Exemple #1
0
def test_pow1():
    assert refine((-1)**x, Q.even(x)) == 1
    assert refine((-1)**x, Q.odd(x)) == -1
    assert refine((-2)**x, Q.even(x)) == 2**x

    # nested powers
    assert refine(sqrt(x**2)) != Abs(x)
    assert refine(sqrt(x**2), Q.complex(x)) != Abs(x)
    assert refine(sqrt(x**2), Q.real(x)) == Abs(x)
    assert refine(sqrt(x**2), Q.positive(x)) == x
    assert refine((x**3)**Rational(1, 3)) != x

    assert refine((x**3)**Rational(1, 3), Q.real(x)) != x
    assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x

    assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x)
    assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x)

    # powers of (-1)
    assert refine((-1)**(x + y), Q.even(x)) == (-1)**y
    assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y
    assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y
    assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1)
    assert refine((-1)**(x + 3)) == (-1)**(x + 1)

    # continuation
    assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x
    assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1)
    assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1)
Exemple #2
0
def _(expr):
    base, exp = expr.base, expr.exp
    return [
        (Q.real(base) & Q.even(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr),
        (Q.nonnegative(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr),
        (Q.nonpositive(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonpositive(expr),
        Equivalent(Q.zero(expr), Q.zero(base) & Q.positive(exp))
    ]
Exemple #3
0
def _(expr):
    arg = expr.args[0]
    return [Q.nonnegative(expr),
            Equivalent(~Q.zero(arg), ~Q.zero(expr)),
            Q.even(arg) >> Q.even(expr),
            Q.odd(arg) >> Q.odd(expr),
            Q.integer(arg) >> Q.integer(expr),
            ]
Exemple #4
0
def test_get_relevant_clsfacts():
    exprs = {Abs(x*y)}
    exprs, facts = get_relevant_clsfacts(exprs)
    assert exprs == {x*y}
    assert facts.clauses == \
        {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
        frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
        frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
        frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
        frozenset({Literal(Q.even(Abs(x*y)), False),
                    Literal(Q.odd(Abs(x*y)), False),
                    Literal(Q.odd(x*y), True)}),
        frozenset({Literal(Q.even(Abs(x*y)), False),
                    Literal(Q.even(x*y), True),
                    Literal(Q.odd(Abs(x*y)), False)}),
        frozenset({Literal(Q.positive(Abs(x*y)), False),
                    Literal(Q.zero(Abs(x*y)), False)})}
Exemple #5
0
def test_even_satask():
    assert satask(Q.even(2)) is True
    assert satask(Q.even(3)) is False

    assert satask(Q.even(x*y), Q.even(x) & Q.odd(y)) is True
    assert satask(Q.even(x*y), Q.even(x) & Q.integer(y)) is True
    assert satask(Q.even(x*y), Q.even(x) & Q.even(y)) is True
    assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False
    assert satask(Q.even(x*y), Q.even(x)) is None
    assert satask(Q.even(x*y), Q.odd(x) & Q.integer(y)) is None
    assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False

    assert satask(Q.even(abs(x)), Q.even(x)) is True
    assert satask(Q.even(abs(x)), Q.odd(x)) is False
    assert satask(Q.even(x), Q.even(abs(x))) is None # x could be complex
def register_fact(klass, fact, registry=fact_registry):
    registry[klass] |= {fact}


for klass, fact in [
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),

    (Pow, CustomLambda(lambda power: Implies(Q.real(power.base) &
    Q.even(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonpositive(power)))),

    # This one can still be made easier to read. I think we need basic pattern
    # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))),
    (Integer, CheckIsPrime(Q.prime)),
    # Implicitly assumes Mul has more than one arg
    # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
    (Mul, Implies(AllArgs(Q.prime), ~Q.prime)),
    # More advanced prime assumptions will require inequalities, as 1 provides
    # a corner case.
    (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))),
    (Mul, Implies(AllArgs(Q.real), Q.real)),
    (Add, Implies(AllArgs(Q.real), Q.real)),
    # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
Exemple #7
0
def register_fact(klass, fact, registry=fact_registry):
    registry[klass] |= {fact}


for klass, fact in [
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),

    (Pow, CustomLambda(lambda power: Implies(Q.real(power.base) &
    Q.even(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonpositive(power)))),

    # This one can still be made easier to read. I think we need basic pattern
    # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))),
    (Integer, CheckIsPrime(Q.prime)),
    # Implicitly assumes Mul has more than one arg
    # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
    (Mul, Implies(AllArgs(Q.prime), ~Q.prime)),
    # More advanced prime assumptions will require inequalities, as 1 provides
    # a corner case.
    (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))),
    (Mul, Implies(AllArgs(Q.real), Q.real)),
    (Add, Implies(AllArgs(Q.real), Q.real)),
    # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
Exemple #8
0
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul,
     Implies(AllArgs(Q.square), Equivalent(Q.invertible,
                                           AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),
    (Pow,
     CustomLambda(lambda power: Implies(
         Q.real(power.base) & Q.even(power.exp) & Q.nonnegative(power.exp),
         Q.nonnegative(power)))),
    (Pow,
     CustomLambda(lambda power: Implies(
         Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(
             power.exp), Q.nonnegative(power)))),
    (Pow,
     CustomLambda(lambda power: Implies(
         Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(
             power.exp), Q.nonpositive(power)))),

        # This one can still be made easier to read. I think we need basic pattern
        # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow,
     CustomLambda(
         lambda power: Equivalent(Q.zero(power),
                                  Q.zero(power.base) & Q.positive(power.exp)))
     ),
    (Integer, CheckIsPrime(Q.prime)),
        # Implicitly assumes Mul has more than one arg
Exemple #9
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact