Exemple #1
0
def test_pow1():
    assert refine((-1)**x, Q.even(x)) == 1
    assert refine((-1)**x, Q.odd(x)) == -1
    assert refine((-2)**x, Q.even(x)) == 2**x

    # nested powers
    assert refine(sqrt(x**2)) != Abs(x)
    assert refine(sqrt(x**2), Q.complex(x)) != Abs(x)
    assert refine(sqrt(x**2), Q.real(x)) == Abs(x)
    assert refine(sqrt(x**2), Q.positive(x)) == x
    assert refine((x**3)**Rational(1, 3)) != x

    assert refine((x**3)**Rational(1, 3), Q.real(x)) != x
    assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x

    assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x)
    assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x)

    # powers of (-1)
    assert refine((-1)**(x + y), Q.even(x)) == (-1)**y
    assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y
    assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y
    assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1)
    assert refine((-1)**(x + 3)) == (-1)**(x + 1)

    # continuation
    assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x
    assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1)
    assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1)
Exemple #2
0
def test_refine():
    # relational
    assert not refine(x < 0, ~Q.is_true(x < 0))
    assert refine(x < 0, Q.is_true(x < 0))
    assert refine(x < 0, Q.is_true(0 > x)) == True
    assert refine(x < 0, Q.is_true(y < 0)) == (x < 0)
    assert not refine(x <= 0, ~Q.is_true(x <= 0))
    assert refine(x <= 0,  Q.is_true(x <= 0))
    assert refine(x <= 0,  Q.is_true(0 >= x)) == True
    assert refine(x <= 0,  Q.is_true(y <= 0)) == (x <= 0)
    assert not refine(x > 0, ~Q.is_true(x > 0))
    assert refine(x > 0,  Q.is_true(x > 0))
    assert refine(x > 0,  Q.is_true(0 < x)) == True
    assert refine(x > 0,  Q.is_true(y > 0)) == (x > 0)
    assert not refine(x >= 0, ~Q.is_true(x >= 0))
    assert refine(x >= 0,  Q.is_true(x >= 0))
    assert refine(x >= 0,  Q.is_true(0 <= x)) == True
    assert refine(x >= 0,  Q.is_true(y >= 0)) == (x >= 0)
    assert not refine(Eq(x, 0), ~Q.is_true(Eq(x, 0)))
    assert refine(Eq(x, 0),  Q.is_true(Eq(x, 0)))
    assert refine(Eq(x, 0),  Q.is_true(Eq(0, x))) == True
    assert refine(Eq(x, 0),  Q.is_true(Eq(y, 0))) == Eq(x, 0)
    assert not refine(Ne(x, 0), ~Q.is_true(Ne(x, 0)))
    assert refine(Ne(x, 0), Q.is_true(Ne(0, x))) == True
    assert refine(Ne(x, 0),  Q.is_true(Ne(x, 0)))
    assert refine(Ne(x, 0),  Q.is_true(Ne(y, 0))) == (Ne(x, 0))

    # boolean functions
    assert refine(And(x > 0, y > 0), Q.is_true(x > 0)) == (y > 0)
    assert refine(And(x > 0, y > 0), Q.is_true(x > 0) & Q.is_true(y > 0)) == True

    # predicates
    assert refine(Q.positive(x), Q.positive(x)) == True
    assert refine(Q.positive(x), Q.negative(x)) == False
    assert refine(Q.positive(x), Q.real(x)) == Q.positive(x)
Exemple #3
0
def test_Abs():
    assert refine(Abs(x), Q.positive(x)) == x
    assert refine(1 + Abs(x), Q.positive(x)) == 1 + x
    assert refine(Abs(x), Q.negative(x)) == -x
    assert refine(1 + Abs(x), Q.negative(x)) == 1 - x

    assert refine(Abs(x**2)) != x**2
    assert refine(Abs(x**2), Q.real(x)) == x**2
Exemple #4
0
def test_refine_issue_12724():
    expr1 = refine(Abs(x * y), Q.positive(x))
    expr2 = refine(Abs(x * y * z), Q.positive(x))
    assert expr1 == x * Abs(y)
    assert expr2 == x * Abs(y * z)
    y1 = Symbol('y1', real = True)
    expr3 = refine(Abs(x * y1**2 * z), Q.positive(x))
    assert expr3 == x * y1**2 * Abs(z)
Exemple #5
0
def _(expr):
    return [allarg(x, Q.positive(x), expr) >> Q.positive(expr),
            allarg(x, Q.negative(x), expr) >> Q.negative(expr),
            allarg(x, Q.real(x), expr) >> Q.real(expr),
            allarg(x, Q.rational(x), expr) >> Q.rational(expr),
            allarg(x, Q.integer(x), expr) >> Q.integer(expr),
            exactlyonearg(x, ~Q.integer(x), expr) >> ~Q.integer(expr),
            ]
Exemple #6
0
def _(expr):
    return [Equivalent(Q.zero(expr), anyarg(x, Q.zero(x), expr)),
            allarg(x, Q.positive(x), expr) >> Q.positive(expr),
            allarg(x, Q.real(x), expr) >> Q.real(expr),
            allarg(x, Q.rational(x), expr) >> Q.rational(expr),
            allarg(x, Q.integer(x), expr) >> Q.integer(expr),
            exactlyonearg(x, ~Q.rational(x), expr) >> ~Q.integer(expr),
            allarg(x, Q.commutative(x), expr) >> Q.commutative(expr),
            ]
Exemple #7
0
def test_atan2():
    assert refine(atan2(y, x), Q.real(y) & Q.positive(x)) == atan(y/x)
    assert refine(atan2(y, x), Q.negative(y) & Q.positive(x)) == atan(y/x)
    assert refine(atan2(y, x), Q.negative(y) & Q.negative(x)) == atan(y/x) - pi
    assert refine(atan2(y, x), Q.positive(y) & Q.negative(x)) == atan(y/x) + pi
    assert refine(atan2(y, x), Q.zero(y) & Q.negative(x)) == pi
    assert refine(atan2(y, x), Q.positive(y) & Q.zero(x)) == pi/2
    assert refine(atan2(y, x), Q.negative(y) & Q.zero(x)) == -pi/2
    assert refine(atan2(y, x), Q.zero(y) & Q.zero(x)) is nan
def test_exactlyonearg():
    assert exactlyonearg(x, Q.zero(x), x*y) == \
        Or(Q.zero(x) & ~Q.zero(y), Q.zero(y) & ~Q.zero(x))
    assert exactlyonearg(x, Q.zero(x), x*y*z) == \
        Or(Q.zero(x) & ~Q.zero(y) & ~Q.zero(z), Q.zero(y)
        & ~Q.zero(x) & ~Q.zero(z), Q.zero(z) & ~Q.zero(x) & ~Q.zero(y))
    assert exactlyonearg(x, Q.positive(x) | Q.negative(x), x*y) == \
        Or((Q.positive(x) | Q.negative(x)) &
        ~(Q.positive(y) | Q.negative(y)), (Q.positive(y) | Q.negative(y)) &
        ~(Q.positive(x) | Q.negative(x)))
Exemple #9
0
def test_pos_neg():
    assert satask(~Q.positive(x), Q.negative(x)) is True
    assert satask(~Q.negative(x), Q.positive(x)) is True
    assert satask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True
    assert satask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True
    assert satask(Q.positive(x + y), Q.negative(x) & Q.negative(y)) is False
    assert satask(Q.negative(x + y), Q.positive(x) & Q.positive(y)) is False
Exemple #10
0
def test_sign():
    x = Symbol('x', real = True)
    assert refine(sign(x), Q.positive(x)) == 1
    assert refine(sign(x), Q.negative(x)) == -1
    assert refine(sign(x), Q.zero(x)) == 0
    assert refine(sign(x), True) == sign(x)
    assert refine(sign(Abs(x)), Q.nonzero(x)) == 1

    x = Symbol('x', imaginary=True)
    assert refine(sign(x), Q.positive(im(x))) == S.ImaginaryUnit
    assert refine(sign(x), Q.negative(im(x))) == -S.ImaginaryUnit
    assert refine(sign(x), True) == sign(x)

    x = Symbol('x', complex=True)
    assert refine(sign(x), Q.zero(x)) == 0
Exemple #11
0
def test_zero_pow():
    assert satask(Q.zero(x**y), Q.zero(x) & Q.positive(y)) is True
    assert satask(Q.zero(x**y), Q.nonzero(x) & Q.zero(y)) is False

    assert satask(Q.zero(x), Q.zero(x**y)) is True

    assert satask(Q.zero(x**y), Q.zero(x)) is None
Exemple #12
0
def test_abs():
    assert satask(Q.nonnegative(abs(x))) is True
    assert satask(Q.positive(abs(x)), ~Q.zero(x)) is True
    assert satask(Q.zero(x), ~Q.zero(abs(x))) is False
    assert satask(Q.zero(x), Q.zero(abs(x))) is True
    assert satask(Q.nonzero(x), ~Q.zero(abs(x))) is None # x could be complex
    assert satask(Q.zero(abs(x)), Q.zero(x)) is True
Exemple #13
0
def _(expr):
    base, exp = expr.base, expr.exp
    return [
        (Q.real(base) & Q.even(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr),
        (Q.nonnegative(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr),
        (Q.nonpositive(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonpositive(expr),
        Equivalent(Q.zero(expr), Q.zero(base) & Q.positive(exp))
    ]
Exemple #14
0
def test_prime_composite():
    assert satask(Q.prime(x), Q.composite(x)) is False
    assert satask(Q.composite(x), Q.prime(x)) is False
    assert satask(Q.composite(x), ~Q.prime(x)) is None
    assert satask(Q.prime(x), ~Q.composite(x)) is None
    # since 1 is neither prime nor composite the following should hold
    assert satask(Q.prime(x), Q.integer(x) & Q.positive(x) & ~Q.composite(x)) is None
    assert satask(Q.prime(2)) is True
    assert satask(Q.prime(4)) is False
    assert satask(Q.prime(1)) is False
    assert satask(Q.composite(1)) is False
Exemple #15
0
def test_old_assump():
    assert satask(Q.positive(1)) is True
    assert satask(Q.positive(-1)) is False
    assert satask(Q.positive(0)) is False
    assert satask(Q.positive(I)) is False
    assert satask(Q.positive(pi)) is True

    assert satask(Q.negative(1)) is False
    assert satask(Q.negative(-1)) is True
    assert satask(Q.negative(0)) is False
    assert satask(Q.negative(I)) is False
    assert satask(Q.negative(pi)) is False

    assert satask(Q.zero(1)) is False
    assert satask(Q.zero(-1)) is False
    assert satask(Q.zero(0)) is True
    assert satask(Q.zero(I)) is False
    assert satask(Q.zero(pi)) is False

    assert satask(Q.nonzero(1)) is True
    assert satask(Q.nonzero(-1)) is True
    assert satask(Q.nonzero(0)) is False
    assert satask(Q.nonzero(I)) is False
    assert satask(Q.nonzero(pi)) is True

    assert satask(Q.nonpositive(1)) is False
    assert satask(Q.nonpositive(-1)) is True
    assert satask(Q.nonpositive(0)) is True
    assert satask(Q.nonpositive(I)) is False
    assert satask(Q.nonpositive(pi)) is False

    assert satask(Q.nonnegative(1)) is True
    assert satask(Q.nonnegative(-1)) is False
    assert satask(Q.nonnegative(0)) is True
    assert satask(Q.nonnegative(I)) is False
    assert satask(Q.nonnegative(pi)) is True
Exemple #16
0
def test_get_relevant_clsfacts():
    exprs = {Abs(x*y)}
    exprs, facts = get_relevant_clsfacts(exprs)
    assert exprs == {x*y}
    assert facts.clauses == \
        {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
        frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
        frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
        frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
        frozenset({Literal(Q.even(Abs(x*y)), False),
                    Literal(Q.odd(Abs(x*y)), False),
                    Literal(Q.odd(x*y), True)}),
        frozenset({Literal(Q.even(Abs(x*y)), False),
                    Literal(Q.even(x*y), True),
                    Literal(Q.odd(Abs(x*y)), False)}),
        frozenset({Literal(Q.positive(Abs(x*y)), False),
                    Literal(Q.zero(Abs(x*y)), False)})}
Exemple #17
0
def test_call():
    x, y = symbols('x y')
    # See the long history of this in issues 5026 and 5105.

    raises(TypeError, lambda: sin(x)({x: 1, sin(x): 2}))
    raises(TypeError, lambda: sin(x)(1))

    # No effect as there are no callables
    assert sin(x).rcall(1) == sin(x)
    assert (1 + sin(x)).rcall(1) == 1 + sin(x)

    # Effect in the pressence of callables
    l = Lambda(x, 2 * x)
    assert (l + x).rcall(y) == 2 * y + x
    assert (x**l).rcall(2) == x**4
    # TODO UndefinedFunction does not subclass Expr
    #f = Function('f')
    #assert (2*f)(x) == 2*f(x)

    assert (Q.real & Q.positive).rcall(x) == Q.real(x) & Q.positive(x)
Exemple #18
0
def test_positive_definite():
    assert ask(Q.positive_definite(X), Q.positive_definite(X))
    assert ask(Q.positive_definite(X.T), Q.positive_definite(X)) is True
    assert ask(Q.positive_definite(X.I), Q.positive_definite(X)) is True
    assert ask(Q.positive_definite(Y)) is False
    assert ask(Q.positive_definite(X)) is None
    assert ask(Q.positive_definite(X**3), Q.positive_definite(X))
    assert ask(Q.positive_definite(X * Z * X),
               Q.positive_definite(X) & Q.positive_definite(Z)) is True
    assert ask(Q.positive_definite(X), Q.orthogonal(X))
    assert ask(Q.positive_definite(Y.T * X * Y),
               Q.positive_definite(X) & Q.fullrank(Y)) is True
    assert not ask(Q.positive_definite(Y.T * X * Y), Q.positive_definite(X))
    assert ask(Q.positive_definite(Identity(3))) is True
    assert ask(Q.positive_definite(ZeroMatrix(3, 3))) is False
    assert ask(Q.positive_definite(OneMatrix(1, 1))) is True
    assert ask(Q.positive_definite(OneMatrix(3, 3))) is False
    assert ask(Q.positive_definite(X + Z),
               Q.positive_definite(X) & Q.positive_definite(Z)) is True
    assert not ask(Q.positive_definite(-X), Q.positive_definite(X))
    assert ask(Q.positive(X[1, 1]), Q.positive_definite(X))
Exemple #19
0
def test_satask():
    # No relevant facts
    assert satask(Q.real(x), Q.real(x)) is True
    assert satask(Q.real(x), ~Q.real(x)) is False
    assert satask(Q.real(x)) is None

    assert satask(Q.real(x), Q.positive(x)) is True
    assert satask(Q.positive(x), Q.real(x)) is None
    assert satask(Q.real(x), ~Q.positive(x)) is None
    assert satask(Q.positive(x), ~Q.real(x)) is False

    raises(ValueError, lambda: satask(Q.real(x), Q.real(x) & ~Q.real(x)))

    with assuming(Q.positive(x)):
        assert satask(Q.real(x)) is True
        assert satask(~Q.positive(x)) is False
        raises(ValueError, lambda: satask(Q.real(x), ~Q.positive(x)))

    assert satask(Q.zero(x), Q.nonzero(x)) is False
    assert satask(Q.positive(x), Q.zero(x)) is False
    assert satask(Q.real(x), Q.zero(x)) is True
    assert satask(Q.zero(x), Q.zero(x*y)) is None
    assert satask(Q.zero(x*y), Q.zero(x))
Exemple #20
0
 def _contains(self, other):
     from sympy.assumptions.ask import ask, Q
     if ask(Q.positive(other)) and ask(Q.integer(other)):
         return True
     return False
Exemple #21
0
 def _contains(self, other):
     if ask(Q.positive(other)) and ask(Q.integer(other)):
         return True
     return False
Exemple #22
0
def test_arg():
    x = Symbol('x', complex = True)
    assert refine(arg(x), Q.positive(x)) == 0
    assert refine(arg(x), Q.negative(x)) == pi
def test_allargs():
    assert allargs(x, Q.zero(x), x * y) == And(Q.zero(x), Q.zero(y))
    assert allargs(x,
                   Q.positive(x) | Q.negative(x), x * y) == And(
                       Q.positive(x) | Q.negative(x),
                       Q.positive(y) | Q.negative(y))
def test_anyarg():
    assert anyarg(x, Q.zero(x), x * y) == Or(Q.zero(x), Q.zero(y))
    assert anyarg(x, Q.positive(x) & Q.negative(x), x*y) == \
        Or(Q.positive(x) & Q.negative(x), Q.positive(y) & Q.negative(y))
Exemple #25
0
 def _contains(self, other):
     from sympy.assumptions.ask import ask, Q
     if ask(Q.positive(other)) and ask(Q.integer(other)):
         return True
     return False
Exemple #26
0
def test_composite_predicates():
    pred = Q.integer | ~Q.positive
    assert type(pred(x)) is Or
    assert pred(x) == Q.integer(x) | ~Q.positive(x)
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),

    (Pow, CustomLambda(lambda power: Implies(Q.real(power.base) &
    Q.even(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonpositive(power)))),

    # This one can still be made easier to read. I think we need basic pattern
    # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))),
    (Integer, CheckIsPrime(Q.prime)),
    # Implicitly assumes Mul has more than one arg
    # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
    (Mul, Implies(AllArgs(Q.prime), ~Q.prime)),
    # More advanced prime assumptions will require inequalities, as 1 provides
    # a corner case.
    (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))),
    (Mul, Implies(AllArgs(Q.real), Q.real)),
    (Add, Implies(AllArgs(Q.real), Q.real)),
    # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
    (Mul, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational),
        Q.irrational))),
    (Add, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational),
        Q.irrational))),
    (Mul, Implies(AllArgs(Q.rational), Q.rational)),
Exemple #28
0
def test_pretty():
    assert pretty(Q.positive(x)) == "Q.positive(x)"
    assert pretty(set([Q.positive, Q.integer])) == "set([Q.integer, Q.positive])"
Exemple #29
0
         Q.nonnegative(power)))),
    (Pow,
     CustomLambda(lambda power: Implies(
         Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(
             power.exp), Q.nonnegative(power)))),
    (Pow,
     CustomLambda(lambda power: Implies(
         Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(
             power.exp), Q.nonpositive(power)))),

        # This one can still be made easier to read. I think we need basic pattern
        # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow,
     CustomLambda(
         lambda power: Equivalent(Q.zero(power),
                                  Q.zero(power.base) & Q.positive(power.exp)))
     ),
    (Integer, CheckIsPrime(Q.prime)),
        # Implicitly assumes Mul has more than one arg
        # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
    (Mul, Implies(AllArgs(Q.prime), ~Q.prime)),
        # More advanced prime assumptions will require inequalities, as 1 provides
        # a corner case.
    (Mul,
     Implies(AllArgs(Q.imaginary | Q.real),
             Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))),
    (Mul, Implies(AllArgs(Q.real), Q.real)),
    (Add, Implies(AllArgs(Q.real), Q.real)),
        # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
    (Mul,
     Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational),
def test_equal():
    """Test for equality"""
    x = symbols('x')
    assert Q.positive(x)  == Q.positive(x)
    assert Q.positive(x)  != ~Q.positive(x)
    assert ~Q.positive(x) == ~Q.positive(x)
def test_pretty():
    x = symbols('x')
    assert pretty(Q.positive(x)) == "Q.positive(x)"
Exemple #32
0
def register_fact(klass, fact, registry=fact_registry):
    registry[klass] |= set([fact])


for klass, fact in [
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),
    # This one can still be made easier to read. I think we need basic pattern
    # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))),
    (Integer, CheckIsPrime(Q.prime)),
    # Implicitly assumes Mul has more than one arg
    # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
    (Mul, Implies(AllArgs(Q.prime), ~Q.prime)),
    # More advanced prime assumptions will require inequalities, as 1 provides
    # a corner case.
    (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))),
    (Mul, Implies(AllArgs(Q.real), Q.real)),
    (Add, Implies(AllArgs(Q.real), Q.real)),
    #General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
    (Mul, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational),
        Q.irrational))),
    (Add, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational),
        Q.irrational))),
    (Mul, Implies(AllArgs(Q.rational), Q.rational)),
Exemple #33
0
def test_equal():
    """Test for equality"""
    assert Q.positive(x)  == Q.positive(x)
    assert Q.positive(x)  != ~Q.positive(x)
    assert ~Q.positive(x) == ~Q.positive(x)
def test_equal():
    """Test for equality"""
    x = symbols('x')
    assert Q.positive(x)  == Q.positive(x)
    assert Q.positive(x)  != ~Q.positive(x)
    assert ~Q.positive(x) == ~Q.positive(x)
Exemple #35
0
def test_pretty():
    assert pretty(Q.positive(x)) == "Q.positive(x)"
    assert pretty(set([Q.positive,
                       Q.integer])) == "set([Q.integer, Q.positive])"
Exemple #36
0
def test_equal():
    """Test for equality"""
    assert Q.positive(x) == Q.positive(x)
    assert Q.positive(x) != ~Q.positive(x)
    assert ~Q.positive(x) == ~Q.positive(x)
Exemple #37
0
def test_pretty():
    assert pretty(Q.positive(x)) == "Q.positive(x)"
Exemple #38
0
def test_composite_predicates():
    pred = Q.integer | ~Q.positive
    assert type(pred(x)) is Or
    assert pred(x) == Q.integer(x) | ~Q.positive(x)
Exemple #39
0
def test_pretty():
    assert pretty(Q.positive(x)) == "Q.positive(x)"