def animate(ii): removeFrame2() global ax1, ax2, fig minv = mout[ii] dpre = dout[ii] #airind = minv==1e-8 #minv[airind] = np.nan ax1 = plt.subplot(1, 2, 1) ax1.set_title('2D Conductivity (S/m)', fontsize=10) plt.xlim([mesh2d.vectorNx[padc], mesh2d.vectorNx[-padc]]) plt.ylim([mesh2d.vectorNy[-1] - dl_len / 3, mesh2d.vectorNy[-1] + 60]) plt.gca().set_aspect('equal', adjustable='box') minv = np.reshape(minv, (mesh2d.nCy, mesh2d.nCx)) #plt.pcolormesh(mesh2d.vectorNx,mesh2d.vectorNy,np.log10(m2D),alpha=0.5, cmap='gray') plt.pcolormesh(mesh2d.vectorNx, mesh2d.vectorNy, np.log10(minv), vmin=-4, vmax=2) plt.gca().tick_params(axis='both', which='major', labelsize=8) ax1.yaxis.tick_right() cbar = plt.colorbar(format='%.2f', fraction=0.03, orientation="horizontal") cmin, cmax = cbar.get_clim() ticks = np.linspace(cmin, cmax, 3) cbar.set_ticks(ticks) cbar.ax.tick_params(labelsize=10) ax2 = plt.subplot(1, 2, 2) ax2 = DC.plot_pseudoSection( dpre, ax2, 'pdp' ) #axs.pcolormesh(mesh_sub.vectorCCx,mesh_sub.vectorCCy,Q_sub, alpha=0.75,vmin=-1e-2, vmax=1e-2) ax2.set_title('App Cond (S/m)', fontsize=10) plt.draw() bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="w", ec="k", lw=2) ax1.text(0.01, (float(ii) + 1.) / (len(uniqueID) + 2), 'N: ' + str(id_lbe), transform=fig.transFigure, ha="left", va="center", size=8, bbox=bbox_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="b", ec="k", lw=2) for jj in range(len(uniqueID)): ax1.text(0.1, (float(jj) + 1.) / (len(uniqueID) + 2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="r", ec="k", lw=2) ax1.text(0.1, (float(ii) + 1.) / (len(uniqueID) + 2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props)
def animate(ii): # Grab current line and indx = np.where(lineID==ii)[0] srcLeft = [] obs_l = [] std_l = [] srcRight = [] obs_r = [] std_r = [] # Split the obs file into left and right for jj in range(len(indx)): # Grab corresponding data obs = dobs2D.dobs[dataID==indx[jj]] std = dobs2D.std[dataID==indx[jj]] Tx = dobs2D.srcList[indx[jj]].loc Rx = dobs2D.srcList[indx[jj]].rxList[0].locs # Create mid-point location Cmid = (Tx[0][0] + Tx[1][0])/2 Pmid = (Rx[0][:,0] + Rx[1][:,0])/2 ileft = Pmid < Cmid iright = Pmid >= Cmid if np.any(ileft): rx = DC.RxDipole(Rx[0][ileft,:],Rx[1][ileft,:]) srcLeft.append( DC.SrcDipole( [rx], Tx[0],Tx[1] ) ) obs_l = np.hstack([obs_l,obs[ileft]]) std_l = np.hstack([std_l,std[ileft]]) if np.any(iright): rx = DC.RxDipole(Rx[0][iright,:],Rx[1][iright,:]) srcRight.append( DC.SrcDipole( [rx], Tx[0],Tx[1] ) ) obs_r = np.hstack([obs_r,obs[iright]]) std_r = np.hstack([std_r,std[iright]]) DC2D_l = DC.SurveyDC(srcLeft) DC2D_l.dobs = np.asarray(obs_l) DC2D_l.std = np.asarray(std_l) DC2D_r = DC.SurveyDC(srcRight) DC2D_r.dobs = np.asarray(obs_r) DC2D_r.std = np.asarray(std_r) removeFrame() #DC.plot_pseudoSection(dobs2D,lineID, np.r_[0,1],'pdp') id_lbe = int(DCsurvey.srcList[indx[jj]].loc[0][1]) global ax1, ax2, fig ax1 = plt.subplot(2,1,1) ph = DC.plot_pseudoSection(DC2D_l,ax1,stype = 'pdp', dtype = 'volt', colorbar=False) ax1.set_title('Observed DP-P', fontsize=10) ax1.set_xticklabels([]) plt.xlim([xmin,xmax]) plt.ylim([zmin,zmax]) plt.gca().set_aspect('equal', adjustable='box') z = np.linspace(np.min(ph[2]),np.max(ph[2]), 5) z_label = np.linspace(20,1, 5) ax1.set_yticks(map(int, z)) ax1.set_yticklabels(map(str, map(int, z_label)),size=8) ax1.set_ylabel('n-spacing',fontsize=8) # Add colorbar pos = ax1.get_position() cbarax = fig.add_axes([pos.x0 + 0.72 , pos.y0 + 0.05, pos.width*0.05, pos.height*0.5]) ## the parameters are the specified position you set cb = fig.colorbar(ph[0],cax=cbarax, orientation="vertical", ticks=np.linspace(ph[0].get_clim()[0],ph[0].get_clim()[1], 3), format="%4.1f") cb.set_label("App. Charg.",size=8) ax2 = plt.subplot(2,1,2) ph = DC.plot_pseudoSection(DC2D_r,ax2,stype = 'pdp', dtype = 'volt', colorbar=False, clim = (ph[0].get_clim()[0],ph[0].get_clim()[1])) pos = ax2.get_position() ax2.set_position([pos.x0 , pos.y0, pos.width, pos.height]) plt.xlim([xmin,xmax]) plt.ylim([zmin,zmax]) plt.gca().set_aspect('equal', adjustable='box') ax2.set_title('Observed P-DP', fontsize=10) ax2.set_xlabel('Easting (m)', fontsize=8) z = np.linspace(np.min(ph[2]),np.max(ph[2]), 5) z_label = np.linspace(20,1, 5) ax2.set_yticks(map(int, z)) ax2.set_yticklabels(map(str, map(int, z_label)),size=8) ax2.set_ylabel('n-spacing',fontsize=8) # Add colorbar pos = ax2.get_position() cbarax = fig.add_axes([pos.x0 + 0.72 , pos.y0 + 0.05, pos.width*0.05, pos.height*0.5]) ## the parameters are the specified position you set cb = fig.colorbar(ph[0],cax=cbarax, orientation="vertical", ticks=np.linspace(ph[0].get_clim()[0],ph[0].get_clim()[1], 3), format="%4.1f") cb.set_label("App. Charg.",size=8) bbox_props = dict(boxstyle="circle,pad=0.3",fc="r", ec="k", lw=1) ax2.text(0.00, 1, 'A', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3",fc="y", ec="k", lw=1) ax2.text(0.1, 1, 'M', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3",fc="g", ec="k", lw=1) ax2.text(0.2, 1, 'N', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3",fc="g", ec="k", lw=1) ax1.text(0.00, 1, 'N', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3",fc="y", ec="k", lw=1) ax1.text(0.1, 1, 'M', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3",fc="r", ec="k", lw=1) ax1.text(0.2, 1, 'A', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) #ax2.labelsize(fontsize=10) #============================================================================== # ax2.annotate(str(id_lbe), xy=(0.0, float(ii)/len(uniqueID)), xycoords='figure fraction', # xytext=(0.01, float(ii)/len(uniqueID)), textcoords='figure fraction', # arrowprops=dict(facecolor='black'),rotation=90) #============================================================================== bbox_props = dict(boxstyle="rarrow,pad=0.3",fc="w", ec="k", lw=2) ax2.text(0.01, (float(ii)+1.)/(len(uniqueID)+2), 'N: ' + str(id_lbe), transform=fig.transFigure, ha="left", va="center", size=8, bbox=bbox_props) mrk_props = dict(boxstyle="square,pad=0.3",fc="w", ec="k", lw=2) ax2.text(0.01, 0.9, 'Line ID#', transform=fig.transFigure, ha="left", va="center", size=8, bbox=mrk_props) mrk_props = dict(boxstyle="square,pad=0.3",fc="b", ec="k", lw=2) for jj in range(len(uniqueID)): ax2.text(0.125, (float(jj)+1.)/(len(uniqueID)+2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props) mrk_props = dict(boxstyle="square,pad=0.3",fc="r", ec="k", lw=2) ax2.text(0.125, (float(ii)+1.)/(len(uniqueID)+2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props)
def animate(ii): removeFrame() # Grab current line and indx = np.where(lineID == ii)[0] srcLeft = [] obs_l = [] srcRight = [] obs_r = [] obs = [] srcList = [] # Split the obs file into left and right for jj in range(len(indx)): # Grab corresponding data obs = np.hstack([obs, dobs2D.dobs[dataID == indx[jj]]]) #std = dobs2D.std[dataID==indx[jj]] srcList.append(dobs2D.srcList[indx[jj]]) Tx = dobs2D.srcList[indx[jj]].loc Rx = dobs2D.srcList[indx[jj]].rxList[0].locs # Create mid-point location Cmid = (Tx[0][0] + Tx[1][0]) / 2 Pmid = (Rx[0][:, 0] + Rx[1][:, 0]) / 2 ileft = Pmid < Cmid iright = Pmid >= Cmid temp = np.zeros(len(ileft)) temp[ileft] = 1 obs_l = np.hstack([obs_l, temp]) temp = np.zeros(len(iright)) temp[iright] = 1 obs_r = np.hstack([obs_r, temp]) if np.any(ileft): rx = DC.RxDipole(Rx[0][ileft, :], Rx[1][ileft, :]) srcLeft.append(DC.SrcDipole([rx], Tx[0], Tx[1])) #std_l = np.hstack([std_l,std[ileft]]) if np.any(iright): rx = DC.RxDipole(Rx[0][iright, :], Rx[1][iright, :]) srcRight.append(DC.SrcDipole([rx], Tx[0], Tx[1])) #obs_r = np.hstack([obs_r,iright]) #std_r = np.hstack([std_r,std[iright]]) DC2D_full = DC.SurveyDC(srcList) DC2D_full.dobs = np.asarray(obs) DC2D_full.std = DC2D_full.dobs * 0. DC2D_full.std[obs_l == 1] = np.abs(DC2D_full.dobs[obs_l == 1]) * 0.02 + 2e-5 DC2D_full.std[obs_r == 1] = np.abs(DC2D_full.dobs[obs_r == 1]) * 0.06 + 4e-5 DC2D_l = DC.SurveyDC(srcLeft) DC2D_l.dobs = np.asarray(obs[obs_l == 1]) DC2D_l.std = np.abs(np.asarray(DC2D_l.dobs)) * 0.05 + 2e-5 DC2D_r = DC.SurveyDC(srcRight) DC2D_r.dobs = np.asarray(obs[obs_r == 1]) DC2D_r.std = np.abs(np.asarray(DC2D_r.dobs)) * 0.05 + 2e-5 #DC.plot_pseudoSection(dobs2D,lineID, np.r_[0,1],'pdp') id_lbe = int(DCsurvey.srcList[indx[jj]].loc[0][1]) mesh3d = Mesh.TensorMesh([hx, 1, hz], x0=(-np.sum(padx) + np.min(srcMat[0][:, 0]), id_lbe, np.max(srcMat[0][0, 2]) - np.sum(hz))) Mesh.TensorMesh.writeUBC(mesh3d, home_dir + dsep + 'Mesh' + str(id_lbe) + '.msh') global ax1, ax2, ax3, ax5, ax6, fig ax2 = plt.subplot(3, 2, 2) ph = DC.plot_pseudoSection(DC2D_r, ax2, stype='pdp', colorbar=False) ax2.set_title('Observed P-DP', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax2.set_xticklabels([]) ax2.set_yticklabels([]) ax1 = plt.subplot(3, 2, 1) DC.plot_pseudoSection(DC2D_l, ax1, stype='pdp', clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]), colorbar=False) ax1.set_title('Observed DP-P', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax1.set_xticklabels([]) z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5) z_label = np.linspace(20, 1, 5) ax1.set_yticks(map(int, z)) ax1.set_yticklabels(map(str, map(int, z_label)), size=8) ax1.set_ylabel('n-spacing', fontsize=8) #%% Add labels bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1) ax2.text(0.00, 1, 'A', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1) ax2.text(0.1, 1, 'M', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1) ax2.text(0.2, 1, 'N', transform=ax2.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1) ax1.text(0.00, 1, 'N', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1) ax1.text(0.1, 1, 'M', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1) ax1.text(0.2, 1, 'A', transform=ax1.transAxes, ha="left", va="center", size=6, bbox=bbox_props) # Run both left and right survey seperately survey = DC2D_full # Export data file DC.writeUBC_DCobs(inv_dir + dsep + obsfile2d, survey, '2D', 'SIMPLE') # Write input file fid = open(inv_dir + dsep + inp_file, 'w') fid.write('OBS LOC_X %s \n' % obsfile2d) fid.write('MESH FILE %s \n' % mshfile2d) fid.write('CHIFACT 1 \n') fid.write('TOPO DEFAULT \n') fid.write('INIT_MOD VALUE %e\n' % ini_mod) fid.write('REF_MOD VALUE %e\n' % ref_mod) fid.write('ALPHA VALUE %f %f %F\n' % (1. / dx**4., 1, 1)) fid.write('WEIGHT DEFAULT\n') fid.write('STORE_ALL_MODELS FALSE\n') fid.write('INVMODE SVD\n') #fid.write('CG_PARAM 200 1e-4\n') fid.write('USE_MREF FALSE\n') #fid.write('BOUNDS VALUE 1e-4 1e+2\n') fid.close() os.chdir(inv_dir) os.system('dcinv2d ' + inp_file) #%% Load model and predicted data minv = DC.readUBC_DC2DModel(inv_dir + dsep + 'dcinv2d.con') minv = np.reshape(minv, (mesh2d.nCy, mesh2d.nCx)) Mesh.TensorMesh.writeModelUBC( mesh3d, home_dir + dsep + 'Model' + str(id_lbe) + '.con', minv.T) dpre = DC.readUBC_DC2Dpre(inv_dir + dsep + 'dcinv2d.pre') DCpre = dpre['DCsurvey'] DCtemp = DC2D_l DCtemp.dobs = DCpre.dobs[obs_l == 1] ax5 = plt.subplot(3, 2, 3) DC.plot_pseudoSection(DCtemp, ax5, stype='pdp', clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]), colorbar=False) ax5.set_title('Predicted', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax5.set_xticklabels([]) z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5) z_label = np.linspace(20, 1, 5) ax5.set_yticks(map(int, z)) ax5.set_yticklabels(map(str, map(int, z_label)), size=8) ax5.set_ylabel('n-spacing', fontsize=8) DCtemp = DC2D_r DCtemp.dobs = DCpre.dobs[obs_r == 1] ax6 = plt.subplot(3, 2, 4) DC.plot_pseudoSection(DCtemp, ax6, stype='pdp', clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]), colorbar=False) ax6.set_title('Predicted', fontsize=10) plt.xlim([xmin, xmax]) plt.ylim([zmin, zmax]) plt.gca().set_aspect('equal', adjustable='box') ax6.set_xticklabels([]) ax6.set_yticklabels([]) pos = ax6.get_position() cbarax = fig.add_axes([ pos.x0 + 0.325, pos.y0 + 0.2, pos.width * 0.1, pos.height * 0.5 ]) ## the parameters are the specified position you set cb = fig.colorbar(ph[0], cax=cbarax, orientation="vertical", ax=ax6, ticks=np.linspace(ph[0].get_clim()[0], ph[0].get_clim()[1], 4), format="$10^{%.1f}$") cb.set_label("App. Cond. (S/m)", size=8) ax3 = plt.subplot(3, 1, 3) ax3.set_title('2-D Model (S/m)', fontsize=10) ax3.set_xticks(map(int, x)) ax3.set_xticklabels(map(str, map(int, x))) ax3.set_xlabel('Easting (m)', fontsize=8) ax3.set_yticks(map(int, z)) ax3.set_yticklabels(map(str, map(int, z)), rotation='vertical') ax3.set_ylabel('Depth (m)', fontsize=8) plt.xlim([xmin, xmax]) plt.ylim([zmin / 2, zmax]) plt.gca().set_aspect('equal', adjustable='box') ph2 = plt.pcolormesh(mesh2d.vectorNx, mesh2d.vectorNy, np.log10(minv), vmin=vmin, vmax=vmax) plt.gca().tick_params(axis='both', which='major', labelsize=8) plt.draw() for ss in range(survey.nSrc): Tx = survey.srcList[ss].loc[0] plt.scatter(Tx[0], mesh2d.vectorNy[-1] + 10, s=10) pos = ax3.get_position() ax3.set_position([pos.x0 + 0.025, pos.y0, pos.width, pos.height]) pos = ax3.get_position() cbarax = fig.add_axes([ pos.x0 + 0.65, pos.y0 + 0.01, pos.width * 0.05, pos.height * 0.75 ]) ## the parameters are the specified position you set cb = fig.colorbar(ph2, cax=cbarax, orientation="vertical", ax=ax4, ticks=np.linspace(vmin, vmax, 4), format="$10^{%.1f}$") cb.set_label("Conductivity (S/m)", size=8) pos = ax1.get_position() ax1.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height]) pos = ax5.get_position() ax5.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height]) pos = ax2.get_position() ax2.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height]) pos = ax6.get_position() ax6.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height]) #%% Add the extra bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="w", ec="k", lw=2) ax2.text(0.01, (float(ii) + 1.) / (len(uniqueID) + 2), 'N: ' + str(id_lbe), transform=fig.transFigure, ha="left", va="center", size=8, bbox=bbox_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=2) ax2.text(0.01, 0.9, 'Line ID#', transform=fig.transFigure, ha="left", va="center", size=8, bbox=mrk_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="b", ec="k", lw=2) for jj in range(len(uniqueID)): ax2.text(0.1, (float(jj) + 1.) / (len(uniqueID) + 2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props) mrk_props = dict(boxstyle="square,pad=0.3", fc="r", ec="k", lw=2) ax2.text(0.1, (float(ii) + 1.) / (len(uniqueID) + 2), ".", transform=fig.transFigure, ha="right", va="center", size=8, bbox=mrk_props)
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True): """ DC Forward Simulation ===================== Forward model conductive spheres in a half-space and plot a pseudo-section Created by @fourndo on Mon Feb 01 19:28:06 2016 """ assert stype in [ 'pdp', 'dpdp' ], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)" if loc is None: loc = np.c_[[-50., 0., -50.], [50., 0., -50.]] if sig is None: sig = np.r_[1e-2, 1e-1, 1e-3] if radi is None: radi = np.r_[25., 25.] if param is None: param = np.r_[30., 30., 5] # First we need to create a mesh and a model. # This is our mesh dx = 5. hxind = [(dx, 15, -1.3), (dx, 75), (dx, 15, 1.3)] hyind = [(dx, 15, -1.3), (dx, 10), (dx, 15, 1.3)] hzind = [(dx, 15, -1.3), (dx, 15)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN') # Set background conductivity model = np.ones(mesh.nC) * sig[0] # First anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 0], radi[0], mesh.gridCC) model[ind] = sig[1] # Second anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 1], radi[1], mesh.gridCC) model[ind] = sig[2] # Get index of the center indy = int(mesh.nCy / 2) # Plot the model for reference # Define core mesh extent xlim = 200 zlim = 125 # Specify the survey type: "pdp" | "dpdp" # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh ends = [(-175, 0), (175, 0)] ends = np.c_[np.asarray(ends), np.ones(2).T * mesh.vectorNz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, ends) locs = np.c_[mesh.gridCC[indx, 0], mesh.gridCC[indx, 1], np.ones(2).T * mesh.vectorNz[-1]] # We will handle the geometry of the survey for you and create all the combination of tx-rx along line # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) # Define some global geometry dl_len = np.sqrt(np.sum((locs[0, :] - locs[1, :])**2)) dl_x = (Tx[-1][0, 1] - Tx[0][0, 0]) / dl_len dl_y = (Tx[-1][1, 1] - Tx[0][1, 0]) / dl_len azm = np.arctan(dl_y / dl_x) #Set boundary conditions mesh.setCellGradBC('neumann') # Define the differential operators needed for the DC problem Div = mesh.faceDiv Grad = mesh.cellGrad Msig = Utils.sdiag(1. / (mesh.aveF2CC.T * (1. / model))) A = Div * Msig * Grad # Change one corner to deal with nullspace A[0, 0] = 1 A = sp.csc_matrix(A) # We will solve the system iteratively, so a pre-conditioner is helpful # This is simply a Jacobi preconditioner (inverse of the main diagonal) dA = A.diagonal() P = sp.spdiags(1 / dA, 0, A.shape[0], A.shape[0]) # Now we can solve the system for all the transmitters # We want to store the data data = [] # There is probably a more elegant way to do this, but we can just for-loop through the transmitters for ii in range(len(Tx)): start_time = time.time() # Let's time the calculations #print("Transmitter %i / %i\r" % (ii+1,len(Tx))) # Select dipole locations for receiver rxloc_M = np.asarray(Rx[ii][:, 0:3]) rxloc_N = np.asarray(Rx[ii][:, 3:]) # For usual cases "dpdp" or "gradient" if stype == 'pdp': # Create an "inifinity" pole tx = np.squeeze(Tx[ii][:, 0:1]) tinf = tx + np.array([dl_x, dl_y, 0]) * dl_len * 2 inds = Utils.closestPoints(mesh, np.c_[tx, tinf].T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T * ([-1] / mesh.vol[inds]) else: inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T * ([-1, 1] / mesh.vol[inds]) # Iterative Solve Ainvb = sp.linalg.bicgstab(P * A, P * RHS, tol=1e-5) # We now have the potential everywhere phi = Utils.mkvc(Ainvb[0]) # Solve for phi on pole locations P1 = mesh.getInterpolationMat(rxloc_M, 'CC') P2 = mesh.getInterpolationMat(rxloc_N, 'CC') # Compute the potential difference dtemp = (P1 * phi - P2 * phi) * np.pi data.append(dtemp) print '\rTransmitter {0} of {1} -> Time:{2} sec'.format( ii, len(Tx), time.time() - start_time), print 'Transmitter {0} of {1}'.format(ii, len(Tx)) print 'Forward completed' # Let's just convert the 3D format into 2D (distance along line) and plot # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D.dobs = np.hstack(data) # Here is an example for the first tx-rx array if plotIt: import matplotlib.pyplot as plt fig = plt.figure() ax = plt.subplot(2, 1, 1, aspect='equal') mesh.plotSlice(np.log10(model), ax=ax, normal='Y', ind=indy, grid=True) ax.set_title('E-W section at ' + str(mesh.vectorCCy[indy]) + ' m') plt.gca().set_aspect('equal', adjustable='box') plt.scatter(Tx[0][0, :], Tx[0][2, :], s=40, c='g', marker='v') plt.scatter(Rx[0][:, 0::3], Rx[0][:, 2::3], s=40, c='y') plt.xlim([-xlim, xlim]) plt.ylim([-zlim, mesh.vectorNz[-1] + dx]) ax = plt.subplot(2, 1, 2, aspect='equal') # Plot the location of the spheres for reference circle1 = plt.Circle((loc[0, 0] - Tx[0][0, 0], loc[2, 0]), radi[0], color='w', fill=False, lw=3) circle2 = plt.Circle((loc[0, 1] - Tx[0][0, 0], loc[2, 1]), radi[1], color='k', fill=False, lw=3) ax.add_artist(circle1) ax.add_artist(circle2) # Add the speudo section DC.plot_pseudoSection(survey2D, ax, stype) # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v') # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y') # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k') plt.ylim([-zlim, mesh.vectorNz[-1] + dx]) plt.show() return fig, ax
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True): """ DC Forward Simulation ===================== Forward model conductive spheres in a half-space and plot a pseudo-section Created by @fourndo on Mon Feb 01 19:28:06 2016 """ assert stype in ['pdp', 'dpdp'], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)" if loc is None: loc = np.c_[[-50.,0.,-50.],[50.,0.,-50.]] if sig is None: sig = np.r_[1e-2,1e-1,1e-3] if radi is None: radi = np.r_[25.,25.] if param is None: param = np.r_[30.,30.,5] # First we need to create a mesh and a model. # This is our mesh dx = 5. hxind = [(dx,15,-1.3), (dx, 75), (dx,15,1.3)] hyind = [(dx,15,-1.3), (dx, 10), (dx,15,1.3)] hzind = [(dx,15,-1.3),(dx, 15)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN') # Set background conductivity model = np.ones(mesh.nC) * sig[0] # First anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:,0],radi[0],mesh.gridCC) model[ind] = sig[1] # Second anomaly ind = Utils.ModelBuilder.getIndicesSphere(loc[:,1],radi[1],mesh.gridCC) model[ind] = sig[2] # Get index of the center indy = int(mesh.nCy/2) # Plot the model for reference # Define core mesh extent xlim = 200 zlim = 125 # Specify the survey type: "pdp" | "dpdp" # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh ends = [(-175,0),(175,0)] ends = np.c_[np.asarray(ends),np.ones(2).T*mesh.vectorNz[-1]] # Snap the endpoints to the grid. Easier to create 2D section. indx = Utils.closestPoints(mesh, ends ) locs = np.c_[mesh.gridCC[indx,0],mesh.gridCC[indx,1],np.ones(2).T*mesh.vectorNz[-1]] # We will handle the geometry of the survey for you and create all the combination of tx-rx along line # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2]) # Define some global geometry dl_len = np.sqrt( np.sum((locs[0,:] - locs[1,:])**2) ) dl_x = ( Tx[-1][0,1] - Tx[0][0,0] ) / dl_len dl_y = ( Tx[-1][1,1] - Tx[0][1,0] ) / dl_len azm = np.arctan(dl_y/dl_x) #Set boundary conditions mesh.setCellGradBC('neumann') # Define the differential operators needed for the DC problem Div = mesh.faceDiv Grad = mesh.cellGrad Msig = Utils.sdiag(1./(mesh.aveF2CC.T*(1./model))) A = Div*Msig*Grad # Change one corner to deal with nullspace A[0,0] = 1 A = sp.csc_matrix(A) # We will solve the system iteratively, so a pre-conditioner is helpful # This is simply a Jacobi preconditioner (inverse of the main diagonal) dA = A.diagonal() P = sp.spdiags(1/dA,0,A.shape[0],A.shape[0]) # Now we can solve the system for all the transmitters # We want to store the data data = [] # There is probably a more elegant way to do this, but we can just for-loop through the transmitters for ii in range(len(Tx)): start_time = time.time() # Let's time the calculations #print("Transmitter %i / %i\r" % (ii+1,len(Tx))) # Select dipole locations for receiver rxloc_M = np.asarray(Rx[ii][:,0:3]) rxloc_N = np.asarray(Rx[ii][:,3:]) # For usual cases "dpdp" or "gradient" if stype == 'pdp': # Create an "inifinity" pole tx = np.squeeze(Tx[ii][:,0:1]) tinf = tx + np.array([dl_x,dl_y,0])*dl_len*2 inds = Utils.closestPoints(mesh, np.c_[tx,tinf].T) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1] / mesh.vol[inds] ) else: inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T ) RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1,1] / mesh.vol[inds] ) # Iterative Solve Ainvb = sp.linalg.bicgstab(P*A,P*RHS, tol=1e-5) # We now have the potential everywhere phi = Utils.mkvc(Ainvb[0]) # Solve for phi on pole locations P1 = mesh.getInterpolationMat(rxloc_M, 'CC') P2 = mesh.getInterpolationMat(rxloc_N, 'CC') # Compute the potential difference dtemp = (P1*phi - P2*phi)*np.pi data.append( dtemp ) print '\rTransmitter {0} of {1} -> Time:{2} sec'.format(ii,len(Tx),time.time()- start_time), print 'Transmitter {0} of {1}'.format(ii,len(Tx)) print 'Forward completed' # Let's just convert the 3D format into 2D (distance along line) and plot # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc)) survey2D.dobs =np.hstack(data) # Here is an example for the first tx-rx array if plotIt: import matplotlib.pyplot as plt fig = plt.figure() ax = plt.subplot(2,1,1, aspect='equal') mesh.plotSlice(np.log10(model), ax =ax, normal = 'Y', ind = indy,grid=True) ax.set_title('E-W section at '+str(mesh.vectorCCy[indy])+' m') plt.gca().set_aspect('equal', adjustable='box') plt.scatter(Tx[0][0,:],Tx[0][2,:],s=40,c='g', marker='v') plt.scatter(Rx[0][:,0::3],Rx[0][:,2::3],s=40,c='y') plt.xlim([-xlim,xlim]) plt.ylim([-zlim,mesh.vectorNz[-1]+dx]) ax = plt.subplot(2,1,2, aspect='equal') # Plot the location of the spheres for reference circle1=plt.Circle((loc[0,0]-Tx[0][0,0],loc[2,0]),radi[0],color='w',fill=False, lw=3) circle2=plt.Circle((loc[0,1]-Tx[0][0,0],loc[2,1]),radi[1],color='k',fill=False, lw=3) ax.add_artist(circle1) ax.add_artist(circle2) # Add the speudo section DC.plot_pseudoSection(survey2D,ax,stype) # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v') # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y') # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k') plt.ylim([-zlim,mesh.vectorNz[-1]+dx]) plt.show() return fig, ax
for jj in range(survey.nSrc): Tx = survey.srcList[jj].loc Rx = survey.srcList[jj].rxList[0].locs # Create mid-point location Cmid = (Tx[0][0] + Tx[1][0])/2 Pmid = (Rx[0][:,0] + Rx[1][:,0])/2 midx = np.hstack([midx, ( Cmid + Pmid )/2 ]) midz = np.hstack([midz, -np.abs(Cmid-Pmid)/2 + (Tx[0][2] + Tx[1][2])/2 ]) global ax1, fig ax1 = plt.subplot(1,1,1) ph = DC.plot_pseudoSection(survey,ax1,stype = 'pdp', dtype = dtype, colorbar=True) # Call a ginput to delete points on pseudo-section #uncert = np.hstack([uncert,src_uncert]) cfm1=get_current_fig_manager().window cfm1.activateWindow() plt.sca(ax1) gin = plt.ginput(100, timeout = 0, show_clicks=True,mouse_add=1,mouse_stop=2) # Find closest midx and midz from the list of gin and assign 0 to #the global data indexing for jj in range(len(gin)): # Find the closest point on the pseudo section rmin = np.argmin( (gin[jj][0] - midx)**2. + (gin[jj][1] - midz)**2. ) keeper[indx[rmin]] = 0
if pp == 0: fig2 = plt.figure(figsize=(7, 7)) # Second plot for the predicted apparent resistivity data ax2 = fig2.add_subplot(2, 1, pp + 1, aspect='equal') if pp == 1: pos = ax2.get_position() ax2.set_position([pos.x0, pos.y0 + .05, pos.width, pos.height]) #ax2.pcolor(mesh2d.vectorNx,mesh2d.vectorNy,np.log10(m2D),edgecolor="none",alpha=0.5,cmap = 'gray') # Add the speudo section if pp == 0: dat = DC.plot_pseudoSection(survey2D, ax2, stype=stype, dtype=dtype, colorbar=False, clim=np.asarray([vmin, 0])) else: dat = DC.plot_pseudoSection(survey2D, ax2, stype=stype, dtype=dtype, clim=np.asarray([vmin, 0])) #============================================================================== # if pp == 0: # # circle=plt.Circle((11950,145),125,color='k',fill=False, lw=3) # ax2.add_artist(circle) #==============================================================================