Exemple #1
0
def callback(x, comm):
    """
    Callback that calculates the Black Scholes Option Price for a given Volatility
    """

    fail = noisy_fail()

    p_userdata = cast(comm[0].p, py_object)
    userdata = p_userdata.value

    time = numpy.array(userdata[0])
    callput = userdata[1]
    strike = numpy.array(userdata[2])
    underlying = userdata[3]
    current_price = userdata[4]
    out = numpy.array(0.0)
    p_x = numpy.array(x,dtype=numpy.double)
    
    # NAG function call 
    s30aac(Nag_RowMajor, callput, 1, 1, strike, underlying, time, p_x, 0.0, 0.0, out, fail)
    if(fail.code == 0):
        return out.item() - current_price
    print(fail.message)
    return 0.0
Exemple #2
0
def main():

    if(a00acc() != 1):
        print("Cannot find a valid NAG license")
        sys.exit(1)

    try:
        if(len(sys.argv)>1):
            QuoteData = sys.argv[1]
        else:
            QuoteData = 'QuoteData.dat'

        qd = open(QuoteData, 'r')
        qd_head = []
        qd_head.append(qd.readline())
        qd_head.append(qd.readline())
        qd.close()
    except:
        sys.stderr.write("Usage: implied_volatility.py QuoteData.dat\n")
        sys.stderr.write("Couldn't read QuoteData")
        sys.exit(1)

    print("Implied Volatility for %s %s" % (qd_head[0].strip(), qd_head[1]))

    # Parse the header information in QuotaData
    first = qd_head[0].split(',')
    second = qd_head[1].split()
    qd_date = qd_head[1].split(',')[0]
    
    company = first[0]
    underlyingprice = float(first[1])
    month, day = second[:2]
    today = cumulative_month[month] + int(day) - 30
    current_year = int(second[2])

    def getExpiration(x):
        monthday = x.split()
        adate = monthday[0] + ' ' + monthday[1]
        if adate not in dates:
            dates.append(adate)
        return (int(monthday[0]) - (current_year % 2000)) * 365 + cumulative_month[monthday[1]]

    def getStrike(x):
        monthday = x.split()
        return float(monthday[2])

    data = pandas.io.parsers.read_csv(QuoteData, sep=',', header=2, na_values=' ')

    # Need to fill the NA values in dataframe
    data = data.fillna(0.0)

    # Let's look at data where there was a recent sale 
#    data = data[data.Calls > 0]
    data = data[(data['Last Sale'] > 0) | (data['Last Sale.1'] > 0)]

    # Get the Options Expiration Date
    exp = data.Calls.apply(getExpiration)
    exp.name = 'Expiration'

    # Get the Strike Prices
    strike = data.Calls.apply(getStrike)
    strike.name = 'Strike'

    data = data.join(exp).join(strike)

    print('Calculating Implied Vol of Calls...')
    impvolcall = pandas.Series(pandas.np.zeros(len(data.index)),
                               index=data.index, name='impvolCall')
    for i in data.index:
        impvolcall[i] = (calcvol(data.Expiration[i],
                                 data.Strike[i],
                                 today,
                                 underlyingprice,
                                 (data.Bid[i] + data.Ask[i]) / 2, Nag_Call))

    print('Calculated Implied Vol for %d Calls' % len(data.index))
    data = data.join(impvolcall)

    print('Calculating Implied Vol of Puts...')
    impvolput = pandas.Series(numpy.zeros(len(data.index)),
                              index=data.index, name='impvolPut')

    for i in data.index:
        impvolput[i] = (calcvol(data.Expiration[i],
                                data.Strike[i],
                                today,
                                underlyingprice,
                                (data['Bid.1'][i] + data['Ask.1'][i]) / 2.0, Nag_Put))

    print('Calculated Implied Vol for %i Puts' % len(data.index))

    data = data.join(impvolput)
    fig = plt.figure(1)
    fig.subplots_adjust(hspace=.4, wspace=.3)

    # Plot the Volatility Curves
    # Encode graph layout: 3 rows, 3 columns, 1 is first graph.
    num = 331
    max_xticks = 4
    
    for date in dates:
        # add each subplot to the figure
        plot_year, plot_month = date.split()
        plot_date = (int(plot_year) - (current_year % 2000)) * 365 + cumulative_month[plot_month]
        plot_call = data[(data.impvolCall > .01) &
                       (data.impvolCall < 1) &
                       (data.Expiration == plot_date) &
                       (data['Last Sale'] > 0)]
        plot_put = data[(data.impvolPut > .01) &
                        (data.impvolPut < 1) &
                        (data.Expiration == plot_date) &
                        (data['Last Sale.1'] > 0)]

        myfig = fig.add_subplot(num)
        xloc = plt.MaxNLocator(max_xticks)
        myfig.xaxis.set_major_locator(xloc)
        myfig.set_title('Expiry: %s 20%s' % (plot_month, plot_year))
        myfig.plot(plot_call.Strike, plot_call.impvolCall, 'pr', label='call')
        myfig.plot(plot_put.Strike, plot_put.impvolPut, 'p', label='put')
        myfig.legend(loc=1, numpoints=1, prop={'size': 10})
        myfig.set_ylim([0,1])
        myfig.set_xlabel('Strike Price')
        myfig.set_ylabel('Implied Volatility')
        num += 1

    plt.suptitle('Implied Volatility for %s Current Price: %s Date: %s' %
                 (company, underlyingprice, qd_date))
    

    print("\nPlotting Volatility Curves/Surface")
    """
    The code below will plot the Volatility Surface
    It uses e02ca to fit with a polynomial and e02cb to evalute at 
    intermediate points
    """ 

    m = numpy.empty(len(dates), dtype=nag_int_type())
    y = numpy.empty(len(dates), dtype=numpy.double)
    xmin = numpy.empty(len(dates), dtype=numpy.double)    
    xmax = numpy.empty(len(dates), dtype=numpy.double)
 
    data = data.sort('Strike') # Need to sort for NAG Algorithm

    k = 3   # this is the degree of polynomial for x-axis (Strike Price)
    l = 3   # this is the degree of polynomial for y-axis (Expiration Date)

    i = 0

    for date in dates:
        plot_year, plot_month = date.split()
        plot_date = (int(plot_year) - (current_year % 2000)) * 365 + cumulative_month[plot_month]
        
        call_data = data[(data.Expiration == plot_date) & 
				(data.impvolPut > .01) & 
				(data.impvolPut < 1) &
                                (data['Last Sale.1'] > 0)]
         
        exp_sizes = call_data.Expiration.size
        if(exp_sizes > 0):       
            m[i] = exp_sizes
            n = len(dates)

            if(i == 0):
                x = numpy.array(call_data.Strike)
                call = numpy.array(call_data.impvolPut)
                xmin[0] = x.min()
                xmax[0] = x.max()
            else:
                x2 = numpy.array(call_data.Strike)
                x = numpy.append(x,x2)
                call2 = numpy.array(call_data.impvolPut)
                call = numpy.append(call,call2)
                xmin[i] = x2.min()
                xmax[i] = x2.max()
            y[i] = plot_date-today
            i+=1
    nux = numpy.zeros(1,dtype=numpy.double)
    nuy = numpy.zeros(1,dtype=numpy.double)
    inux = 1
    inuy = 1

    if(len(dates) != i):
        print("Error with data: the CBOE may not be open for trading or one expiration date has null data")
        return 0
    weight = numpy.ones(call.size, dtype=numpy.double)

    output_coef = numpy.empty((k + 1) * (l + 1),dtype=numpy.double)
     
    fail = noisy_fail()    
    
    #Call the NAG Chebyshev fitting function
    e02cac(m,n,k,l,x,y,call,weight,output_coef,xmin,xmax,nux,inux,nuy,inuy,fail)        
   
    """
    Now that we have fit the function,
    we use e02cb to evaluate at different strikes/expirations 
    """

    nStrikes = 100 # number of Strikes to evaluate    
    spacing = 20 # number of Expirations to evaluate
    
    for i in range(spacing):
        mfirst = 1	
        mlast = nStrikes
        xmin = data.Strike.min()
        xmax = data.Strike.max()
         
        x = numpy.linspace(xmin, xmax, nStrikes)

        ymin = data.Expiration.min() - today
        ymax = data.Expiration.max() - today
      
        y = (ymin) + i * numpy.floor((ymax - ymin) / spacing) 

        fx=numpy.empty(nStrikes)
        fail=quiet_fail()

        e02cbc(mfirst,mlast,k,l,x,xmin,xmax,y,ymin,ymax,fx,output_coef,fail)
        
        if(fail.code != 0):
            print(fail.message)
        
        if 'xaxis' in locals():
            xaxis = numpy.append(xaxis, x)
            temp = numpy.empty(len(x))
            temp.fill(y)
            yaxis = numpy.append(yaxis, temp)    
            for j in range(len(x)):
                zaxis.append(fx[j])
        else:
            xaxis = x
            yaxis = numpy.empty(len(x), dtype=numpy.double)
            yaxis.fill(y)
            zaxis = []
            for j in range(len(x)):
                zaxis.append(fx[j])
   
    fig = plt.figure(2)
    ax = fig.add_subplot(111, projection='3d')

    # A try-except block for Matplotlib
    try:
        ax.plot_trisurf(xaxis, yaxis, zaxis, cmap=cm.jet)
    except AttributeError:
        print ("Your version of Matplotlib does not support plot_trisurf")
        print ("...plotting wireframe instead")
        ax.plot(xaxis, yaxis, zaxis)
    
    ax.set_xlabel('Strike Price')
    ax.set_ylabel('Days to Expiration')
    ax.set_zlabel('Implied Volatility for Put Options')
    plt.suptitle('Implied Volatility Surface for %s Current Price: %s Date: %s' %
                 (company, underlyingprice, qd_date))
    
    plt.show()    
Exemple #3
0
# In[7]:

order = nag_util.Nag_RowMajor
Gflat = G.flatten()
n = G.shape[0]
pdg = n
errtol = 0.0
maxits = 0
maxit = 0
Xflat = np.empty_like(Gflat)
pdx = n
itr = np.array([0])
feval = np.array([0])
nrmgrd = np.array([0.0])
fail = nag_util.noisy_fail()
nag_g02.g02aac(order, Gflat, pdg, n, errtol, maxits, maxit, Xflat, pdx, itr,
               feval, nrmgrd, fail)

# In[8]:

"Unflatten X to have the same shape as G for comparison."
X = np.reshape(Xflat, G.shape)
print(X)

# In[9]:

print("The sorted eigenvalues of X [{0}]".format(''.join(
    ['{:.4f} '.format(x) for x in np.sort(np.linalg.eig(X)[0])])))

# In[10]: