ToEstSNR = np.abs(ToEstNom / ToEstUnc)**2
SoEstSNR = np.abs(SoEstNom / SoEstUnc)**2
LoEstSNR = np.abs(LoEstNom / LoEstUnc)**2


#%% Nyquist Plot - Output Complimentary Sensitivity Function
ToLinUncMag = np.abs(ToLinUnc)
ToEstUncMag = np.abs(ToEstUnc)

numOut, numIn = ToLinNom.shape[0:-1]
ioArray = np.array(np.meshgrid(np.arange(numOut), np.arange(numIn))).T.reshape(-1, 2)
    
if False:
    for iPlot, [iOut, iIn] in enumerate(ioArray):
        fig = 10 + iPlot
        fig = FreqTrans.PlotNyquist(ToLinNom[iOut, iIn], ToLinUncMag[iOut, iIn], fig = fig, fillType = 'fill', color = 'k', label = 'Linear')
        fig = FreqTrans.PlotNyquist(ToEstNom[iOut, iIn], ToEstUncMag[iOut, iIn], fig = fig, fillType = 'circle', marker='.', color = 'b', linestyle='None', label = 'Estimate (MIMO)')
        fig = FreqTrans.PlotNyquist(ToEstNom[iOut, iIn, sigIndx[iIn]], ToEstUncMag[iOut, iIn, sigIndx[iIn]], fig = fig, fillType = 'circle', marker='.', color = 'g', linestyle='None', label = 'Estimate (SIMO)')
        fig = FreqTrans.PlotNyquist(np.array([-1+0j]), np.array([0.4]), fig = fig, fillType = 'circle', marker='+', color = 'r', linestyle='None')

        ax = fig.get_axes()
#        handles, labels = ax[0].get_legend_handles_labels()
#        handles = [handles[0], handles[3], handles[1], handles[4], handles[2], handles[5]]
#        labels = [labels[0], labels[3], labels[1], labels[4], labels[2], labels[5]]
#        ax[0].legend(handles, labels)
    
        fig.suptitle('$T_o$ : ' + '$r_{Exc}$[' + str(iIn) + '] to ' + '$z$[' + str(iOut) + ']')


#%% Bode Plot - Output Complimentary Sensitivity Function
# Linear Model Gain and Phase
#%% Nyquist Plots - Ta
TaLinUncMag = abs(TaLinUnc)
TaEstUncMag = abs(TaEstUnc)

if False:
    for iPlot, io in enumerate(ioArray):
        iOut, iIn = io

        outName = outPlot[iOut]
        inName = inPlot[iIn]

        fig = 60 + iPlot

        fig = FreqTrans.PlotNyquist(TaLinNom[iOut, iIn],
                                    TaLinUncMag[iOut, iIn],
                                    fig=fig,
                                    fillType='fill',
                                    color='k',
                                    label='Linear')
        fig = FreqTrans.PlotNyquist(TaEstNom[iOut, iIn],
                                    TaEstUncMag[iOut, iIn],
                                    fig=fig,
                                    color='b',
                                    label='Estimate (MIMO)')
        fig = FreqTrans.PlotNyquist(TaEstNom[iOut, iIn, sigIndx[iIn]],
                                    TaEstUncMag[iOut, iIn, sigIndx[iIn]],
                                    fig=fig,
                                    color='g',
                                    label='Estimate (SIMO)')

        fig = FreqTrans.PlotNyquist(np.asarray([-1 + 0j]),
                                    TUnc=np.asarray([0.4 + 0.4j]),
Exemple #3
0
        fig.suptitle(oDataSegs[iSeg]['Desc'] + ': Spectrogram - ' +
                     sigOutList[iSgnl])

#%% Nyquist Plots
inPlot = sigInList  # Elements of sigInList
outPlot = sigOutList  # Elements of sigOutList

if False:
    for iIn, inName in enumerate(inPlot):
        for iOut, outName in enumerate(outPlot):

            fig = None
            for iSeg in range(0, len(oDataSegs)):
                fig = FreqTrans.PlotNyquist(T[iSeg][iOut, iIn],
                                            TUnc[iSeg][iOut, iIn],
                                            fig=fig,
                                            fmt='*',
                                            label=oDataSegs[iSeg]['Desc'])

            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_xlim(-3, 1)
            ax[0].set_ylim(-2, 2)

#%% Bode Plots
if True:

    for iIn, inName in enumerate(inPlot):
        for iOut, outName in enumerate(outPlot):
        if False:
            FreqTrans.PrintPrettyFig(fig, 'OpenMimoBode' + str(iOut+1) + str(iIn+1) + '.pgf')

#%% Nyquist Plot
TLinUnc = np.abs(TLinUnc)

if True:
    numOut, numIn = TLinNom.shape[0:-1]

    ioArray = np.array(np.meshgrid(np.arange(numOut), np.arange(numIn))).T.reshape(-1, 2)

    for io in ioArray:
        [iOut, iIn] = io

        fig = None
        fig = FreqTrans.PlotNyquist(TLinNom[iOut, iIn], TLinUnc[iOut, iIn], fig = fig, fillType = 'fill', color = 'k', label = 'Linear' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')
        fig = FreqTrans.PlotNyquist(TEstNom[iOut, iIn], TEstUnc[iOut, iIn], fig = fig, fillType = 'circle', marker='.', color = 'r', linestyle='None', label = 'Estimate' + ' [$u_' + str(iIn+1) + '$ to ' + '$z_' + str(iOut+1) + '$]')
#        fig = FreqTrans.PlotNyquist(TEstNom[iOut, iIn, sigIndx[iIn]], TEstUnc[iOut, iIn, sigIndx[iIn]], fig = fig, fillType = 'circle', marker='.', color = 'b', linestyle='None', label = 'Estimate (SIMO)')
        fig = FreqTrans.PlotNyquist(np.array([-1+0j]), fig = fig, fillType = 'circle', marker='+', color = 'r', linestyle='None')
        # fig = FreqTrans.PlotNyquist(np.array([-1+0j]), np.array([0.4]), fig = fig, fillType = 'circle', marker='+', color = 'r', linestyle='None')

        for iSamp in range(nSamp):
          fig = FreqTrans.PlotNyquist(TEstSamp[iOut, iIn, :, iSamp], fig = fig, fillType = 'circle', marker='.', color = 'gray', linestyle='None')

        ax = fig.get_axes()
        handles, labels = ax[0].get_legend_handles_labels()
        handles = [(handles[0], handles[2]), handles[1]]
        labels = [labels[0], labels[1]]
        ax[0].legend(handles, labels)

#        fig.set_size_inches([6.4,4.8])
Exemple #5
0
TiLinUncMag = np.abs(TiLinUnc)
TiEstUncMag = np.abs(TiEstUnc)

if False:
    numOut, numIn = TiLinNom.shape[0:-1]

    ioArray = np.array(np.meshgrid(np.arange(numOut),
                                   np.arange(numIn))).T.reshape(-1, 2)

    for iPlot, io in enumerate(ioArray):
        [iOut, iIn] = io

        fig = 10 + iPlot
        fig = FreqTrans.PlotNyquist(TiLinNom[iOut, iIn],
                                    TiLinUncMag[iOut, iIn],
                                    fig=fig,
                                    fillType='fill',
                                    color='k',
                                    label='Linear')
        fig = FreqTrans.PlotNyquist(TiEstNom[iOut, iIn],
                                    TiEstUncMag[iOut, iIn],
                                    fig=fig,
                                    fillType='circle',
                                    marker='.',
                                    color='b',
                                    linestyle='None',
                                    label='Estimate (MIMO)')
        fig = FreqTrans.PlotNyquist(TiEstNom[iOut, iIn, sigIndx[iIn]],
                                    TiEstUncMag[iOut, iIn, sigIndx[iIn]],
                                    fig=fig,
                                    fillType='circle',
                                    marker='.',
Exemple #6
0
            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_ylim(0, 2)

#%% Nyquist Plots
if False:
    #%%
    for iOut, outName in enumerate(outPlot):
        for iIn, inName in enumerate(inPlot):

            fig = None
            for iSeg in range(0, len(oDataSegs)):
                fig = FreqTrans.PlotNyquist(T[iSeg][iOut, iIn],
                                            TUnc[iSeg][iOut, iIn],
                                            fig=fig,
                                            fmt=rtsmSegList[iSeg]['fmt'] + '*',
                                            label=oDataSegs[iSeg]['Desc'])

            fig = FreqTrans.PlotNyquist(np.asarray([-1 + 0j]),
                                        TUnc=np.asarray([0.4 + 0.4j]),
                                        fig=fig,
                                        fmt='*r',
                                        label='Critical Region')
            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_xlim(-3, 1)
            ax[0].set_ylim(-2, 2)

#%% Bode Plots
                                      fmt='--r',
                                      fig=fig,
                                      label='Critical Limit')
            ax = fig.get_axes()
            ax[0].set_xlim(0, 10)
            ax[0].set_ylim(0, 2)
            fig.suptitle(inName + ' to ' + outName, size=20)

#%% Nyquist Plots
if False:
    for iOut, outName in enumerate(outPlot):
        for iIn, inName in enumerate(inPlot):
            fig = 60 + 3 * iOut + iIn

            fig = FreqTrans.PlotNyquist(TxyLin[iOut, iIn],
                                        fig=fig,
                                        fmt='k',
                                        label='Linear')
            fig = FreqTrans.PlotNyquist(T[iOut, iIn, sigIndx[iIn]],
                                        fig=fig,
                                        fmt='bo',
                                        label='Excitation')
            fig = FreqTrans.PlotNyquist(T[iOut, iIn],
                                        fig=fig,
                                        fmt='g.:',
                                        label='MIMO')

            fig = FreqTrans.PlotNyquist(np.asarray([-1 + 0j]),
                                        TUnc=np.asarray([0.4 + 0.4j]),
                                        fig=fig,
                                        fmt='r+',
                                        label='Critical Region')
                                         label='Critical')
        fig.suptitle(inPlot[iIn] + ' to ' + outPlot[iOut])

        ax = fig.get_axes()
        ax[0].set_ylim(0, 2)

#%% Nyquist Plots
if False:
    for iPlot, [iOut, iIn] in enumerate(ioArray):
        fig = 20 + iPlot
        for iSeg in range(0, len(oDataSegs)):
            Tnom = LaEstNomList[iSeg][iOut, iIn]
            Tunc = np.abs(LaEstUncList[iSeg][iOut, iIn])
            fig = FreqTrans.PlotNyquist(Tnom,
                                        Tunc,
                                        fig=fig,
                                        color=rtsmSegList[iSeg]['color'],
                                        marker='.',
                                        label=oDataSegs[iSeg]['Desc'])

        fig = FreqTrans.PlotNyquist(np.asarray([-1 + 0j]),
                                    TUnc=np.asarray([0.4 + 0.4j]),
                                    fig=fig,
                                    color='r',
                                    marker='+',
                                    label='Critical Region')
        fig.suptitle(inPlot[iIn] + ' to ' + outPlot[iOut])

        ax = fig.get_axes()
        ax[0].set_xlim(-3, 1)
        ax[0].set_ylim(-2, 2)
Exemple #9
0
                                      color='r',
                                      linestyle='--')
            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            # ax[0].set_ylim(0, 2)

#%% Nyquist Plots
if False:
    for iOut, outName in enumerate(outPlot):
        for iIn, inName in enumerate(inPlot):

            fig = None
            for iSeg in range(0, len(oDataSegs)):
                fig = FreqTrans.PlotNyquist(LiEstNomList[iSeg][iOut, iIn],
                                            fig=fig,
                                            color=rtsmSegList[iSeg]['color'],
                                            label=oDataSegs[iSeg]['Desc'])

            fig = FreqTrans.PlotNyquist(np.asarray([-1 + 0j]),
                                        TUnc=np.asarray([0.4 + 0.4j]),
                                        fig=fig,
                                        fmt='*r',
                                        label='Critical Region')
            fig.suptitle(inName + ' to ' + outName, size=20)

            ax = fig.get_axes()
            ax[0].set_xlim(-3, 1)
            ax[0].set_ylim(-2, 2)

#%% Bode Plots
if False: