][i]]
        P[i] = msolver.projectField(to_proj)[:, 0] * fac
    P.setAxis(0, H85.reshaped["west"].getAxis(0))
    timeax = H85.reshaped["west"].getAxis(1)
    timeax.id = "time"
    P.setAxis(1, timeax)

    piCdata = [piControl.reshaped["west"], piControl.reshaped["east"]]
    pc = msolver.projectField(piCdata)[:, 0]
    Pt = P(time=(start, stop))
    nt = len(Pt.getTime())
    hslopes = cmip5.get_linear_trends(Pt)
    pslopes = da.get_slopes(pc, nt)
def bootstrap_slopes(noise, L):
    nt = noise.shape[0] - L
    test = MV.zeros((nt, L))

    for i in range(nt):
        test[i] = noise[i:L + i]
    test.setAxis(1, noise[:L].getAxis(0))
    return cmip5.get_linear_trends(test)
def fast_slopes(noise, L):
    #L=30
    ntrends = int(noise.shape[0] / L)
    trunc = noise[:L * ntrends]
    tax = noise[:L].getTime()
    fast = trunc.reshape(ntrends, L)
    fast.setAxis(1, tax)
    return (cmip5.get_linear_trends(fast))
Exemple #10
0
 def plot_model_trends(self, i, start=None, stop=None):
     if i != "avg":
         west = self.h85.reshaped["west"][i]
         east = self.h85.reshaped["east"][i]
     else:
         west = MV.average(h85.reshaped["west"], axis=0)
         east = MV.average(h85.reshaped["east"], axis=0)
     if start is not None:
         west = west(time=(start, stop))
         east = east(time=(start, stop))
     plt.plot(cmip5.get_linear_trends(west).asma(), label="WEST")
     plt.plot(cmip5.get_linear_trends(east).asma(), label="EAST")
     months = [
         "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP",
         "OCT", "NOV", "DEC"
     ]
     plt.xticks(np.arange(12), months)
 def get_signal_to_noise(self, season, ssp, start_time, stop_time):
     data = self.splice_historical(ssp)(time=(start_time, stop_time))
     seasdata = getattr(cdutil, season).departures(data)
     piCdata = self.concatenate_piControl(season)
     signals = cmip5.get_linear_trends(seasdata)
     L = len(seasdata.getTime())
     noise = bootstrap_slopes(piCdata, L)
     return signals, noise
Exemple #12
0
    def obs_SN(self, start_time, stop_time, depth, overlapping=True):
        self.project_soilmoisture("MERRA2")
        self.project_soilmoisture("GLEAM")
        L = stop_time.year - start_time.year + 1
        modslopes, noiseterm = self.sn_at_time(start_time,
                                               L,
                                               depth,
                                               overlapping=overlapping)
        ns = np.std(noiseterm)

        plt.hist(modslopes / ns,
                 20,
                 normed=True,
                 color=cm.Oranges(.8),
                 alpha=.5)
        lab = str(start_time.year) + "-" + str(stop_time.year)
        da.fit_normals_to_data(modslopes / ns,
                               color=cm.Oranges(.9),
                               lw=3,
                               label=lab +
                               " trends in H85 projections onto fingerprint")

        plt.hist(noiseterm / ns,
                 20,
                 normed=True,
                 color=cm.Purples(.8),
                 alpha=.5)
        da.fit_normals_to_data(
            noiseterm / ns,
            color=cm.Purples(.9),
            lw=3,
            label=str(L) +
            "-year trends in piControl projection onto fingerprint")
        plt.xlabel("S/N")
        plt.ylabel("Normalized Frequency")

        merra = self.OBS_PROJECTIONS["MERRA2"][depth](time=(start_time,
                                                            stop_time))
        gleam = self.OBS_PROJECTIONS["GLEAM"][depth](time=(start_time,
                                                           stop_time))
        merrasig = cmip5.get_linear_trends(merra) / ns
        plt.axvline(merrasig, label="MERRA2", c="b", lw=3)
        gleamsig = cmip5.get_linear_trends(gleam) / ns
        plt.axvline(gleamsig, label="GLEAM", c="r", lw=3)
        plt.legend()
 def sn_at_time(self,start_time,L,overlapping=True):
     if not hasattr(self,"P"):
         self.model_projections()
     stop_time=start_time.add(L,cdtime.Years)
     modslopes = cmip5.get_linear_trends(self.P(time=(start_time,stop_time)))
     if overlapping:
         noiseterm = bootstrap_slopes(self.noise,L)
     else:
         noiseterm = da.get_slopes(self.noise,L)/365.
     return modslopes,noiseterm
Exemple #14
0
    def sn_at_time(self, start_time, L, depth, overlapping=True):
        self.project_piControl_on_solver(depth)

        self.model_projections(depth)
        stop_time = start_time.add(L, cdtime.Years)
        modslopes = cmip5.get_linear_trends(self.P[depth](time=(start_time,
                                                                stop_time)))
        if overlapping:
            noiseterm = b.bootstrap_slopes(self.noise[depth], L)
        else:
            noiseterm = da.get_slopes(self.noise[depth], L) / 365.
        return modslopes, noiseterm
    def obs_SN(self,start_time,stop_time=None,overlapping=True,include_dai=False):
        if stop_time is None:
            stop_time=cmip5.stop_time(self.projection)
        target_obs = self.projection(time=(start_time,stop_time))
        L=len(target_obs)
        modslopes,noiseterm = self.sn_at_time(start_time,L,overlapping=True)
        ns=np.std(noiseterm)
        signal = float(cmip5.get_linear_trends(target_obs))/ns
        plt.hist(modslopes/ns,20,normed=True,color=cm.Oranges(.8),alpha=.5)
        lab = str(start_time.year)+"-"+str(stop_time.year)
        da.fit_normals_to_data(modslopes/ns,color=cm.Oranges(.9),label=lab+" Model projections")

        plt.hist(noiseterm/ns,20,normed=True,color=cm.Greens(.8),alpha=.5)
        da.fit_normals_to_data(noiseterm/ns,color=cm.Greens(.9),label="Pre-1850 tree-ring reconstructions")
        plt.axvline(signal,color=cm.Blues(.8),lw=3,label=lab+" Tree-ring reconstructions")
        print signal
        if include_dai:
            dai_proj = self.project_dai_on_solver(start=start_time)
            daitrend = cmip5.get_linear_trends(dai_proj(time=(start_time,stop_time)))
            
            
            
        plt.legend(loc=0)
def signal_to_noise_map(drought_atlas,start_year=1100,modern_start=1979):

    preindustrial = drought_atlas[start_year:1850]
    modern = drought_atlas[modern_start:]
    modern_times = modern.shape[0]
    nt,nlat,nlon=drought_atlas.shape
    SN = MV.zeros(drought_atlas.shape[1:])+1.e20
    signals = cmip5.get_linear_trends(modern)
    for i in range(nlat):
        for j in range(nlon):
            if not drought_atlas.mask[-1,i,j]:
                noise = da.get_slopes(preindustrial[:,i,j],modern_times)/365. #get_slopes assumes time units are days; these are years
                width=np.ma.std(noise)
                signal = signals[i,j]
                SN[i,j]=signal/width
    return SN
    def signals(self,
                season,
                ssp,
                single_member=True,
                start_time=None,
                init=10):
        if start_time is None:
            start_time = cdtime.comptime(1980, 1, 1)
        end_time = cdtime.comptime(2100, 12, 31)
        trend_end = start_time.add(init, cdtime.Years)
        if single_member:
            func = self.single_member_ensemble
        else:
            func = self.ensemble_average
        all_data = self.splice_historical(ssp, single_member=single_member)
        hist = func("historical")

        #define the anomaly base period
        clim_start_time = cdtime.comptime(1951, 1, 1)
        clim_end_time = cdtime.comptime(1980, 12, 31)
        clim = getattr(cdutil,season).climatology(hist(time= \
                                                       (clim_start_time, \
                                                        clim_end_time, 'co')))
        #get seasonal anomalies
        seasonal_data = getattr(cdutil, season).departures(all_data, ref=clim)
        #set up array for signals
        nmod, nyears = seasonal_data.shape
        tax = seasonal_data(time=(trend_end, end_time)).getTime()
        nsig = len(tax)
        signals = MV.zeros((nmod, nsig))
        missing_data = all_data[:, -1].mask
        #calculate signals
        counter = 0
        while trend_end.cmp(end_time) < 0:
            signals[:, counter] = MV.masked_where(
                missing_data,
                cmip5.get_linear_trends(
                    seasonal_data(time=(start_time, trend_end))))
            trend_end = trend_end.add(1, cdtime.Years)
            counter += 1
        signals.setAxis(0, hist.getAxis(0))
        signals.setAxis(1, tax)
        return signals
Exemple #18
0
def regional_DA(OWDA,
                region,
                start_time=None,
                typ='fingerprint',
                return_noise=False):
    if start_time is None:
        start_time = cdtime.comptime(2000, 1, 1)
    times = np.arange(10, 76)
    modeldata = mask_data(OWDA.model(region), OWDA.obs(region)[0].mask)
    if typ == 'fingerprint':
        mma = MV.average(modeldata, axis=0)
        solver = Eof(mma, weights='area')

        to_proj = mask_data(modeldata, solver.eofs()[0].mask)
        P = MV.zeros(to_proj.shape[:2])
        for i in range(to_proj.shape[0]):
            tp = to_proj[i]
            mma_mask = mask_data(mma, tp[0].mask)
            solver = Eof(mma_mask, weights='area')
            fac = da.get_orientation(solver)
            P[i] = solver.projectField(tp)[:, 0] * fac
        P.setAxisList(to_proj.getAxisList()[:2])
        noise = solver.projectField(OWDA.obs(region))[:, 0]
    else:
        P = cdutil.averager(modeldata, axis='xy')
        noise = cdutil.averager(OWDA.obs(region), axis='xy')
    if return_noise:
        return P, noise
    else:
        nmod, nyears = P.shape
        TOE = MV.zeros((nmod, len(times)))
        for i in range(len(times)):
            L = times[i]
            stop_time = start_time.add(L, cdtime.Years)
            modslopes = cmip5.get_linear_trends(P(time=(start_time,
                                                        stop_time)))

            noiseterm = np.std(bootstrap_slopes(noise, L))

            TOE[:, i] = modslopes / noiseterm
        TOE.setAxis(0, P.getAxis(0))
        return TOE
Exemple #19
0
    def sn_at_time(self,
                   start_time,
                   L,
                   overlapping=True,
                   noisestart=None,
                   solver=None):
        if noisestart is None:
            noisestart = cmip5.start_time(self.obs)
        noisestop = cmip5.stop_time(self.get_noise(solver=solver))

        stop_time = start_time.add(L, cdtime.Years)
        modslopes = cmip5.get_linear_trends(
            self.get_forced(solver=solver)(time=(start_time, stop_time)))
        if overlapping:
            noiseterm = bootstrap_slopes(
                self.get_noise(solver=solver)(time=(noisestart, noisestop)), L)
        else:
            noiseterm = da.get_slopes(
                self.get_noise(solver=solver)(time=(noisestart, noisestop)),
                L) / 365.
        return modslopes, noiseterm
    def plot_model_trends(self, ax=None, legend=False, change_units=False):
        months = [
            "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP",
            "OCT", "NOV", "DEC"
        ]
        if ax is None:
            fig = plt.figure()
            ax = plt.subplot(111)

        test = self.ensemble_average("ssp585")
        if change_units:
            if self.variable in ["mrso", "mrsos"]:
                test = self.standardize_zscore(test)
            else:
                test = self.convert_to_percentage(test)
        nmod = test.shape[0]
        trends = np.zeros((nmod, 12))
        models = cmip5.models(test)
        for i in range(12):
            month = months[i]
            mdat = getattr(cdutil, month).departures(test)

            trends[:, i] = cmip5.get_linear_trends(mdat)
        trends = MV.array(trends,
                          mask=cdutil.ANNUALCYCLE.climatology(test).mask)

        trends.setAxis(0, test.getAxis(0))
        for i in range(nmod):
            model = models[i]
            c = get_model_colors(model)
            ls = get_model_ls(model)
            ax.plot(np.arange(12), trends[i].asma(), c=c, ls=ls, label=model)

        ax.set_xticks(np.arange(12))
        ax.set_xticklabels(months)
        ax.set_ylabel(self.variable)
        #ax.set_title(region)
        ax.axhline(0, ls=":", lw=.5, c="k")
        if legend:
            plt.legend(fontsize=6, ncol=2)
Exemple #21
0
def projection_figure(D,fortalk=False):
    start = cdtime.comptime(1975,8,1)
    trends = cmip5.get_linear_trends(D.ALL.obs(time=(start,'2005-12-31')))
    if fortalk:
        plt.figure()
    else:
        plt.subplot(211)
    m=b.landplot(trends,vmin=-2,vmax=2)
    m.drawcoastlines(color="gray")
    plt.colorbar(orientation='horizontal',label="Trend (PDSI/decade)")
    plt.title("(a): 1975-2005 GDA trends")
    if fortalk:
        plt.figure()
    else:
        plt.subplot(212)
    Plotting.Plotting.time_plot(D.ALL.projection(time=('1100-1-1','1850-12-31')),color=cm.Greens(.9),lw=3,label="pre-industrial noise")
    Plotting.Plotting.time_plot(D.ALL.projection(time=('1851-1-1','1974-12-31')),c=cm.Greys(.5),lw=3)
    Plotting.Plotting.time_plot(D.ALL.projection(time=('1975-1-1','2005-12-31')),c=cm.Blues(.8),label="Target period",lw=3)
    plt.xlabel("Year")
    plt.ylabel("Projection")
    plt.title("(b): GDA projection on fingerprint")
    plt.xlim(1400,2010)
    plt.legend()
Exemple #22
0
def TOE(OnePct, piControl, H85, start=None):
    #Calculate the time of emergence:
    data = [H85.reshaped["west"], H85.reshaped["east"]]
    nmod, nyears, nmonths = H85.reshaped["west"].shape
    P = MV.zeros((nmod, nyears))
    msolver = OnePct.solvers["multi"]
    fac = da.get_orientation(msolver)

    for i in range(nmod):
        to_proj = [H85.reshaped["west"][i], H85.reshaped["east"][i]]
        P[i] = msolver.projectField(to_proj)[:, 0] * fac
    P.setAxis(0, H85.reshaped["west"].getAxis(0))
    timeax = H85.reshaped["west"].getAxis(1)
    timeax.id = "time"
    P.setAxis(1, timeax)

    piCdata = [piControl.reshaped["west"], piControl.reshaped["east"]]
    pc = msolver.projectField(piCdata)[:, 0]
    if start is None:
        start = cdtime.comptime(2000, 1, 1)
    stop = start.add(1, cdtime.Years)
    final_year = cdtime.comptime(2099, 12, 31)
    tl = final_year.year - start.year + 1

    NOISE = MV.zeros(tl)
    SIGNAL = MV.zeros((nmod, tl))
    i = 0
    while stop.cmp(final_year) < 0:
        modelproj = P(time=(start, stop))
        L = modelproj.shape[1]
        slopes = da.get_slopes(pc, L)
        SIGNAL[:, i] = cmip5.get_linear_trends(modelproj)
        NOISE[i] = np.ma.std(slopes)
        stop = stop.add(1, cdtime.Years)
        i += 1
    return SIGNAL, NOISE
Exemple #23
0
    def average_histogram(self,
                          direction,
                          start=None,
                          stop=None,
                          months="JJ",
                          datasets=None):
        if months is "JJ":
            mmean = lambda x: MV.average(x[:, 5:7], axis=1)
            bigmmean = lambda X: MV.average(X[:, :, 5:7], axis=2)

        elif months is "SO":
            mmean = lambda x: MV.average(x[:, 8:10], axis=1)
            bigmmean = lambda X: MV.average(X[:, :, 8:10], axis=2)
        elif months is "JJA":
            mmean = lambda x: MV.average(x[:, 5:8], axis=1)
            bigmmean = lambda X: MV.average(X[:, :, 5:8], axis=2)
        elif months is "JAS":
            mmean = lambda x: MV.average(x[:, 6:9], axis=1)
            bigmmean = lambda X: MV.average(X[:, :, 6:9], axis=2)
        elif months is "Jun":
            mmean = lambda x: x[:, 5]
            bigmmean = lambda X: MV.average(X[:, :, 5])
        elif months is "YEAR":
            mmean = lambda x: MV.average(x, axis=1)
            bigmmean = lambda X: MV.average(X, axis=2)
        if start is None:
            start = cmip5.start_time(self.gpcp.reshaped["east"])
            start = cdtime.comptime(start.year, start.month, 1)
        if stop is None:
            stop = cmip5.stop_time(self.gpcp.reshaped["east"])
            stop = cdtime.comptime(stop.year, stop.month, 30)

        #get the h85 trends over the same time period
        H85m = bigmmean(self.h85.reshaped[direction])(time=(start, stop))
        H85 = cmip5.cdms_clone(np.ma.mask_rows(H85m), H85m)
        H85_trends = cmip5.get_linear_trends(H85)
        #get the piControl projection time series
        noise = mmean(self.piC.reshaped[direction])
        L = stop.year - start.year + 1
        noise_trends = da.get_slopes(noise, L)

        #plot
        plt.hist(H85_trends.compressed(),
                 25,
                 color=da_colors("h85"),
                 alpha=.5,
                 normed=True)
        plt.hist(noise_trends,
                 25,
                 color=da_colors("piC"),
                 alpha=.5,
                 normed=True)
        da.fit_normals_to_data(H85_trends,
                               color=da_colors("h85"),
                               lw=3,
                               label="H85")
        da.fit_normals_to_data(noise_trends,
                               color=da_colors("piC"),
                               lw=3,
                               label="piControl")

        #calculate the trend in the observations
        if datasets is None:
            datasets = ["gpcp", "cmap", "precl"]
        if type(datasets) != type([]):
            datasets = [datasets]
        for dataset in datasets:
            X = self.OBS[string.upper(dataset)]
            obs_avg = mmean(X.reshaped[direction](time=(start, stop)))

            obs_trend = cmip5.get_linear_trends(obs_avg)

            plt.axvline(obs_trend, label=dataset, color=da_colors(dataset))
        plt.xlabel("S/N")
        plt.ylabel("Frequency")
        plt.legend(loc=0)
Exemple #24
0
def average_histogram(obslist,
                      h85,
                      piC,
                      direction,
                      start=None,
                      stop=None,
                      months="JJ"):
    if months is "JJ":
        mmean = lambda x: MV.average(x[:, 5:7], axis=1)
        bigmmean = lambda X: MV.average(X[:, :, 5:7], axis=2)
    elif months is "SO":
        mmean = lambda x: MV.average(x[:, 8:10], axis=1)
        bigmmean = lambda X: MV.average(X[:, :, 8:10], axis=2)
    elif months is "JJA":
        mmean = lambda x: MV.average(x[:, 5:8], axis=1)
        bigmmean = lambda X: MV.average(X[:, :, 5:8], axis=2)
    elif months is "Jun":
        mmean = lambda x: x[:, 5]
        bigmmean = lambda X: MV.average(X[:, :, 5])
    if type(obslist) == type([]):
        obs = obslist[0]
    else:
        obs = obslist
    if start is None:
        start = cmip5.start_time(obs.reshaped["east"])
        start = cdtime.comptime(start.year, start.month, 1)
    if stop is None:
        stop = cmip5.stop_time(obs.reshaped["west"])
        stop = cdtime.comptime(stop.year, stop.month, 30)
    #calculate the trend in the observations

    obs_avg = mmean(obs.reshaped[direction](time=(start, stop)))

    obs_trend = cmip5.get_linear_trends(obs_avg)
    #get the h85 trends over the same time period
    H85m = bigmmean(h85.reshaped[direction])(time=(start, stop))
    H85 = cmip5.cdms_clone(np.ma.mask_rows(H85m), H85m)
    H85_trends = cmip5.get_linear_trends(H85)
    #get the piControl projection time series
    noise = mmean(piC.reshaped[direction])
    L = len(obs_avg)
    noise_trends = da.get_slopes(noise, L)

    #plot
    plt.hist(H85_trends.compressed(),
             25,
             color=da_colors("h85"),
             alpha=.5,
             normed=True)
    plt.hist(noise_trends, 25, color=da_colors("piC"), alpha=.5, normed=True)
    da.fit_normals_to_data(H85_trends,
                           color=da_colors("h85"),
                           lw=3,
                           label="H85")
    da.fit_normals_to_data(noise_trends,
                           color=da_colors("piC"),
                           lw=3,
                           label="piControl")
    plt.axvline(obs_trend, label=obs.dataset, color=da_colors(obs.dataset))
    if type(obslist) == type([]):
        for obs in obslist[1:]:
            obs_avg = mmean(obs.reshaped[direction](time=(start, stop)))

            obs_trend = cmip5.get_linear_trends(obs_avg)

            plt.axvline(obs_trend,
                        label=obs.dataset,
                        color=da_colors(obs.dataset))
    plt.xlabel("S/N")
    plt.ylabel("Frequency")
    plt.legend(loc=0)
def plot_correlations(region, season=None, significance_level=None):
    #if 1:
    scenario = "ssp585"
    droughtdirec = "DroughtSN/"
    TRENDS = {}
    CLIM = {}
    MAXSIG = {}
    mysort = ["tas", "evspsbl", "mrros", "mrro", "mrsos", "mrso", "pr", "prsn"]

    snfiles = glob.glob(rootdirec + droughtdirec + region + "/*")
    variables_match = sorted(
        np.unique([x.split(".")[0].split("/")[-1] for x in snfiles]))
    for variable in variables_match:
        #print(variable)
        #find the season of max signal
        vfiles = glob.glob(rootdirec + droughtdirec + region + "/*" +
                           variable + ".*")
        months = np.unique([x.split(".")[3] for x in vfiles])

        if len(months) == 1:
            month_maxsig = months[0]
        else:
            cts = []
            for month in months:

                ct = get_crossing_time(region, variable, "ssp585", month)
                if ct is None:
                    ct = 2101
                cts += [ct]
            month_maxsig = months[np.argmin(np.array(cts))]
        if season is not None:
            month_maxsig = season
        X = TOE(variable, region)
        ssp585 = X.ensemble_average("ssp585")
        historical = X.ensemble_average("historical")
        trends = cmip5.get_linear_trends(
            getattr(cdutil, month_maxsig).departures(ssp585))
        climatology = getattr(cdutil, month_maxsig).climatology(
            historical(time=('1980-1-1', '2014-12-31')))[:, 0]
        TRENDS[variable] = trends
        CLIM[variable] = climatology
        MAXSIG[variable] = month_maxsig

    nvars = len(TRENDS.keys())
    ok_variables = sorted(TRENDS.keys())
    CLIM_CORRS = np.zeros((nvars, nvars)) + 1.e20
    CLIM_PVALS = np.zeros((nvars, nvars)) + 1.e20

    TREND_CORRS = np.zeros((nvars, nvars)) + 1.e20
    TREND_PVALS = np.zeros((nvars, nvars)) + 1.e20

    CROSS_CORRS = np.zeros((nvars, nvars)) + 1.e20
    CROSS_PVALS = np.zeros((nvars, nvars)) + 1.e20

    for variable in ok_variables:
        i = ok_variables.index(variable)
        for v2 in ok_variables:
            j = ok_variables.index(v2)
            #try:
            CLIM_CORRS[i, j] = stats.pearsonr(CLIM[variable], CLIM[v2])[0]
            CLIM_PVALS[i, j] = stats.pearsonr(CLIM[variable], CLIM[v2])[1]
            TREND_CORRS[i, j] = stats.pearsonr(TRENDS[variable], TRENDS[v2])[0]
            TREND_PVALS[i, j] = stats.pearsonr(TRENDS[variable], TRENDS[v2])[1]
            CROSS_CORRS[i, j] = stats.pearsonr(CLIM[variable], TRENDS[v2])[0]
            CROSS_PVALS[i, j] = stats.pearsonr(CLIM[variable], TRENDS[v2])[1]
        # except:
        #   print((variable,v2))
        # continue
    xlabels = []
    for variable in TRENDS.keys():
        if variable in MAXSIG.keys():

            xlabels += [MAXSIG[variable] + " " + variable]
        else:
            xlabels += [variable]

    diag_mask = np.tri(TREND_CORRS.shape[0], k=-1)
    CLIM_CORRS = np.ma.masked_where(CLIM_CORRS > 1.e10, CLIM_CORRS)
    if significance_level is not None:
        CLIM_CORRS = np.ma.masked_where(CLIM_PVALS > significance_level,
                                        CLIM_CORRS)

    CROSS_CORRS = np.ma.masked_where(CROSS_CORRS > 1.e10, CROSS_CORRS)
    if significance_level is not None:
        CROSS_CORRS = np.ma.masked_where(CROSS_PVALS > significance_level,
                                         CROSS_CORRS)

    TREND_CORRS = np.ma.masked_where(TREND_CORRS > 1.e10, TREND_CORRS)
    if significance_level is not None:
        TREND_CORRS = np.ma.masked_where(TREND_PVALS > significance_level,
                                         TREND_CORRS)
    fig = plt.figure(figsize=(12, 5))
    ax1 = plt.subplot(1, 3, 1)
    plt.pcolor(np.ma.array(CLIM_CORRS, mask=diag_mask),
               vmin=-1,
               vmax=1,
               cmap=cm.RdBu)
    plt.xticks(np.arange(nvars) + .5, xlabels, fontsize=8, rotation="vertical")
    plt.yticks(np.arange(nvars) + .5, xlabels, fontsize=8)
    plt.xlabel("climatology")
    plt.ylabel("climatology")
    plt.colorbar(orientation="horizontal")
    ax1.xaxis.tick_top()

    ax2 = plt.subplot(1, 3, 2)

    plt.pcolor(np.ma.array(TREND_CORRS, mask=diag_mask),
               vmin=-1,
               vmax=1,
               cmap=cm.RdBu)
    plt.xticks(np.arange(nvars) + .5, xlabels, fontsize=8, rotation="vertical")
    plt.yticks(np.arange(nvars) + .5, xlabels, fontsize=8)
    plt.xlabel("trend")
    plt.ylabel("trend")
    plt.colorbar(orientation="horizontal")
    ax2.xaxis.tick_top()
    ax3 = plt.subplot(1, 3, 3)
    plt.pcolor(np.ma.array(CROSS_CORRS, mask=diag_mask),
               vmin=-1,
               vmax=1,
               cmap=cm.RdBu)
    plt.xticks(np.arange(nvars) + .5, xlabels, fontsize=8, rotation="vertical")
    plt.yticks(np.arange(nvars) + .5, xlabels, fontsize=8)
    plt.xlabel("climatology")
    plt.ylabel("trend")
    plt.colorbar(orientation="horizontal")
    ax3.xaxis.tick_top()
    plt.tight_layout()
Exemple #26
0
    def obs_SN(self,
               start_time,
               stop_time=None,
               overlapping=True,
               include_trees=True,
               include_dai=False,
               include_cru=False,
               include_piControl=False,
               noisestart=None,
               solver=None,
               plot=True):
        to_return = {}
        if stop_time is None:
            stop_time = cmip5.stop_time(self.get_tree_ring_projection())
        target_obs = self.get_tree_ring_projection(solver=solver)(
            time=(start_time, stop_time))
        L = len(target_obs)
        modslopes, noiseterm = self.sn_at_time(start_time,
                                               L,
                                               overlapping=True,
                                               noisestart=noisestart,
                                               solver=solver)
        ns = np.std(noiseterm)
        signal = float(cmip5.get_linear_trends(target_obs))
        if plot:
            plt.hist(modslopes / ns,
                     20,
                     normed=True,
                     color=get_dataset_color("h85"),
                     alpha=.5)
            lab = str(start_time.year) + "-" + str(stop_time.year)
            da.fit_normals_to_data(modslopes / ns,
                                   color=get_dataset_color("h85"),
                                   lw=1,
                                   label="H85")

            plt.hist(noiseterm / ns,
                     20,
                     normed=True,
                     color=get_dataset_color("tree_noise"),
                     alpha=.5)
            da.fit_normals_to_data(noiseterm / ns,
                                   color=get_dataset_color("tree_noise"),
                                   lw=1,
                                   label="Pre-1850 tree rings")

        if include_trees:
            percentiles = []
            if plot:
                plt.axvline(signal / ns,
                            color=get_dataset_color("tree"),
                            lw=1,
                            label=lab + " GDA trend")
            print signal / ns
            noise_percentile = stats.percentileofscore(noiseterm.tolist(),
                                                       signal)
            h85_percentile = stats.percentileofscore(modslopes.tolist(),
                                                     signal)
            percentiles += [noise_percentile, h85_percentile]
            to_return["trees"] = [signal / ns] + percentiles
        if include_dai:
            daipercentiles = []
            dai_proj = self.project_dai_on_solver(start=start_time,
                                                  solver=solver)
            daitrend = float(
                cmip5.get_linear_trends(dai_proj(time=(start_time,
                                                       stop_time))))
            daisignal = daitrend / ns
            noise_percentile = stats.percentileofscore(noiseterm.tolist(),
                                                       daitrend)
            h85_percentile = stats.percentileofscore(modslopes.tolist(),
                                                     daitrend)
            daipercentiles += [noise_percentile, h85_percentile]
            if plot:
                plt.axvline(daisignal,
                            color=get_dataset_color("dai"),
                            lw=1,
                            label="Dai")
            print "DAI signal/noise is " + str(daisignal)
            to_return["dai"] = [daitrend / ns] + daipercentiles

        if include_cru:
            crupercentiles = []
            cru_proj = self.project_cru_on_solver(start=start_time,
                                                  solver=solver)
            crutrend = float(
                cmip5.get_linear_trends(cru_proj(time=(start_time,
                                                       stop_time))))
            noise_percentile = stats.percentileofscore(noiseterm.tolist(),
                                                       crutrend)
            h85_percentile = stats.percentileofscore(modslopes.tolist(),
                                                     crutrend)
            crupercentiles += [noise_percentile, h85_percentile]
            crusignal = crutrend / ns
            if plot:
                plt.axvline(crusignal,
                            color=get_dataset_color("cru"),
                            lw=1,
                            label="CRU")
            print "CRU signal/noise is " + str(crusignal)
            to_return["cru"] = [crutrend / ns] + crupercentiles
        if include_piControl:
            p = self.project_piControl_on_solver(solver=solver)
            noiseterm_mod = bootstrap_slopes(p, L)
            if plot:
                plt.hist(noiseterm_mod / ns,
                         20,
                         normed=True,
                         color=get_dataset_color("picontrol"),
                         alpha=.5)
                da.fit_normals_to_data(noiseterm_mod / ns,
                                       color=get_dataset_color("picontrol"),
                                       lw=1,
                                       label="PiControl")
            print "relative to model noise:"
            print float(signal) / np.std(noiseterm_mod)
        # percentiles+=[stats.percentileofscore(noiseterm_mod.tolist(),signal)]

        if plot:
            plt.legend(loc=0)
            plt.xlabel("S/N")
            plt.ylabel("Normalized Frequency")
        return to_return
Exemple #27
0
def observations():

    # Read in PET and PR files
    #regridded PET
    f = cdms.open("OBS/cru_ts4.01.1901.2016.pet.dat.REGRID.nc")
    pet = f("pet")
    f.close()
    landmask = pet[0].mask
    # Regridded GPCC
    fpr = cdms.open("OBS/precip.mon.total.2.5x2.5.v7.nc")
    pr = fpr("precip")
    fpr.close()
    pr = pr / 30.  #Approximate mm-> mm/day by assuming 30 days/month
    #Put them both on the same time axis
    startpet = cmip5.start_time(pet)
    stoppet = cmip5.stop_time(pet)
    startpr = cmip5.start_time(pr)
    stoppr = cmip5.stop_time(pr)

    if cdtime.compare(startpet, startpr) > 0:
        start = startpet
    else:
        start = startpr
    if cdtime.compare(stoppet, stoppr) > 0:
        stop = stoppr
    else:
        stop = stoppet
    start = cdtime.comptime(start.year, start.month, 1)
    stop = cdtime.comptime(stop.year, stop.month, 31)

    pr = pr(time=(start, stop))
    pet = pet(time=(start, stop))

    #Calculate R and P
    Rpr, Ppr = sc.fast_annual_cycle(pr)
    Rpet, Ppet = sc.fast_annual_cycle(pet)
    #Convert phase to month of maximum (VECTORIZE THIS?)
    #How to handle "month of maximum" if it's fluctuating between 1 and 12?  (physically, what does this mean when our timesteps are every year?)
    #Should we modify the code in phase detection to start at phase 0?  Ie start in a month such that the maximum is 6 months away?

    #Calculate variance maps for p and pet
    test_period = ('1979-1-1', '2004-12-31'
                   )  #for overlap with CMIP5 historical
    pet_vmap = sc.variance_map(pet(time=test_period))
    pr_vmap = sc.variance_map(pr(time=test_period))

    #make phase maps
    variance_threshold = 0.25  #Can we come up with a physically meaningful threshold here? Null hypothesis of no correlation ruled out at 99% confidence?
    Ppet_clim = sc.phase_climatology(Ppet)
    Ppet_clim_month = sc.mask_data(sc.phase_to_month(Ppet_clim), landmask)

    Ppr_clim = sc.phase_climatology(Ppr)
    Ppr_clim_month = sc.mask_data(sc.phase_to_month(Ppr_clim), landmask)
    months = [
        "JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT",
        "NOV", "DEC"
    ]
    from land_seasonal_cycle import landplot
    plt.subplot(211)
    m = landplot(MV.masked_where(pet_vmap < variance_threshold,
                                 Ppet_clim_month),
                 cmap=cm.hsv,
                 vmin=0,
                 vmax=12)
    m.drawcoastlines(color='gray')
    cbar = plt.colorbar(orientation="horizontal")
    cbar.set_ticks(np.arange(12))
    cbar.set_ticklabels(months)
    plt.title("PET phase")

    plt.subplot(212)
    m = landplot(MV.masked_where(pr_vmap < variance_threshold, Ppr_clim_month),
                 cmap=cm.hsv,
                 vmin=0,
                 vmax=12)
    m.drawcoastlines(color='gray')
    cbar = plt.colorbar(orientation="horizontal")
    cbar.set_ticks(np.arange(12))
    cbar.set_ticklabels(months)
    plt.title("PR phase")

    #phase trends
    Pa_pet = sc.get_phase_anomalies(Ppet)
    Pa_pet_trends = cmip5.get_linear_trends(Pa_pet)

    Pa_pr = sc.get_phase_anomalies(Ppr)
    Pa_pr_trends = cmip5.get_linear_trends(Pa_pr)
Exemple #28
0
def NatureRevisions_Figure5(D):
    aerosol_start = cdtime.comptime(1950,1,1)
    aerosol_stop = cdtime.comptime(1975,12,31)
    aerosolsolver=Eof(D.ALL.mma(time=(aerosol_start,aerosol_stop)),weights='area')
    fac=da.get_orientation(aerosolsolver)
    plt.subplot(221)
    m=b.landplot(fac*aerosolsolver.eofs()[0],vmin=-.1,vmax=.1)
    m.fillcontinents(color="gray",zorder=0)
    
    varex= str(int(100*np.round(aerosolsolver.varianceFraction()[0],2)))
    plt.title("(a)")#: 1950-1975 historical fingerprint ("+varex+"% of variance explained)",fontsize=8)
    m.drawcoastlines(color='gray')
    plt.ylim(-60,90)
    plt.colorbar(orientation='horizontal',label='EOF loading')
    plt.subplot(222)
    Plotting.time_plot(fac*aerosolsolver.pcs()[:,0],color=cm.Greys(.8),lw=1)
    plt.title("(b)")#: Associated PC",fontsize=8)
    plt.ylabel("Temporal amplitude")

    plt.subplot(223)

    target_obs,cru_proj,dai_proj=pdsi_time_series(D,aerosol_start,aerosol_stop,aerosols=True)
    plt.legend(fontsize=6)
    plt.title("(c)")#: Projections on fingerprint",fontsize=8)
    plt.subplot(224)

   # target_obs = D.ALL.get_tree_ring_projection(solver = aerosolsolver)(time=(aerosol_start,aerosol_stop))
    L=len(target_obs)
    modslopes,noiseterm = D.ALL.sn_at_time(aerosol_start,L,overlapping=True,solver=aerosolsolver)
    ns=np.std(noiseterm)
    signal = float(cmip5.get_linear_trends(target_obs))
    plt.hist(modslopes/ns,20,normed=True,color=get_dataset_color("h85"),alpha=.5)
    lab = str(aerosol_start.year)+"-"+str(aerosol_stop.year)
    da.fit_normals_to_data(modslopes/ns,color=get_dataset_color("h85"),lw=1,label="H85")

    plt.hist(noiseterm/ns,20,normed=True,color=get_dataset_color("tree_noise"),alpha=.5)
    da.fit_normals_to_data(noiseterm/ns,color=get_dataset_color("tree_noise"),lw=1,label="Pre-1850 tree rings")
    percentiles=[]
    plt.axvline(signal/ns,color=get_dataset_color("tree"),lw=1,label=lab+" GDA trend")
    
    noise_percentile=stats.percentileofscore(noiseterm.tolist(),signal)
    h85_percentile=stats.percentileofscore(modslopes.tolist(),signal)
    percentiles += [noise_percentile,h85_percentile]


    daitrend = cmip5.get_linear_trends(dai_proj)
    print "DAI slope is "+str(daitrend)
    daisignal = daitrend/ns
    
    plt.axvline(daisignal,color=get_dataset_color("dai"),lw=1,label="Dai")
    print "DAI signal/noise is "+str(daisignal)

    
    
    crutrend = cmip5.get_linear_trends(cru_proj)
    print "CRU slope is "+str(crutrend)
    crusignal = crutrend/ns
    
    plt.axvline(crusignal,color=get_dataset_color("cru"),lw=1,label="CRU")
    print "CRU signal/noise is "+str(crusignal)

   
            
       
    plt.legend(loc=0,fontsize=8)
    plt.xlabel("S/N")
    plt.ylabel("Normalized Frequency")
    plt.title("(d)")#: Detection and Attribution Results",fontsize=8)
    fig=plt.gcf()
    for ax in fig.axes:
        plt.setp(ax.xaxis.get_label(),fontsize=6)
        plt.setp(ax.yaxis.get_label(),fontsize=6)
        plt.setp(ax.get_xticklabels(),fontsize=6)
        plt.setp(ax.get_yticklabels(),fontsize=6)
    ax=fig.axes[0]
    ax.set_title("(a)",fontsize=6)
    ax=fig.axes[2]
    ax.set_title("(b)",fontsize=6)
    ax=fig.axes[3]
    ax.set_title("(c)",fontsize=6)
    ax=fig.axes[4]
    ax.set_title("(d)",fontsize=6)
    leg=ax.legend(fontsize=6,ncol=1,loc=2)
    leg.set_frame_on(False)
    cax=fig.axes[1]
    ticklabels=["-0.1","","-0.05","","0","","0.05","","0.1"]
    cax.set_xticklabels(ticklabels)
    plt.setp(cax.xaxis.get_ticklabels(),fontsize=6)
    plt.setp(cax.xaxis.get_label(),fontsize=6)