Exemple #1
0
def animate(ii):

    removeFrame2()

    global ax1, ax2, fig

    minv = mout[ii]
    dpre = dout[ii]

    #airind = minv==1e-8
    #minv[airind] = np.nan

    ax1 = plt.subplot(1, 2, 1)
    ax1.set_title('2D Conductivity (S/m)', fontsize=10)
    plt.xlim([mesh2d.vectorNx[padc], mesh2d.vectorNx[-padc]])
    plt.ylim([mesh2d.vectorNy[-1] - dl_len / 3, mesh2d.vectorNy[-1] + 60])
    plt.gca().set_aspect('equal', adjustable='box')

    minv = np.reshape(minv, (mesh2d.nCy, mesh2d.nCx))
    #plt.pcolormesh(mesh2d.vectorNx,mesh2d.vectorNy,np.log10(m2D),alpha=0.5, cmap='gray')
    plt.pcolormesh(mesh2d.vectorNx,
                   mesh2d.vectorNy,
                   np.log10(minv),
                   vmin=-4,
                   vmax=2)
    plt.gca().tick_params(axis='both', which='major', labelsize=8)
    ax1.yaxis.tick_right()

    cbar = plt.colorbar(format='%.2f', fraction=0.03, orientation="horizontal")
    cmin, cmax = cbar.get_clim()
    ticks = np.linspace(cmin, cmax, 3)
    cbar.set_ticks(ticks)
    cbar.ax.tick_params(labelsize=10)

    ax2 = plt.subplot(1, 2, 2)
    ax2 = DC.plot_pseudoSection(
        dpre, ax2, 'pdp'
    )  #axs.pcolormesh(mesh_sub.vectorCCx,mesh_sub.vectorCCy,Q_sub, alpha=0.75,vmin=-1e-2, vmax=1e-2)
    ax2.set_title('App Cond (S/m)', fontsize=10)

    plt.draw()
    bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="w", ec="k", lw=2)
    ax1.text(0.01, (float(ii) + 1.) / (len(uniqueID) + 2),
             'N: ' + str(id_lbe),
             transform=fig.transFigure,
             ha="left",
             va="center",
             size=8,
             bbox=bbox_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="b", ec="k", lw=2)

    for jj in range(len(uniqueID)):
        ax1.text(0.1, (float(jj) + 1.) / (len(uniqueID) + 2),
                 ".",
                 transform=fig.transFigure,
                 ha="right",
                 va="center",
                 size=8,
                 bbox=mrk_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="r", ec="k", lw=2)

    ax1.text(0.1, (float(ii) + 1.) / (len(uniqueID) + 2),
             ".",
             transform=fig.transFigure,
             ha="right",
             va="center",
             size=8,
             bbox=mrk_props)
Exemple #2
0
def animate(ii):
    
    # Grab current line and 
    indx = np.where(lineID==ii)[0]
        
    srcLeft = []
    obs_l = []
    std_l = []
    
    srcRight = []
    obs_r = []
    std_r = []
    
    # Split the obs file into left and right
    for jj in range(len(indx)):
        
        # Grab corresponding data
        obs = dobs2D.dobs[dataID==indx[jj]]
        std = dobs2D.std[dataID==indx[jj]]
    
        Tx = dobs2D.srcList[indx[jj]].loc
        Rx = dobs2D.srcList[indx[jj]].rxList[0].locs
                
        # Create mid-point location
        Cmid = (Tx[0][0] + Tx[1][0])/2
        Pmid = (Rx[0][:,0] + Rx[1][:,0])/2
                
        ileft = Pmid < Cmid
        iright = Pmid >= Cmid
    
        if np.any(ileft):
            rx = DC.RxDipole(Rx[0][ileft,:],Rx[1][ileft,:])
            srcLeft.append( DC.SrcDipole( [rx], Tx[0],Tx[1] ) )
            
            obs_l = np.hstack([obs_l,obs[ileft]])
            std_l = np.hstack([std_l,std[ileft]])
                                         
        if np.any(iright):
            rx = DC.RxDipole(Rx[0][iright,:],Rx[1][iright,:])
            srcRight.append( DC.SrcDipole( [rx], Tx[0],Tx[1] ) )  
            
            obs_r = np.hstack([obs_r,obs[iright]])
            std_r = np.hstack([std_r,std[iright]])
    
    DC2D_l = DC.SurveyDC(srcLeft)  
    DC2D_l.dobs = np.asarray(obs_l)
    DC2D_l.std = np.asarray(std_l)
    
    DC2D_r = DC.SurveyDC(srcRight)  
    DC2D_r.dobs = np.asarray(obs_r)
    DC2D_r.std = np.asarray(std_r)
                                      
    removeFrame()
    #DC.plot_pseudoSection(dobs2D,lineID, np.r_[0,1],'pdp')
    
    id_lbe = int(DCsurvey.srcList[indx[jj]].loc[0][1])
    
    global ax1, ax2, fig
    ax1 = plt.subplot(2,1,1)
    ph = DC.plot_pseudoSection(DC2D_l,ax1,stype = 'pdp', dtype = 'volt', colorbar=False)
    ax1.set_title('Observed DP-P', fontsize=10)  
    ax1.set_xticklabels([])
    plt.xlim([xmin,xmax])
    plt.ylim([zmin,zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    z = np.linspace(np.min(ph[2]),np.max(ph[2]), 5)
    z_label = np.linspace(20,1, 5)
    ax1.set_yticks(map(int, z))
    ax1.set_yticklabels(map(str, map(int, z_label)),size=8)
    ax1.set_ylabel('n-spacing',fontsize=8)
    
    # Add colorbar
    pos =  ax1.get_position()
    cbarax = fig.add_axes([pos.x0 + 0.72 , pos.y0 + 0.05,  pos.width*0.05, pos.height*0.5])  ## the parameters are the specified position you set
    cb = fig.colorbar(ph[0],cax=cbarax, orientation="vertical", ticks=np.linspace(ph[0].get_clim()[0],ph[0].get_clim()[1], 3), format="%4.1f")
    cb.set_label("App. Charg.",size=8)
    
    ax2 = plt.subplot(2,1,2)    
    ph = DC.plot_pseudoSection(DC2D_r,ax2,stype = 'pdp', dtype = 'volt', colorbar=False, clim = (ph[0].get_clim()[0],ph[0].get_clim()[1]))
    pos =  ax2.get_position()    
    ax2.set_position([pos.x0 , pos.y0,  pos.width, pos.height])
    plt.xlim([xmin,xmax])
    plt.ylim([zmin,zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax2.set_title('Observed P-DP', fontsize=10)
    ax2.set_xlabel('Easting (m)', fontsize=8)
    z = np.linspace(np.min(ph[2]),np.max(ph[2]), 5)
    z_label = np.linspace(20,1, 5)
    ax2.set_yticks(map(int, z))
    ax2.set_yticklabels(map(str, map(int, z_label)),size=8)
    ax2.set_ylabel('n-spacing',fontsize=8)
    # Add colorbar
    pos =  ax2.get_position()
    cbarax = fig.add_axes([pos.x0 + 0.72 , pos.y0 + 0.05,  pos.width*0.05, pos.height*0.5])  ## the parameters are the specified position you set
    cb = fig.colorbar(ph[0],cax=cbarax, orientation="vertical", ticks=np.linspace(ph[0].get_clim()[0],ph[0].get_clim()[1], 3), format="%4.1f")
    cb.set_label("App. Charg.",size=8)
            
    

    
    bbox_props = dict(boxstyle="circle,pad=0.3",fc="r", ec="k", lw=1)
    ax2.text(0.00, 1, 'A', transform=ax2.transAxes, ha="left", va="center",
                size=6,
                bbox=bbox_props)
                
    bbox_props = dict(boxstyle="circle,pad=0.3",fc="y", ec="k", lw=1)
    ax2.text(0.1, 1, 'M', transform=ax2.transAxes, ha="left", va="center",
                size=6,
                bbox=bbox_props)
                
    bbox_props = dict(boxstyle="circle,pad=0.3",fc="g", ec="k", lw=1)
    ax2.text(0.2, 1, 'N', transform=ax2.transAxes, ha="left", va="center",
                size=6,
                bbox=bbox_props)
 
    bbox_props = dict(boxstyle="circle,pad=0.3",fc="g", ec="k", lw=1)
    ax1.text(0.00, 1, 'N', transform=ax1.transAxes, ha="left", va="center",
                size=6,
                bbox=bbox_props)
                
    bbox_props = dict(boxstyle="circle,pad=0.3",fc="y", ec="k", lw=1)
    ax1.text(0.1, 1, 'M', transform=ax1.transAxes, ha="left", va="center",
                size=6,
                bbox=bbox_props)
                
    bbox_props = dict(boxstyle="circle,pad=0.3",fc="r", ec="k", lw=1)
    ax1.text(0.2, 1, 'A', transform=ax1.transAxes, ha="left", va="center",
                size=6,
                bbox=bbox_props)
                

    

    #ax2.labelsize(fontsize=10)

#==============================================================================
#     ax2.annotate(str(id_lbe), xy=(0.0, float(ii)/len(uniqueID)), xycoords='figure fraction', 
#                 xytext=(0.01, float(ii)/len(uniqueID)), textcoords='figure fraction',
#                 arrowprops=dict(facecolor='black'),rotation=90)
#==============================================================================
            
    bbox_props = dict(boxstyle="rarrow,pad=0.3",fc="w", ec="k", lw=2)
    ax2.text(0.01, (float(ii)+1.)/(len(uniqueID)+2), 'N: ' + str(id_lbe), transform=fig.transFigure, ha="left", va="center",
                size=8,
                bbox=bbox_props)
    
    mrk_props = dict(boxstyle="square,pad=0.3",fc="w", ec="k", lw=2)
    ax2.text(0.01, 0.9, 'Line ID#', transform=fig.transFigure, ha="left", va="center",
                size=8,
                bbox=mrk_props)
                
    mrk_props = dict(boxstyle="square,pad=0.3",fc="b", ec="k", lw=2)
    
    for jj in range(len(uniqueID)):
        ax2.text(0.125, (float(jj)+1.)/(len(uniqueID)+2), ".", transform=fig.transFigure, ha="right", va="center",
                size=8,
                bbox=mrk_props)
                
    mrk_props = dict(boxstyle="square,pad=0.3",fc="r", ec="k", lw=2)
                
    ax2.text(0.125, (float(ii)+1.)/(len(uniqueID)+2), ".", transform=fig.transFigure, ha="right", va="center",
                size=8,
                bbox=mrk_props)  
Exemple #3
0
def animate(ii):

    removeFrame()

    # Grab current line and
    indx = np.where(lineID == ii)[0]

    srcLeft = []
    obs_l = []

    srcRight = []
    obs_r = []

    obs = []

    srcList = []
    # Split the obs file into left and right
    for jj in range(len(indx)):

        # Grab corresponding data
        obs = np.hstack([obs, dobs2D.dobs[dataID == indx[jj]]])
        #std = dobs2D.std[dataID==indx[jj]]

        srcList.append(dobs2D.srcList[indx[jj]])

        Tx = dobs2D.srcList[indx[jj]].loc
        Rx = dobs2D.srcList[indx[jj]].rxList[0].locs

        # Create mid-point location
        Cmid = (Tx[0][0] + Tx[1][0]) / 2
        Pmid = (Rx[0][:, 0] + Rx[1][:, 0]) / 2

        ileft = Pmid < Cmid
        iright = Pmid >= Cmid

        temp = np.zeros(len(ileft))
        temp[ileft] = 1
        obs_l = np.hstack([obs_l, temp])

        temp = np.zeros(len(iright))
        temp[iright] = 1
        obs_r = np.hstack([obs_r, temp])

        if np.any(ileft):
            rx = DC.RxDipole(Rx[0][ileft, :], Rx[1][ileft, :])
            srcLeft.append(DC.SrcDipole([rx], Tx[0], Tx[1]))

            #std_l = np.hstack([std_l,std[ileft]])

        if np.any(iright):
            rx = DC.RxDipole(Rx[0][iright, :], Rx[1][iright, :])
            srcRight.append(DC.SrcDipole([rx], Tx[0], Tx[1]))

            #obs_r = np.hstack([obs_r,iright])
            #std_r = np.hstack([std_r,std[iright]])

    DC2D_full = DC.SurveyDC(srcList)
    DC2D_full.dobs = np.asarray(obs)
    DC2D_full.std = DC2D_full.dobs * 0.
    DC2D_full.std[obs_l ==
                  1] = np.abs(DC2D_full.dobs[obs_l == 1]) * 0.02 + 2e-5
    DC2D_full.std[obs_r ==
                  1] = np.abs(DC2D_full.dobs[obs_r == 1]) * 0.06 + 4e-5

    DC2D_l = DC.SurveyDC(srcLeft)
    DC2D_l.dobs = np.asarray(obs[obs_l == 1])
    DC2D_l.std = np.abs(np.asarray(DC2D_l.dobs)) * 0.05 + 2e-5

    DC2D_r = DC.SurveyDC(srcRight)
    DC2D_r.dobs = np.asarray(obs[obs_r == 1])
    DC2D_r.std = np.abs(np.asarray(DC2D_r.dobs)) * 0.05 + 2e-5

    #DC.plot_pseudoSection(dobs2D,lineID, np.r_[0,1],'pdp')

    id_lbe = int(DCsurvey.srcList[indx[jj]].loc[0][1])

    mesh3d = Mesh.TensorMesh([hx, 1, hz],
                             x0=(-np.sum(padx) + np.min(srcMat[0][:, 0]),
                                 id_lbe, np.max(srcMat[0][0, 2]) - np.sum(hz)))
    Mesh.TensorMesh.writeUBC(mesh3d,
                             home_dir + dsep + 'Mesh' + str(id_lbe) + '.msh')
    global ax1, ax2, ax3, ax5, ax6, fig

    ax2 = plt.subplot(3, 2, 2)
    ph = DC.plot_pseudoSection(DC2D_r, ax2, stype='pdp', colorbar=False)
    ax2.set_title('Observed P-DP', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax2.set_xticklabels([])
    ax2.set_yticklabels([])

    ax1 = plt.subplot(3, 2, 1)
    DC.plot_pseudoSection(DC2D_l,
                          ax1,
                          stype='pdp',
                          clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]),
                          colorbar=False)
    ax1.set_title('Observed DP-P', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax1.set_xticklabels([])
    z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5)
    z_label = np.linspace(20, 1, 5)
    ax1.set_yticks(map(int, z))
    ax1.set_yticklabels(map(str, map(int, z_label)), size=8)
    ax1.set_ylabel('n-spacing', fontsize=8)

    #%% Add labels
    bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1)
    ax2.text(0.00,
             1,
             'A',
             transform=ax2.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1)
    ax2.text(0.1,
             1,
             'M',
             transform=ax2.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1)
    ax2.text(0.2,
             1,
             'N',
             transform=ax2.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="g", ec="k", lw=1)
    ax1.text(0.00,
             1,
             'N',
             transform=ax1.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="y", ec="k", lw=1)
    ax1.text(0.1,
             1,
             'M',
             transform=ax1.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    bbox_props = dict(boxstyle="circle,pad=0.3", fc="r", ec="k", lw=1)
    ax1.text(0.2,
             1,
             'A',
             transform=ax1.transAxes,
             ha="left",
             va="center",
             size=6,
             bbox=bbox_props)

    # Run both left and right survey seperately

    survey = DC2D_full

    # Export data file
    DC.writeUBC_DCobs(inv_dir + dsep + obsfile2d, survey, '2D', 'SIMPLE')

    # Write input file
    fid = open(inv_dir + dsep + inp_file, 'w')
    fid.write('OBS LOC_X %s \n' % obsfile2d)
    fid.write('MESH FILE %s \n' % mshfile2d)
    fid.write('CHIFACT 1 \n')
    fid.write('TOPO DEFAULT \n')
    fid.write('INIT_MOD VALUE %e\n' % ini_mod)
    fid.write('REF_MOD VALUE %e\n' % ref_mod)
    fid.write('ALPHA VALUE %f %f %F\n' % (1. / dx**4., 1, 1))
    fid.write('WEIGHT DEFAULT\n')
    fid.write('STORE_ALL_MODELS FALSE\n')
    fid.write('INVMODE SVD\n')
    #fid.write('CG_PARAM 200 1e-4\n')
    fid.write('USE_MREF FALSE\n')
    #fid.write('BOUNDS VALUE 1e-4 1e+2\n')
    fid.close()

    os.chdir(inv_dir)
    os.system('dcinv2d ' + inp_file)

    #%% Load model and predicted data
    minv = DC.readUBC_DC2DModel(inv_dir + dsep + 'dcinv2d.con')
    minv = np.reshape(minv, (mesh2d.nCy, mesh2d.nCx))

    Mesh.TensorMesh.writeModelUBC(
        mesh3d, home_dir + dsep + 'Model' + str(id_lbe) + '.con', minv.T)

    dpre = DC.readUBC_DC2Dpre(inv_dir + dsep + 'dcinv2d.pre')
    DCpre = dpre['DCsurvey']

    DCtemp = DC2D_l
    DCtemp.dobs = DCpre.dobs[obs_l == 1]

    ax5 = plt.subplot(3, 2, 3)
    DC.plot_pseudoSection(DCtemp,
                          ax5,
                          stype='pdp',
                          clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]),
                          colorbar=False)
    ax5.set_title('Predicted', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax5.set_xticklabels([])
    z = np.linspace(np.min(ph[2]), np.max(ph[2]), 5)
    z_label = np.linspace(20, 1, 5)
    ax5.set_yticks(map(int, z))
    ax5.set_yticklabels(map(str, map(int, z_label)), size=8)
    ax5.set_ylabel('n-spacing', fontsize=8)

    DCtemp = DC2D_r
    DCtemp.dobs = DCpre.dobs[obs_r == 1]

    ax6 = plt.subplot(3, 2, 4)
    DC.plot_pseudoSection(DCtemp,
                          ax6,
                          stype='pdp',
                          clim=(ph[0].get_clim()[0], ph[0].get_clim()[1]),
                          colorbar=False)
    ax6.set_title('Predicted', fontsize=10)
    plt.xlim([xmin, xmax])
    plt.ylim([zmin, zmax])
    plt.gca().set_aspect('equal', adjustable='box')
    ax6.set_xticklabels([])
    ax6.set_yticklabels([])

    pos = ax6.get_position()
    cbarax = fig.add_axes([
        pos.x0 + 0.325, pos.y0 + 0.2, pos.width * 0.1, pos.height * 0.5
    ])  ## the parameters are the specified position you set
    cb = fig.colorbar(ph[0],
                      cax=cbarax,
                      orientation="vertical",
                      ax=ax6,
                      ticks=np.linspace(ph[0].get_clim()[0],
                                        ph[0].get_clim()[1], 4),
                      format="$10^{%.1f}$")
    cb.set_label("App. Cond. (S/m)", size=8)

    ax3 = plt.subplot(3, 1, 3)
    ax3.set_title('2-D Model (S/m)', fontsize=10)
    ax3.set_xticks(map(int, x))
    ax3.set_xticklabels(map(str, map(int, x)))
    ax3.set_xlabel('Easting (m)', fontsize=8)
    ax3.set_yticks(map(int, z))
    ax3.set_yticklabels(map(str, map(int, z)), rotation='vertical')
    ax3.set_ylabel('Depth (m)', fontsize=8)

    plt.xlim([xmin, xmax])
    plt.ylim([zmin / 2, zmax])
    plt.gca().set_aspect('equal', adjustable='box')

    ph2 = plt.pcolormesh(mesh2d.vectorNx,
                         mesh2d.vectorNy,
                         np.log10(minv),
                         vmin=vmin,
                         vmax=vmax)
    plt.gca().tick_params(axis='both', which='major', labelsize=8)

    plt.draw()

    for ss in range(survey.nSrc):
        Tx = survey.srcList[ss].loc[0]
        plt.scatter(Tx[0], mesh2d.vectorNy[-1] + 10, s=10)

    pos = ax3.get_position()
    ax3.set_position([pos.x0 + 0.025, pos.y0, pos.width, pos.height])
    pos = ax3.get_position()
    cbarax = fig.add_axes([
        pos.x0 + 0.65, pos.y0 + 0.01, pos.width * 0.05, pos.height * 0.75
    ])  ## the parameters are the specified position you set
    cb = fig.colorbar(ph2,
                      cax=cbarax,
                      orientation="vertical",
                      ax=ax4,
                      ticks=np.linspace(vmin, vmax, 4),
                      format="$10^{%.1f}$")
    cb.set_label("Conductivity (S/m)", size=8)

    pos = ax1.get_position()
    ax1.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height])

    pos = ax5.get_position()
    ax5.set_position([pos.x0 + 0.03, pos.y0, pos.width, pos.height])

    pos = ax2.get_position()
    ax2.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height])

    pos = ax6.get_position()
    ax6.set_position([pos.x0 - 0.03, pos.y0, pos.width, pos.height])
    #%% Add the extra

    bbox_props = dict(boxstyle="rarrow,pad=0.3", fc="w", ec="k", lw=2)
    ax2.text(0.01, (float(ii) + 1.) / (len(uniqueID) + 2),
             'N: ' + str(id_lbe),
             transform=fig.transFigure,
             ha="left",
             va="center",
             size=8,
             bbox=bbox_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=2)
    ax2.text(0.01,
             0.9,
             'Line ID#',
             transform=fig.transFigure,
             ha="left",
             va="center",
             size=8,
             bbox=mrk_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="b", ec="k", lw=2)

    for jj in range(len(uniqueID)):
        ax2.text(0.1, (float(jj) + 1.) / (len(uniqueID) + 2),
                 ".",
                 transform=fig.transFigure,
                 ha="right",
                 va="center",
                 size=8,
                 bbox=mrk_props)

    mrk_props = dict(boxstyle="square,pad=0.3", fc="r", ec="k", lw=2)

    ax2.text(0.1, (float(ii) + 1.) / (len(uniqueID) + 2),
             ".",
             transform=fig.transFigure,
             ha="right",
             va="center",
             size=8,
             bbox=mrk_props)
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True):
    """
        DC Forward Simulation
        =====================

        Forward model conductive spheres in a half-space and plot a pseudo-section

        Created by @fourndo on Mon Feb 01 19:28:06 2016

    """

    assert stype in [
        'pdp', 'dpdp'
    ], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)"

    if loc is None:
        loc = np.c_[[-50., 0., -50.], [50., 0., -50.]]
    if sig is None:
        sig = np.r_[1e-2, 1e-1, 1e-3]
    if radi is None:
        radi = np.r_[25., 25.]
    if param is None:
        param = np.r_[30., 30., 5]

    # First we need to create a mesh and a model.

    # This is our mesh
    dx = 5.

    hxind = [(dx, 15, -1.3), (dx, 75), (dx, 15, 1.3)]
    hyind = [(dx, 15, -1.3), (dx, 10), (dx, 15, 1.3)]
    hzind = [(dx, 15, -1.3), (dx, 15)]

    mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN')

    # Set background conductivity
    model = np.ones(mesh.nC) * sig[0]

    # First anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 0], radi[0], mesh.gridCC)
    model[ind] = sig[1]

    # Second anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 1], radi[1], mesh.gridCC)
    model[ind] = sig[2]

    # Get index of the center
    indy = int(mesh.nCy / 2)

    # Plot the model for reference
    # Define core mesh extent
    xlim = 200
    zlim = 125

    # Specify the survey type: "pdp" | "dpdp"

    # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh
    ends = [(-175, 0), (175, 0)]
    ends = np.c_[np.asarray(ends), np.ones(2).T * mesh.vectorNz[-1]]

    # Snap the endpoints to the grid. Easier to create 2D section.
    indx = Utils.closestPoints(mesh, ends)
    locs = np.c_[mesh.gridCC[indx, 0], mesh.gridCC[indx, 1],
                 np.ones(2).T * mesh.vectorNz[-1]]

    # We will handle the geometry of the survey for you and create all the combination of tx-rx along line
    # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2])
    survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1],
                                       param[2])

    # Define some global geometry
    dl_len = np.sqrt(np.sum((locs[0, :] - locs[1, :])**2))
    dl_x = (Tx[-1][0, 1] - Tx[0][0, 0]) / dl_len
    dl_y = (Tx[-1][1, 1] - Tx[0][1, 0]) / dl_len
    azm = np.arctan(dl_y / dl_x)

    #Set boundary conditions
    mesh.setCellGradBC('neumann')

    # Define the differential operators needed for the DC problem
    Div = mesh.faceDiv
    Grad = mesh.cellGrad
    Msig = Utils.sdiag(1. / (mesh.aveF2CC.T * (1. / model)))

    A = Div * Msig * Grad

    # Change one corner to deal with nullspace
    A[0, 0] = 1
    A = sp.csc_matrix(A)

    # We will solve the system iteratively, so a pre-conditioner is helpful
    # This is simply a Jacobi preconditioner (inverse of the main diagonal)
    dA = A.diagonal()
    P = sp.spdiags(1 / dA, 0, A.shape[0], A.shape[0])

    # Now we can solve the system for all the transmitters
    # We want to store the data
    data = []

    # There is probably a more elegant way to do this, but we can just for-loop through the transmitters
    for ii in range(len(Tx)):

        start_time = time.time()  # Let's time the calculations

        #print("Transmitter %i / %i\r" % (ii+1,len(Tx)))

        # Select dipole locations for receiver
        rxloc_M = np.asarray(Rx[ii][:, 0:3])
        rxloc_N = np.asarray(Rx[ii][:, 3:])

        # For usual cases "dpdp" or "gradient"
        if stype == 'pdp':
            # Create an "inifinity" pole
            tx = np.squeeze(Tx[ii][:, 0:1])
            tinf = tx + np.array([dl_x, dl_y, 0]) * dl_len * 2
            inds = Utils.closestPoints(mesh, np.c_[tx, tinf].T)
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T,
                                           'CC').T * ([-1] / mesh.vol[inds])
        else:
            inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T)
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T,
                                           'CC').T * ([-1, 1] / mesh.vol[inds])

        # Iterative Solve
        Ainvb = sp.linalg.bicgstab(P * A, P * RHS, tol=1e-5)

        # We now have the potential everywhere
        phi = Utils.mkvc(Ainvb[0])

        # Solve for phi on pole locations
        P1 = mesh.getInterpolationMat(rxloc_M, 'CC')
        P2 = mesh.getInterpolationMat(rxloc_N, 'CC')

        # Compute the potential difference
        dtemp = (P1 * phi - P2 * phi) * np.pi

        data.append(dtemp)
        print '\rTransmitter {0} of {1} -> Time:{2} sec'.format(
            ii, len(Tx),
            time.time() - start_time),

    print 'Transmitter {0} of {1}'.format(ii, len(Tx))
    print 'Forward completed'

    # Let's just convert the 3D format into 2D (distance along line) and plot
    # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D.dobs = np.hstack(data)
    # Here is an example for the first tx-rx array
    if plotIt:
        import matplotlib.pyplot as plt
        fig = plt.figure()
        ax = plt.subplot(2, 1, 1, aspect='equal')
        mesh.plotSlice(np.log10(model), ax=ax, normal='Y', ind=indy, grid=True)
        ax.set_title('E-W section at ' + str(mesh.vectorCCy[indy]) + ' m')
        plt.gca().set_aspect('equal', adjustable='box')

        plt.scatter(Tx[0][0, :], Tx[0][2, :], s=40, c='g', marker='v')
        plt.scatter(Rx[0][:, 0::3], Rx[0][:, 2::3], s=40, c='y')
        plt.xlim([-xlim, xlim])
        plt.ylim([-zlim, mesh.vectorNz[-1] + dx])

        ax = plt.subplot(2, 1, 2, aspect='equal')

        # Plot the location of the spheres for reference
        circle1 = plt.Circle((loc[0, 0] - Tx[0][0, 0], loc[2, 0]),
                             radi[0],
                             color='w',
                             fill=False,
                             lw=3)
        circle2 = plt.Circle((loc[0, 1] - Tx[0][0, 0], loc[2, 1]),
                             radi[1],
                             color='k',
                             fill=False,
                             lw=3)
        ax.add_artist(circle1)
        ax.add_artist(circle2)

        # Add the speudo section
        DC.plot_pseudoSection(survey2D, ax, stype)

        # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v')
        # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y')
        # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k')
        plt.ylim([-zlim, mesh.vectorNz[-1] + dx])

        plt.show()

        return fig, ax
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True):
    """
        DC Forward Simulation
        =====================

        Forward model conductive spheres in a half-space and plot a pseudo-section

        Created by @fourndo on Mon Feb 01 19:28:06 2016

    """

    assert stype in ['pdp', 'dpdp'], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)"


    if loc is None:
        loc = np.c_[[-50.,0.,-50.],[50.,0.,-50.]]
    if sig is None:
        sig = np.r_[1e-2,1e-1,1e-3]
    if radi is None:
        radi = np.r_[25.,25.]
    if param is None:
        param = np.r_[30.,30.,5]


    # First we need to create a mesh and a model.

    # This is our mesh
    dx    = 5.

    hxind = [(dx,15,-1.3), (dx, 75), (dx,15,1.3)]
    hyind = [(dx,15,-1.3), (dx, 10), (dx,15,1.3)]
    hzind = [(dx,15,-1.3),(dx, 15)]

    mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN')


    # Set background conductivity
    model = np.ones(mesh.nC) * sig[0]

    # First anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:,0],radi[0],mesh.gridCC)
    model[ind] = sig[1]

    # Second anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:,1],radi[1],mesh.gridCC)
    model[ind] = sig[2]

    # Get index of the center
    indy = int(mesh.nCy/2)


    # Plot the model for reference
    # Define core mesh extent
    xlim = 200
    zlim = 125

    # Specify the survey type: "pdp" | "dpdp"


    # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh
    ends = [(-175,0),(175,0)]
    ends = np.c_[np.asarray(ends),np.ones(2).T*mesh.vectorNz[-1]]

    # Snap the endpoints to the grid. Easier to create 2D section.
    indx = Utils.closestPoints(mesh, ends )
    locs = np.c_[mesh.gridCC[indx,0],mesh.gridCC[indx,1],np.ones(2).T*mesh.vectorNz[-1]]

    # We will handle the geometry of the survey for you and create all the combination of tx-rx along line
    # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2])
    survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2])

    # Define some global geometry
    dl_len = np.sqrt( np.sum((locs[0,:] - locs[1,:])**2) )
    dl_x = ( Tx[-1][0,1] - Tx[0][0,0] ) / dl_len
    dl_y = ( Tx[-1][1,1] - Tx[0][1,0]  ) / dl_len
    azm =  np.arctan(dl_y/dl_x)

    #Set boundary conditions
    mesh.setCellGradBC('neumann')

    # Define the differential operators needed for the DC problem
    Div = mesh.faceDiv
    Grad = mesh.cellGrad
    Msig = Utils.sdiag(1./(mesh.aveF2CC.T*(1./model)))

    A = Div*Msig*Grad

    # Change one corner to deal with nullspace
    A[0,0] = 1
    A = sp.csc_matrix(A)

    # We will solve the system iteratively, so a pre-conditioner is helpful
    # This is simply a Jacobi preconditioner (inverse of the main diagonal)
    dA = A.diagonal()
    P = sp.spdiags(1/dA,0,A.shape[0],A.shape[0])

    # Now we can solve the system for all the transmitters
    # We want to store the data
    data = []

    # There is probably a more elegant way to do this, but we can just for-loop through the transmitters
    for ii in range(len(Tx)):

        start_time = time.time() # Let's time the calculations

        #print("Transmitter %i / %i\r" % (ii+1,len(Tx)))

        # Select dipole locations for receiver
        rxloc_M = np.asarray(Rx[ii][:,0:3])
        rxloc_N = np.asarray(Rx[ii][:,3:])


        # For usual cases "dpdp" or "gradient"
        if stype == 'pdp':
            # Create an "inifinity" pole
            tx =  np.squeeze(Tx[ii][:,0:1])
            tinf = tx + np.array([dl_x,dl_y,0])*dl_len*2
            inds = Utils.closestPoints(mesh, np.c_[tx,tinf].T)
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1] / mesh.vol[inds] )
        else:
            inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T )
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1,1] / mesh.vol[inds] )

        # Iterative Solve
        Ainvb = sp.linalg.bicgstab(P*A,P*RHS, tol=1e-5)

        # We now have the potential everywhere
        phi = Utils.mkvc(Ainvb[0])

        # Solve for phi on pole locations
        P1 = mesh.getInterpolationMat(rxloc_M, 'CC')
        P2 = mesh.getInterpolationMat(rxloc_N, 'CC')

        # Compute the potential difference
        dtemp = (P1*phi - P2*phi)*np.pi

        data.append( dtemp )
        print '\rTransmitter {0} of {1} -> Time:{2} sec'.format(ii,len(Tx),time.time()- start_time),

    print 'Transmitter {0} of {1}'.format(ii,len(Tx))
    print 'Forward completed'

    # Let's just convert the 3D format into 2D (distance along line) and plot
    # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D.dobs =np.hstack(data)
    # Here is an example for the first tx-rx array
    if plotIt:
        import matplotlib.pyplot as plt
        fig = plt.figure()
        ax = plt.subplot(2,1,1, aspect='equal')
        mesh.plotSlice(np.log10(model), ax =ax, normal = 'Y', ind = indy,grid=True)
        ax.set_title('E-W section at '+str(mesh.vectorCCy[indy])+' m')
        plt.gca().set_aspect('equal', adjustable='box')

        plt.scatter(Tx[0][0,:],Tx[0][2,:],s=40,c='g', marker='v')
        plt.scatter(Rx[0][:,0::3],Rx[0][:,2::3],s=40,c='y')
        plt.xlim([-xlim,xlim])
        plt.ylim([-zlim,mesh.vectorNz[-1]+dx])


        ax = plt.subplot(2,1,2, aspect='equal')

        # Plot the location of the spheres for reference
        circle1=plt.Circle((loc[0,0]-Tx[0][0,0],loc[2,0]),radi[0],color='w',fill=False, lw=3)
        circle2=plt.Circle((loc[0,1]-Tx[0][0,0],loc[2,1]),radi[1],color='k',fill=False, lw=3)
        ax.add_artist(circle1)
        ax.add_artist(circle2)

        # Add the speudo section
        DC.plot_pseudoSection(survey2D,ax,stype)

        # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v')
        # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y')
        # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k')
        plt.ylim([-zlim,mesh.vectorNz[-1]+dx])

        plt.show()

        return fig, ax
Exemple #6
0
     for jj in range(survey.nSrc):
         Tx = survey.srcList[jj].loc
         Rx = survey.srcList[jj].rxList[0].locs
 
         # Create mid-point location
         Cmid = (Tx[0][0] + Tx[1][0])/2
         Pmid = (Rx[0][:,0] + Rx[1][:,0])/2
     
         midx = np.hstack([midx, ( Cmid + Pmid )/2 ])
         midz = np.hstack([midz, -np.abs(Cmid-Pmid)/2 + (Tx[0][2] + Tx[1][2])/2 ])
     
     global ax1, fig
     ax1 = plt.subplot(1,1,1)
     
     
     ph = DC.plot_pseudoSection(survey,ax1,stype = 'pdp', dtype = dtype, colorbar=True)
     
     # Call a ginput to delete points on pseudo-section
     #uncert = np.hstack([uncert,src_uncert])
     cfm1=get_current_fig_manager().window  
     cfm1.activateWindow()
     plt.sca(ax1)
     gin = plt.ginput(100, timeout = 0, show_clicks=True,mouse_add=1,mouse_stop=2)
     
     # Find closest midx and midz from the list of gin and assign 0 to
     #the global data indexing
     for jj in range(len(gin)):
         
         # Find the closest point on the pseudo section
         rmin = np.argmin( (gin[jj][0] - midx)**2. + (gin[jj][1] - midz)**2. )
         keeper[indx[rmin]] = 0
Exemple #7
0
    if pp == 0:
        fig2 = plt.figure(figsize=(7, 7))

    # Second plot for the predicted apparent resistivity data
    ax2 = fig2.add_subplot(2, 1, pp + 1, aspect='equal')

    if pp == 1:
        pos = ax2.get_position()
        ax2.set_position([pos.x0, pos.y0 + .05, pos.width, pos.height])

    #ax2.pcolor(mesh2d.vectorNx,mesh2d.vectorNy,np.log10(m2D),edgecolor="none",alpha=0.5,cmap = 'gray')
    # Add the speudo section
    if pp == 0:
        dat = DC.plot_pseudoSection(survey2D,
                                    ax2,
                                    stype=stype,
                                    dtype=dtype,
                                    colorbar=False,
                                    clim=np.asarray([vmin, 0]))
    else:
        dat = DC.plot_pseudoSection(survey2D,
                                    ax2,
                                    stype=stype,
                                    dtype=dtype,
                                    clim=np.asarray([vmin, 0]))
#==============================================================================
#     if pp == 0:
#
#         circle=plt.Circle((11950,145),125,color='k',fill=False, lw=3)
#         ax2.add_artist(circle)
#==============================================================================