def get_land_ice_mask(fname): fland = cdms.open(cmip5.landfrac(fname)) fglac = cdms.open(cmip5.glacierfrac(fname)) land = fland("sftlf") glacier=fglac("sftgif") #mask ocean and ice sheets totmask = np.logical_or(land==0,glacier==100.) # totmask =np.repeat(totmask.asma()[np.newaxis],12,axis=0) fland.close() fglac.close() return totmask
def get_tas_and_precip_from_file(fname): f = cdms.open(fname) tas = cdutil.ANNUALCYCLE.climatology(f("tas",time=('1979-1-1','2005-12-31')))-273.15 #convert from K to C fpr = cdms.open(get_corresponding_pr(fname)) pr = cdutil.ANNUALCYCLE.climatology(fpr("pr",time=('1979-1-1','2005-12-31')))*(86400 * 30) #convert to mm fland = cdms.open(cmip5.landfrac(fname)) fglac = cdms.open(cmip5.glacierfrac(fname)) land = fland("sftlf") glacier=fglac("sftgif") #mask ocean and ice sheets totmask = np.logical_or(land==0,glacier==100.) totmask =np.repeat(totmask.asma()[np.newaxis],12,axis=0) tasmask = MV.masked_where(totmask,tas) prmask = MV.masked_where(totmask,pr) f.close() fpr.close() fland.close() fglac.close() return tasmask,prmask
def PET_from_cmip(fname): """ fname must be a temperature file Calculate PET from cmip5 data on crunchy #Ta = temperature, degrees K = tas # Rnet = surface net radiation, W/m2 = (hfls+hfss) # u = wind speed at 2 meters, m/s = sfcWind (??) # q = specific humidity, kg/kg = huss # press = surface pressure, Pascals = ps """ #Get land and ice masks temp_variable = fname.split(".")[-4] f_ta = cdms.open(fname) Ta = f_ta(temp_variable) f_ta.close() fland = cdms.open(cmip5.landfrac(fname)) land = fland("sftlf") fland.close() try: fglac = cdms.open(cmip5.glacierfrac(fname)) glacier = fglac("sftgif") fglac.close() except: glacier = MV.zeros(land.shape) #mask ocean and ice sheets totmask = np.logical_or(land == 0, glacier == 100.) nt = len(Ta.getTime()) totmask = np.repeat(totmask.asma()[np.newaxis], nt, axis=0) if cmip5.get_corresponding_file(fname, "sfcWind") is None: #if no surface wind is available, use NCEP reanalyis f_wind = cdms.open("wspd.mon.ltm.nc") wspd = f_wind("wspd") ny = nt / 12 u = np.repeat(wspd, ny, axis=0) #Repeat monthly climatologies u.setAxisList([Ta.getTime()] + wspd.getAxisList()[1:]) u.id = "sfcWind" f_wind.close() else: f_wind = cdms.open(cmip5.get_corresponding_file(fname, "sfcWind")) u = f_wind("sfcWind") f_wind.close() f_hfls = cdms.open(cmip5.get_corresponding_file(fname, "hfls")) hfls = f_hfls("hfls") f_hfls.close() # Some models put sfcWind on a different grid to calculate surface fluxes if u.shape != hfls.shape: u = u.regrid(hfls.getGrid(), regridTool='regrid2') f_hfss = cdms.open(cmip5.get_corresponding_file(fname, "hfss")) hfss = f_hfss("hfss") f_hfss.close() Rnet = hfss + hfls f_huss = cdms.open(cmip5.get_corresponding_file(fname, "huss")) q = f_huss("huss") f_huss.close() f_ps = cdms.open(cmip5.get_corresponding_file(fname, "ps")) press = f_ps("ps") f_ps.close() corresponding_files = [ cmip5.get_corresponding_file(fname, var) for var in ["hfss", temp_variable, "huss", "ps", "hfls"] ] L = cmip5.get_common_timeax(corresponding_files) if type(L) == type(()): PET, VPD, RH = penmont_vpd_SH(Ta(time=L), Rnet(time=L), q(time=L), press(time=L), u(time=L)) else: PET, VPD, RH = penmont_vpd_SH(Ta[:L], Rnet[:L], q[:L], press[:L], u[:L]) PET = MV.masked_where(totmask, PET) PET.setAxisList(Ta.getAxisList()) PET.id = "PET" VPD = MV.masked_where(totmask, VPD) VPD.setAxisList(Ta.getAxisList()) VPD.id = "VPD" RH = MV.masked_where(totmask, RH) RH.setAxisList(Ta.getAxisList()) RH.id = "RH" return PET, VPD, RH
def PET_from_cmip(fname, temp_variable="tas"): #Ta = temperature, degrees K = tas # Rnet = surface net radiation, W/m2 = (hfls+hfss) # u = wind speed at 2 meters, m/s = sfcWind (??) # q = specific humidity, kg/kg = huss # press = surface pressure, Pascals = ps #Get land and ice masks fland = cdms.open(cmip5.landfrac(fname)) fglac = cdms.open(cmip5.glacierfrac(fname)) land = fland("sftlf") glacier = fglac("sftgif") #mask ocean and ice sheets totmask = np.logical_or(land == 0, glacier == 100.) f_wind = cdms.open(fname) u = f_wind("sfcWind") f_wind.close() nt = len(u.getTime()) totmask = np.repeat(totmask.asma()[np.newaxis], nt, axis=0) f_hfls = cdms.open(cmip5.get_corresponding_file(fname, "hfls")) hfls = f_hfls("hfls") f_hfls.close() f_hfss = cdms.open(cmip5.get_corresponding_file(fname, "hfss")) hfss = f_hfss("hfss") f_hfss.close() Rnet = hfss + hfls f_ta = cdms.open(cmip5.get_corresponding_file(fname, temp_variable)) Ta = f_ta(temp_variable) f_ta.close() f_huss = cdms.open(cmip5.get_corresponding_file(fname, "huss")) q = f_huss("huss") f_huss.close() f_ps = cdms.open(cmip5.get_corresponding_file(fname, "ps")) press = f_ps("ps") f_ps.close() PET, VPD, RH = penmont_vpd_SH(Ta, Rnet, q, press, u) PET = MV.masked_where(totmask, PET) PET.setAxisList(u.getAxisList()) PET.id = "PET" VPD = MV.masked_where(totmask, VPD) VPD.setAxisList(u.getAxisList()) VPD.id = "VPD" RH = MV.masked_where(totmask, RH) RH.setAxisList(u.getAxisList()) RH.id = "RH" return PET, VPD, RH
def PET_from_cmip(fname, temp_variable="tas"): #Ta = temperature, degrees K = tas # Rnet = surface net radiation, W/m2 = (hfls+hfss) # u = wind speed at 2 meters, m/s = sfcWind (??) # q = specific humidity, kg/kg = huss # press = surface pressure, Pascals = ps #Get land and ice masks fland = cdms.open(cmip5.landfrac(fname)) land = fland("sftlf") fland.close() try: fglac = cdms.open(cmip5.glacierfrac(fname)) glacier = fglac("sftgif") fglac.close() except: glacier = MV.zeros(land.shape) #mask ocean and ice sheets totmask = np.logical_or(land == 0, glacier == 100.) f_wind = cdms.open(fname) u = f_wind("sfcWind") f_wind.close() nt = len(u.getTime()) totmask = np.repeat(totmask.asma()[np.newaxis], nt, axis=0) f_hfls = cdms.open(cmip5.get_corresponding_file(fname, "hfls")) hfls = f_hfls("hfls") f_hfls.close() # Some models put sfcWind on a different grid to calculate surface fluxes if u.shape != hfls.shape: u = u.regrid(hfls.getGrid(), regridTool='regrid2') f_hfss = cdms.open(cmip5.get_corresponding_file(fname, "hfss")) hfss = f_hfss("hfss") f_hfss.close() Rnet = hfss + hfls f_ta = cdms.open(cmip5.get_corresponding_file(fname, temp_variable)) Ta = f_ta(temp_variable) f_ta.close() f_huss = cdms.open(cmip5.get_corresponding_file(fname, "huss")) q = f_huss("huss") f_huss.close() f_ps = cdms.open(cmip5.get_corresponding_file(fname, "ps")) press = f_ps("ps") f_ps.close() corresponding_files = [ cmip5.get_corresponding_file(fname, var) for var in ["hfss", temp_variable, "huss", "ps", "hfls"] ] L = cmip5.get_common_timeax(corresponding_files) PET, VPD, RH = penmont_vpd_SH(Ta[:L], Rnet[:L], q[:L], press[:L], u[:L]) PET = MV.masked_where(totmask, PET) PET.setAxisList(Ta.getAxisList()) PET.id = "PET" VPD = MV.masked_where(totmask, VPD) VPD.setAxisList(Ta.getAxisList()) VPD.id = "VPD" RH = MV.masked_where(totmask, RH) RH.setAxisList(Ta.getAxisList()) RH.id = "RH" return PET, VPD, RH