#============================================================================== # if not gin: # print 'SimPED - Simulation has ended with return' # break #============================================================================== # Add z coordinate to all survey... assume flat nz = mesh.vectorNz var = np.c_[np.asarray(gin), np.ones(2).T * nz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, var) endl = np.c_[mesh.gridCC[indx, 0], mesh.gridCC[indx, 1], np.ones(2).T * nz[-1]] [survey2D, Tx, Rx] = DC.gen_DCIPsurvey(endl, mesh, stype, a, b, n) dl_len = np.sqrt(np.sum((endl[0, :] - endl[1, :])**2)) dl_x = (Tx[-1][0, 1] - Tx[0][0, 0]) / dl_len dl_y = (Tx[-1][1, 1] - Tx[0][1, 0]) / dl_len azm = np.arctan(dl_y / dl_x) #%% Create a 2D mesh along axis of Tx end points and keep z-discretization dx = np.min([np.min(mesh.hx), np.min(mesh.hy), dx_in]) ncx = np.ceil(dl_len / dx) + 3 ncz = np.ceil(depth / dx) padx = dx * np.power(1.4, range(1, padc)) # Creating padding cells hx = np.r_[padx[::-1], np.ones(ncx) * dx, padx]
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True): """ DC Forward Simulation ===================== Forward model conductive spheres in a half-space and plot a pseudo-section Created by @fourndo on Mon Feb 01 19:28:06 2016 """ assert stype in [ 'pdp', 'dpdp' ], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)" if loc is None: loc = np.c_[[-50., 0., -50.], [50., 0., -50.]] if sig is None: sig = np.r_[1e-2, 1e-1, 1e-3] if radi is None: radi = np.r_[25., 25.] if param is None: param = np.r_[30., 30., 5] # First we need to create a mesh and a model. # This is our mesh dx = 5. hxind = [(dx, 15, -1.3), (dx, 75), (dx, 15, 1.3)] hyind = [(dx, 15, -1.3), (dx, 10), (dx, 15, 1.3)] hzind = [(dx, 15, -1.3), (dx, 15)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN') # Set background conductivity model = np.ones(mesh.nC) * sig[0] # First anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 0], radi[0], mesh.gridCC) model[ind] = sig[1] # Second anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 1], radi[1], mesh.gridCC) model[ind] = sig[2] # Get index of the center indy = int(mesh.nCy / 2) # Plot the model for reference # Define core mesh extent xlim = 200 zlim = 125 # Specify the survey type: "pdp" | "dpdp" # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh ends = [(-175, 0), (175, 0)] ends = np.c_[np.asarray(ends), np.ones(2).T * mesh.vectorNz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, ends) locs = np.c_[mesh.gridCC[indx, 0], mesh.gridCC[indx, 1], np.ones(2).T * mesh.vectorNz[-1]] # We will handle the geometry of the survey for you and create all the combination of tx-rx along line # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) # Define some global geometry dl_len = np.sqrt(np.sum((locs[0, :] - locs[1, :])**2)) dl_x = (Tx[-1][0, 1] - Tx[0][0, 0]) / dl_len dl_y = (Tx[-1][1, 1] - Tx[0][1, 0]) / dl_len azm = np.arctan(dl_y / dl_x) #Set boundary conditions mesh.setCellGradBC('neumann') # Define the differential operators needed for the DC problem Div = mesh.faceDiv Grad = mesh.cellGrad Msig = Utils.sdiag(1. / (mesh.aveF2CC.T * (1. / model))) A = Div * Msig * Grad # Change one corner to deal with nullspace A[0, 0] = 1 A = sp.csc_matrix(A) # We will solve the system iteratively, so a pre-conditioner is helpful # This is simply a Jacobi preconditioner (inverse of the main diagonal) dA = A.diagonal() P = sp.spdiags(1 / dA, 0, A.shape[0], A.shape[0]) # Now we can solve the system for all the transmitters # We want to store the data data = [] # There is probably a more elegant way to do this, but we can just for-loop through the transmitters for ii in range(len(Tx)): start_time = time.time() # Let's time the calculations #print("Transmitter %i / %i\r" % (ii+1,len(Tx))) # Select dipole locations for receiver rxloc_M = np.asarray(Rx[ii][:, 0:3]) rxloc_N = np.asarray(Rx[ii][:, 3:]) # For usual cases "dpdp" or "gradient" if stype == 'pdp': # Create an "inifinity" pole tx = np.squeeze(Tx[ii][:, 0:1]) tinf = tx + np.array([dl_x, dl_y, 0]) * dl_len * 2 inds = Utils.closestPoints(mesh, np.c_[tx, tinf].T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T * ([-1] / mesh.vol[inds]) else: inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T * ([-1, 1] / mesh.vol[inds]) # Iterative Solve Ainvb = sp.linalg.bicgstab(P * A, P * RHS, tol=1e-5) # We now have the potential everywhere phi = Utils.mkvc(Ainvb[0]) # Solve for phi on pole locations P1 = mesh.getInterpolationMat(rxloc_M, 'CC') P2 = mesh.getInterpolationMat(rxloc_N, 'CC') # Compute the potential difference dtemp = (P1 * phi - P2 * phi) * np.pi data.append(dtemp) print '\rTransmitter {0} of {1} -> Time:{2} sec'.format( ii, len(Tx), time.time() - start_time), print 'Transmitter {0} of {1}'.format(ii, len(Tx)) print 'Forward completed' # Let's just convert the 3D format into 2D (distance along line) and plot # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D.dobs = np.hstack(data) # Here is an example for the first tx-rx array if plotIt: import matplotlib.pyplot as plt fig = plt.figure() ax = plt.subplot(2, 1, 1, aspect='equal') mesh.plotSlice(np.log10(model), ax=ax, normal='Y', ind=indy, grid=True) ax.set_title('E-W section at ' + str(mesh.vectorCCy[indy]) + ' m') plt.gca().set_aspect('equal', adjustable='box') plt.scatter(Tx[0][0, :], Tx[0][2, :], s=40, c='g', marker='v') plt.scatter(Rx[0][:, 0::3], Rx[0][:, 2::3], s=40, c='y') plt.xlim([-xlim, xlim]) plt.ylim([-zlim, mesh.vectorNz[-1] + dx]) ax = plt.subplot(2, 1, 2, aspect='equal') # Plot the location of the spheres for reference circle1 = plt.Circle((loc[0, 0] - Tx[0][0, 0], loc[2, 0]), radi[0], color='w', fill=False, lw=3) circle2 = plt.Circle((loc[0, 1] - Tx[0][0, 0], loc[2, 1]), radi[1], color='k', fill=False, lw=3) ax.add_artist(circle1) ax.add_artist(circle2) # Add the speudo section DC.plot_pseudoSection(survey2D, ax, stype) # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v') # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y') # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k') plt.ylim([-zlim, mesh.vectorNz[-1] + dx]) plt.show() return fig, ax
cfm1.activateWindow() plt.sca(ax_prim) # Takes two points from ginput and create survey #gin = plt.ginput(2, timeout = 0) # Add z coordinate to all survey... assume flat nz = mesh.vectorNz var = np.c_[np.asarray(srvy_end),np.ones(2).T*nz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, var ) endl = np.c_[mesh.gridCC[indx,0],mesh.gridCC[indx,1],np.ones(2).T*nz[-1]] [survey2D, Tx, Rx] = DC.gen_DCIPsurvey(endl, mesh, stype, a, b, n) dl_len = np.sqrt( np.sum((endl[0,:] - endl[1,:])**2) ) dl_x = ( Tx[-1][0,1] - Tx[0][0,0] ) / dl_len dl_y = ( Tx[-1][1,1] - Tx[0][1,0] ) / dl_len azm = np.arctan(dl_y/dl_x) #%% Create a 2D mesh along axis of Tx end points and keep z-discretization dx = np.min( [ np.min(mesh.hx), np.min(mesh.hy), dx_in ]) ncx = np.ceil(dl_len/dx)+3 ncz = np.ceil( depth / dx ) padx = dx*np.power(1.4,range(1,padc)) # Creating padding cells hx = np.r_[padx[::-1], np.ones(ncx)*dx , padx]
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True): """ DC Forward Simulation ===================== Forward model conductive spheres in a half-space and plot a pseudo-section Created by @fourndo on Mon Feb 01 19:28:06 2016 """ assert stype in ['pdp', 'dpdp'], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)" if loc is None: loc = np.c_[[-50.,0.,-50.],[50.,0.,-50.]] if sig is None: sig = np.r_[1e-2,1e-1,1e-3] if radi is None: radi = np.r_[25.,25.] if param is None: param = np.r_[30.,30.,5] # First we need to create a mesh and a model. # This is our mesh dx = 5. hxind = [(dx,15,-1.3), (dx, 75), (dx,15,1.3)] hyind = [(dx,15,-1.3), (dx, 10), (dx,15,1.3)] hzind = [(dx,15,-1.3),(dx, 15)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN') # Set background conductivity model = np.ones(mesh.nC) * sig[0] # First anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:,0],radi[0],mesh.gridCC) model[ind] = sig[1] # Second anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:,1],radi[1],mesh.gridCC) model[ind] = sig[2] # Get index of the center indy = int(mesh.nCy/2) # Plot the model for reference # Define core mesh extent xlim = 200 zlim = 125 # Specify the survey type: "pdp" | "dpdp" # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh ends = [(-175,0),(175,0)] ends = np.c_[np.asarray(ends),np.ones(2).T*mesh.vectorNz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, ends ) locs = np.c_[mesh.gridCC[indx,0],mesh.gridCC[indx,1],np.ones(2).T*mesh.vectorNz[-1]] # We will handle the geometry of the survey for you and create all the combination of tx-rx along line # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) # Define some global geometry dl_len = np.sqrt( np.sum((locs[0,:] - locs[1,:])**2) ) dl_x = ( Tx[-1][0,1] - Tx[0][0,0] ) / dl_len dl_y = ( Tx[-1][1,1] - Tx[0][1,0] ) / dl_len azm = np.arctan(dl_y/dl_x) #Set boundary conditions mesh.setCellGradBC('neumann') # Define the differential operators needed for the DC problem Div = mesh.faceDiv Grad = mesh.cellGrad Msig = Utils.sdiag(1./(mesh.aveF2CC.T*(1./model))) A = Div*Msig*Grad # Change one corner to deal with nullspace A[0,0] = 1 A = sp.csc_matrix(A) # We will solve the system iteratively, so a pre-conditioner is helpful # This is simply a Jacobi preconditioner (inverse of the main diagonal) dA = A.diagonal() P = sp.spdiags(1/dA,0,A.shape[0],A.shape[0]) # Now we can solve the system for all the transmitters # We want to store the data data = [] # There is probably a more elegant way to do this, but we can just for-loop through the transmitters for ii in range(len(Tx)): start_time = time.time() # Let's time the calculations #print("Transmitter %i / %i\r" % (ii+1,len(Tx))) # Select dipole locations for receiver rxloc_M = np.asarray(Rx[ii][:,0:3]) rxloc_N = np.asarray(Rx[ii][:,3:]) # For usual cases "dpdp" or "gradient" if stype == 'pdp': # Create an "inifinity" pole tx = np.squeeze(Tx[ii][:,0:1]) tinf = tx + np.array([dl_x,dl_y,0])*dl_len*2 inds = Utils.closestPoints(mesh, np.c_[tx,tinf].T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1] / mesh.vol[inds] ) else: inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T ) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1,1] / mesh.vol[inds] ) # Iterative Solve Ainvb = sp.linalg.bicgstab(P*A,P*RHS, tol=1e-5) # We now have the potential everywhere phi = Utils.mkvc(Ainvb[0]) # Solve for phi on pole locations P1 = mesh.getInterpolationMat(rxloc_M, 'CC') P2 = mesh.getInterpolationMat(rxloc_N, 'CC') # Compute the potential difference dtemp = (P1*phi - P2*phi)*np.pi data.append( dtemp ) print '\rTransmitter {0} of {1} -> Time:{2} sec'.format(ii,len(Tx),time.time()- start_time), print 'Transmitter {0} of {1}'.format(ii,len(Tx)) print 'Forward completed' # Let's just convert the 3D format into 2D (distance along line) and plot # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D.dobs =np.hstack(data) # Here is an example for the first tx-rx array if plotIt: import matplotlib.pyplot as plt fig = plt.figure() ax = plt.subplot(2,1,1, aspect='equal') mesh.plotSlice(np.log10(model), ax =ax, normal = 'Y', ind = indy,grid=True) ax.set_title('E-W section at '+str(mesh.vectorCCy[indy])+' m') plt.gca().set_aspect('equal', adjustable='box') plt.scatter(Tx[0][0,:],Tx[0][2,:],s=40,c='g', marker='v') plt.scatter(Rx[0][:,0::3],Rx[0][:,2::3],s=40,c='y') plt.xlim([-xlim,xlim]) plt.ylim([-zlim,mesh.vectorNz[-1]+dx]) ax = plt.subplot(2,1,2, aspect='equal') # Plot the location of the spheres for reference circle1=plt.Circle((loc[0,0]-Tx[0][0,0],loc[2,0]),radi[0],color='w',fill=False, lw=3) circle2=plt.Circle((loc[0,1]-Tx[0][0,0],loc[2,1]),radi[1],color='k',fill=False, lw=3) ax.add_artist(circle1) ax.add_artist(circle2) # Add the speudo section DC.plot_pseudoSection(survey2D,ax,stype) # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v') # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y') # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k') plt.ylim([-zlim,mesh.vectorNz[-1]+dx]) plt.show() return fig, ax