unwrap=True)
gainTaEstUnc_mag = FreqTrans.Gain(TaEstUnc, magUnit='mag')

if False:
    for iPlot, io in enumerate(ioArray):
        iOut, iIn = io

        outName = outPlot[iOut]
        inName = inPlot[iIn]

        fig = 80 + iPlot

        fig = FreqTrans.PlotBode(freqLin_hz,
                                 gainTaLinNom_mag[iOut, iIn],
                                 phaseTaLinNom_deg[iOut, iIn],
                                 coher_nd=np.ones_like(freqLin_hz),
                                 fig=fig,
                                 color='k',
                                 label='Linear')
        fig = FreqTrans.PlotBode(freq_hz[0],
                                 gainTaEstNom_mag[iOut, iIn],
                                 phaseTaEstNom_deg[iOut, iIn],
                                 TaEstCoh[iOut, iIn],
                                 gainUnc_mag=gainTaEstUnc_mag[iOut, iIn],
                                 fig=fig,
                                 color='b',
                                 label='Estimation (MIMO)')
        fig = FreqTrans.PlotBode(freq_hz[0, sigIndx[iIn]],
                                 gainTaEstNom_mag[iOut, iIn, sigIndx[iIn]],
                                 phaseTaEstNom_deg[iOut, iIn, sigIndx[iIn]],
                                 TaEstCoh[iOut, iIn, sigIndx[iIn]],
#%% Bode Plot
# Linear Model Gain and Phase
gainTLinNom_mag, phaseTLinNom_deg = FreqTrans.GainPhase(TLinNom, magUnit = 'mag', unwrap = True)
gainTLinUnc_mag = FreqTrans.Gain(TLinUnc, magUnit = 'mag')

# Estimated Gain and Phase
gainTEstNom_mag, phaseTEstNom_deg = FreqTrans.GainPhase(TEstNom, magUnit = 'mag', unwrap = True)
gainTEstUnc_mag = FreqTrans.Gain(TEstUnc, magUnit = 'mag')

np.mean(gainTEstUnc_mag, axis = -1) / np.mean(gainTLinUnc_mag, axis = -1) # should be 1 if scaled correctly

if False:
    for iPlot, [iOut, iIn] in enumerate(ioArray):
        fig = None
        fig = FreqTrans.PlotBode(freqLin_hz, gainTLinNom_mag[iOut, iIn], phaseTLinNom_deg[iOut, iIn], coher_nd = cohTLin_mag[iOut, iIn], gainUnc_mag = None, fig = fig, dB = True, color='k', label='Linear Nominal' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')
        fig = FreqTrans.PlotBode(freqLin_hz, gainTLinUnc_mag[iOut, iIn], None, coher_nd = None, gainUnc_mag = None, fig = fig, dB = True, color='k', linestyle='--', label='Linear Uncertainty' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')

        fig = FreqTrans.PlotBode(freq_hz[iIn], gainTEstNom_mag[iOut, iIn], phaseTEstNom_deg[iOut, iIn], coher_nd = cohTEst_mag[iOut, iIn], gainUnc_mag = None, fig = fig, dB = True, color='b', linestyle='None', marker='.', label='Estimate Nominal' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')
        fig = FreqTrans.PlotBode(freq_hz[iIn], gainTEstUnc_mag[iOut, iIn], None, coher_nd = None, gainUnc_mag = None, fig = fig, dB = True, color='r', linestyle='None', marker='.', label='Estimate Uncertainty' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')

#        fig = FreqTrans.PlotBode(freq_hz[iIn, sigIndx[iIn]], gainTEstNom_mag[iOut, iIn, sigIndx[iIn]], phaseTEstNom_deg[iOut, iIn, sigIndx[iIn]], coher_nd = cohTEst_mag[iOut, iIn, sigIndx[iIn]], gainUnc_mag = gainTEstUnc_mag[iOut, iIn, sigIndx[iIn]], fig = fig, dB = True, color='b', linestyle='None', marker='.', label='Estimate [SIMO]')
#        fig = FreqTrans.PlotBode(freq_hz[iIn, sigIndx[iIn]], gainTEstUnc_mag[iOut, iIn, sigIndx[iIn]], None, coher_nd = None, gainUnc_mag = None, fig = fig, dB = True, color='b', linestyle='None', marker='.', label='Estimate [SIMO]')

        ax = fig.get_axes()
#        handles, labels = ax[0].get_legend_handles_labels()
#        handles = [(handles[0], handles[2]), (handles[1], handles[3])]
#        labels = [labels[0], labels[1]]
#        ax[0].legend(handles, labels)
#        ax[0].set_xlim([1,10])
# Linear Model Gain and Phase
gainToLinNom_mag, phaseToLinNom_deg = FreqTrans.GainPhase(ToLinNom, magUnit = 'mag', phaseUnit = 'deg', unwrap = True)
gainToLinUnc_mag = FreqTrans.Gain(ToLinUnc, magUnit = 'mag')
cohToLin_mag = np.ones_like(ToLinUnc)

# Estimated
gainToEstNom_mag, phaseToEstNom_deg = FreqTrans.GainPhase(ToEstNom, magUnit = 'mag', phaseUnit = 'deg', unwrap = True)
gainToEstUnc_mag = FreqTrans.Gain(ToEstUnc, magUnit = 'mag') # Estimation Uncertain Response
cohToEst_mag = ToEstCoh # Estimation Coherence
cohToEstMin = np.min(cohToEst_mag, axis = (0, 1))


if False:
    for iPlot, [iOut, iIn] in enumerate(ioArray):
        fig = 20 + iPlot
        fig = FreqTrans.PlotBode(freqLin_hz, gainToLinNom_mag[iOut, iIn], phaseToLinNom_deg[iOut, iIn], coher_nd = cohToLin_mag[iOut, iIn], gainUnc_mag = gainToLinUnc_mag[iOut, iIn], fig = fig, dB = True, color='k', label='Linear Model')
        fig = FreqTrans.PlotBode(freq_hz[iIn], gainToEstNom_mag[iOut, iIn], phaseToEstNom_deg[iOut, iIn], coher_nd = cohToEst_mag[iOut, iIn], gainUnc_mag = gainToEstUnc_mag[iOut, iIn], fig = fig, dB = True, color='b', label='Estimate [MIMO]')
        fig = FreqTrans.PlotBode(freq_hz[iIn, sigIndx[iIn]], gainToEstNom_mag[iOut, iIn, sigIndx[iIn]], phaseToEstNom_deg[iOut, iIn, sigIndx[iIn]], coher_nd = cohToEst_mag[iOut, iIn, sigIndx[iIn]], gainUnc_mag = gainToEstUnc_mag[iOut, iIn, sigIndx[iIn]], fig = fig, dB = True, color='g', label='Estimate [SIMO]')
        
        ax = fig.get_axes()
        handles, labels = ax[0].get_legend_handles_labels()
        handles = [handles[0], handles[3], handles[1], handles[4], handles[2], handles[5]]
        labels = [labels[0], labels[3], labels[1], labels[4], labels[2], labels[5]]
        ax[0].legend(handles, labels)
    
        fig.suptitle('$T_o$ : ' + '$r_{Exc}$[' + str(iIn) + '] to ' + '$z$[' + str(iOut) + ']')


#%% Sigma - Output Stability
I2 = np.repeat([np.eye(2)], LoLinNom.shape[-1], axis=0).T
Exemple #4
0
                                            fig=fig,
                                            fmt='*',
                                            label=oDataSegs[iSeg]['Desc'])

            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_xlim(-3, 1)
            ax[0].set_ylim(-2, 2)

#%% Bode Plots
if True:

    for iIn, inName in enumerate(inPlot):
        for iOut, outName in enumerate(outPlot):

            fig = None
            for iSeg in range(0, len(oDataSegs)):
                fig = FreqTrans.PlotBode(freq_hz[iIn],
                                         gain_mag[iSeg][iOut, iIn],
                                         phase_deg[iSeg][iOut, iIn],
                                         C[iSeg][iOut, iIn],
                                         gainUnc_mag=gainUnc_mag[iSeg][iOut,
                                                                       iIn],
                                         dB=False,
                                         fig=fig,
                                         fmt='*--',
                                         label=oDataSegs[iSeg]['Desc'])

            fig.suptitle(inName + ' to ' + outName, size=20)
Exemple #5
0
  plt.ylabel('Output')
  plt.legend()
  plt.grid(True)


#%% Bode Progression
if False:
  gainLin_mag, phaseLin_deg = FreqTrans.GainPhase(TLinFinal, magUnit = 'mag', unwrap = False)

  gainRefine_mag, phaseRefine_deg = FreqTrans.GainPhase(TuzRefine, magUnit = 'mag', unwrap = False)
  gainFinal_mag, phaseFinal_deg = FreqTrans.GainPhase(TuzFinal, magUnit = 'mag', unwrap = False)
  gainFinalMean_mag = np.mean(gainFinal_mag, axis=0)
  phaseFinalMean_deg = np.mean(phaseFinal_deg, axis=0)
  phaseFinalMean_deg = np.mean(phaseFinal_deg, axis=0)
  CuzFinalMean = np.mean(CuzFinal, axis=0)

  fig = None
  fig = FreqTrans.PlotBode(freqExcFinal_rps * rps2hz, gainLin_mag.squeeze(), phaseLin_deg.squeeze(), coher_nd = np.ones_like(gainLin_mag).squeeze(), gainUnc_mag = None, fig = fig, dB = True, linestyle = '-', color='k', label='Linear Model')

  fig = FreqTrans.PlotBode(freqExc_rps * rps2hz, gainRefine_mag[0], phaseRefine_deg[0], coher_nd = CuzRefine[0], gainUnc_mag = None, fig = fig, dB = True, linestyle = ':', color='b', label='First iteration')
  fig = FreqTrans.PlotBode(freqExc_rps * rps2hz, gainRefine_mag[-1], phaseRefine_deg[-1], coher_nd = CuzRefine[-1], gainUnc_mag = None, fig = fig, dB = True, linestyle = '-', color='b', label='Last Refinement iteration')

  for iFinal, t in enumerate(timeFinal_s):
    fig = FreqTrans.PlotBode(freqExcFinal_rps * rps2hz, gainFinal_mag[iFinal], phaseFinal_deg[iFinal], coher_nd = CuzFinal[iFinal], gainUnc_mag = None, fig = fig, dB = True, linestyle = ':', color='r', label='Final Estimates')

  fig = FreqTrans.PlotBode(freqExcFinal_rps * rps2hz, gainFinalMean_mag, phaseFinalMean_deg, coher_nd = CuzFinalMean, gainUnc_mag = None, fig = fig, dB = True, linestyle = '-', color='r', label='Final Merge')

  ax = fig.get_axes()
  ax[-1].set_ylim(0, 1)

Exemple #6
0
            fig = FreqTrans.PlotNyquist(np.asarray([-1 + 0j]),
                                        TUnc=np.asarray([0.4 + 0.4j]),
                                        fig=fig,
                                        fmt='*r',
                                        label='Critical Region')
            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_xlim(-3, 1)
            ax[0].set_ylim(-2, 2)

#%% Bode Plots
if False:
    #%%
    for iOut, outName in enumerate(outPlot):
        for iIn, inName in enumerate(inPlot):

            fig = None
            for iSeg in range(0, len(oDataSegs)):
                #                fig = FreqTrans.PlotBode(freq_hz[0], gain_mag[iSeg][iOut, iIn], phase_deg[iSeg][iOut, iIn], C[iSeg][iOut, iIn], gainUnc_mag = gainUnc_mag[iSeg][iOut, iIn], fig = fig, fmt = rtsmSegList[iSeg]['fmt'] + '*-', label = oDataSegs[iSeg]['Desc'])
                fig = FreqTrans.PlotBode(freq_hz[0],
                                         gain_mag[iSeg][iOut, iIn],
                                         phase_deg[iSeg][iOut, iIn],
                                         C[iSeg][iOut, iIn],
                                         fig=fig,
                                         fmt=rtsmSegList[iSeg]['fmt'] + '*-',
                                         label=oDataSegs[iSeg]['Desc'])

            fig.suptitle(inName + ' to ' + outName, size=20)
                                        label='Critical Region')
            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_xlim(-3, 1)
            ax[0].set_ylim(-2, 2)

#%% Bode Plots
if True:
    for iOut, outName in enumerate(outPlot):
        for iIn, inName in enumerate(inPlot):
            fig = 80 + 3 * iOut + iIn
            fig = FreqTrans.PlotBode(freqLin_hz,
                                     gainLin_mag[iOut, iIn],
                                     phaseLin_deg[iOut, iIn],
                                     coher_nd=np.ones_like(freqLin_hz),
                                     fig=fig,
                                     fmt='k',
                                     label='Linear')
            fig = FreqTrans.PlotBode(freq_hz[0, sigIndx[iIn]],
                                     gain_mag[iOut, iIn, sigIndx[iIn]],
                                     phase_deg[iOut, iIn, sigIndx[iIn]],
                                     C[iOut, iIn, sigIndx[iIn]],
                                     fig=fig,
                                     fmt='bo',
                                     label='Estimated SIMO')
            fig = FreqTrans.PlotBode(freq_hz[0],
                                     gain_mag[iOut, iIn],
                                     phase_deg[iOut, iIn],
                                     C[iOut, iIn],
                                     fig=fig,
Exemple #8
0
                                                          magUnit='mag',
                                                          phaseUnit='deg',
                                                          unwrap=True)
gainTiEstUnc_mag = FreqTrans.Gain(
    TiEstUnc, magUnit='mag')  # Estimation Uncertain Response
cohTiEst_mag = TiEstCoh  # Estimation Coherence
cohTiEstMin = np.min(cohTiEst_mag, axis=(0, 1))

if True:
    for iPlot, [iOut, iIn] in enumerate(ioArray):
        fig = 20 + iPlot
        fig = FreqTrans.PlotBode(freqLin_hz,
                                 gainTiLinNom_mag[iOut, iIn],
                                 phaseTiLinNom_deg[iOut, iIn],
                                 coher_nd=cohTiLin_mag[iOut, iIn],
                                 gainUnc_mag=None,
                                 fig=fig,
                                 dB=True,
                                 color='k',
                                 label='Linear Model')
        fig = FreqTrans.PlotBode(freqLin_hz,
                                 gainTiLinUnc_mag[iOut, iIn],
                                 None,
                                 coher_nd=None,
                                 gainUnc_mag=None,
                                 fig=fig,
                                 dB=True,
                                 color='k',
                                 linestyle='--',
                                 label='Linear Model')
if False:

    for iPlot, [iOut, iIn] in enumerate(ioArray):
        fig = 20 + iPlot
        for iSeg in range(0, len(oDataSegs)):
            gain_mag = gainLaEstNomList_mag[iSeg][iOut, iIn]
            phase_deg = phaseLaEstNomList_deg[iSeg][iOut, iIn]
            coher_nd = LaEstCohList[iSeg][iOut, iIn]
            gainUnc_mag = gainLaEstUncList_mag[iSeg][iOut, iIn]

            fig = FreqTrans.PlotBode(freq_hz[iIn],
                                     gain_mag,
                                     phase_deg,
                                     coher_nd,
                                     gainUnc_mag,
                                     fig=fig,
                                     dB=True,
                                     color=rtsmSegList[iSeg]['color'],
                                     label=oDataSegs[iSeg]['Desc'])

#        fig.suptitle(inName + ' to ' + outName, size=20)

#%% Turbulence
optSpecE = FreqTrans.OptSpect(dftType='czt',
                              freqRate=freqRate_rps,
                              smooth=('box', 7),
                              winType=('tukey', 0.0))
optSpecE.freq = np.asarray(freqExc_rps)
optSpecE.freqInterp = np.sort(optSpecE.freq.flatten())
Exemple #10
0
            fig = FreqTrans.PlotNyquist(np.asarray([-1 + 0j]),
                                        TUnc=np.asarray([0.4 + 0.4j]),
                                        fig=fig,
                                        fmt='*r',
                                        label='Critical Region')
            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_xlim(-3, 1)
            ax[0].set_ylim(-2, 2)

#%% Bode Plots
if False:
    for iOut, outName in enumerate(outPlot):
        for iIn, inName in enumerate(inPlot):

            fig = None
            for iSeg in range(0, len(oDataSegs)):
                fig = FreqTrans.PlotBode(freq_hz[0],
                                         gainLiEstNomList_mag[iSeg][iOut, iIn],
                                         phaseLiEstNomList_deg[iSeg][iOut,
                                                                     iIn],
                                         LiEstCohList[iSeg][iOut, iIn],
                                         fig=fig,
                                         color=rtsmSegList[iSeg]['color'],
                                         linestyle='-',
                                         label=oDataSegs[iSeg]['Desc'])

            fig.suptitle(inName + ' to ' + outName, size=20)