Exemple #1
0
B = FreqTrans.Bartlett(tBinB, N + 1)
Bmag = np.abs(B)
Bmax = np.nanmax(Bmag)
Bnorm_mag = Bmag / Bmax

tBinBapprox = np.linspace(0.0, time_s[-1] / tBinWidth, 80)
timeBapprox_s = tBinWidth * tBinBapprox
Bapprox_mag = 10**-(2 / 5) * (1 / tBinBapprox)**2

fig = 2
fig = FreqTrans.PlotGainTemporal(t_s,
                                 PwwNListMean / PwwNListMean.max(),
                                 None,
                                 None,
                                 None,
                                 fig=fig,
                                 dB=False,
                                 linestyle='-',
                                 color='b',
                                 label='Null Estimate at Input')

fig = FreqTrans.PlotGainTemporal(timeD_s,
                                 Dnorm_mag,
                                 None,
                                 None,
                                 None,
                                 fig=fig,
                                 dB=False,
                                 UncSide='Max',
                                 linestyle='-',
                                 color='r',
        gainThLinNomMean = np.mean(np.abs(gainThLinNom_mag[:,iOut,iIn,:]), axis=-1)
        gainThLinUncMean = np.mean(np.abs(gainThLinUnc_mag[:,iOut,iIn,:]), axis=-1)
        gainThLinUncMin = np.mean(np.abs(gainThLinNom_mag[:,iOut,iIn,:]) - np.abs(gainThLinUnc_mag[:,iOut,iIn,:]), axis=-1) * ones

        gainThEstNomMean = np.mean(np.abs(gainThEstNom_mag[:,iOut,iIn,:]), axis=-1)
        gainThEstUncMean = np.mean(np.abs(gainThEstUnc_mag[:,iOut,iIn,:]), axis=-1)
        gainThEstUncMin = np.mean(np.abs(gainThEstNom_mag[:,iOut,iIn,:]) - np.abs(gainThEstUnc_mag[:,iOut,iIn,:]), axis=-1)

        cohEst = np.abs(CuzList[:,iOut,iIn,:])
        cohEstMean = np.mean(cohEst, axis=-1)
        cohEstStd = np.std(cohEst, axis=-1)
        cohEstMin = np.min(cohEst, axis=-1)


        fig = None
        fig = FreqTrans.PlotGainTemporal(t_s, gainThLinNomMean, None, coher_nd = ones, gainUnc_mag = gainThLinUncMean, fig = fig, dB = False, linestyle='-', color='k', label = 'Linear' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')
#        fig = FreqTrans.PlotGainTemporal(t_s, gainThLinUncMin, None, fig = fig, dB = False, linestyle=':', color='k', label = 'Linear - Lower')

        fig = FreqTrans.PlotGainTemporal(t_s, gainThEstNomMean, None, coher_nd = cohEstMean, gainUnc_mag = gainThEstUncMean, fig = fig, dB = False, linestyle='-', color='b', label = 'Estimate' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')
#        fig = FreqTrans.PlotGainTemporal(t_s, gainThEstUncMin, None, coher_nd = cohEstMin, fig = fig, dB = False, linestyle=':', color='r', label = 'Estimate - Lower')

        ax = fig.get_axes()
        ax[0].set_ylabel("Gain [mag]")

        handles, labels = ax[0].get_legend_handles_labels()
        handles = [(handles[0], handles[2]), (handles[1], handles[3])]
        labels = [labels[0], labels[1]]
        ax[0].legend(handles, labels)

#        fig.set_size_inches([6.4,4.8])
        if False:
        #        zSNRMin[zSNRMin < 0] = 0

        cohEst = np.abs(TaEstCohHist[:, iOut, iIn, :])
        cohEst[cohEst < 0] = 0
        cohEst[cohEst > 1] = 1
        cohEstMean = np.mean(cohEst, axis=-1)
        cohEstMin = np.min(cohEst, axis=-1)

        fig = None
        ones = np.ones_like(time_s)
        fig = FreqTrans.PlotGainTemporal(time_s,
                                         zSNRMean,
                                         None,
                                         None,
                                         zSNRMin,
                                         fig=fig,
                                         dB=True,
                                         UncSide='Min',
                                         linestyle='-',
                                         color='r',
                                         label='Estimate of Output')
        fig = FreqTrans.PlotGainTemporal(time_s,
                                         uSNRMean,
                                         None,
                                         None,
                                         uSNRMin,
                                         fig=fig,
                                         dB=True,
                                         UncSide='Min',
                                         linestyle='-',
                                         color='k',