Exemple #1
0
def get_all_relevant_facts(proposition,
                           assumptions=True,
                           context=global_assumptions,
                           use_known_facts=True,
                           iterations=oo):
    # The relevant facts might introduce new keys, e.g., Q.zero(x*y) will
    # introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until
    # we stop getting new things. Hopefully this strategy won't lead to an
    # infinite loop in the future.
    i = 0
    relevant_facts = set()
    exprs = None
    all_exprs = set()
    while exprs != set():
        exprs, relevant_facts = get_relevant_facts(
            proposition,
            assumptions,
            context,
            exprs=exprs,
            relevant_facts=relevant_facts)
        all_exprs |= exprs
        i += 1
        if i >= iterations:
            break

    if use_known_facts:
        known_facts_CNF = CNF()
        known_facts_CNF.add_clauses(get_all_known_facts())
        kf_encoded = EncodedCNF()
        kf_encoded.from_cnf(known_facts_CNF)

        def translate_literal(lit, delta):
            if lit > 0:
                return lit + delta
            else:
                return lit - delta

        def translate_data(data, delta):
            return [{translate_literal(i, delta)
                     for i in clause} for clause in data]

        data = []
        symbols = []
        n_lit = len(kf_encoded.symbols)
        for i, expr in enumerate(all_exprs):
            symbols += [pred(expr) for pred in kf_encoded.symbols]
            data += translate_data(kf_encoded.data, i * n_lit)

        encoding = dict(list(zip(symbols, range(1, len(symbols) + 1))))
        ctx = EncodedCNF(data, encoding)
    else:
        ctx = EncodedCNF()

    for e in relevant_facts:
        ctx.add_prop(e)

    return ctx
Exemple #2
0
def minisat22_satisfiable(expr, all_models=False, minimal=False):

    if not isinstance(expr, EncodedCNF):
        exprs = EncodedCNF()
        exprs.add_prop(expr)
        expr = exprs

    from pysat.solvers import Minisat22

    # Return UNSAT when False (encoded as 0) is present in the CNF
    if {0} in expr.data:
        if all_models:
            return (f for f in [False])
        return False

    r = Minisat22(expr.data)

    if minimal:
        r.set_phases([-(i + 1) for i in range(r.nof_vars())])

    if not r.solve():
        return False

    if not all_models:
        return {expr.symbols[abs(lit) - 1]: lit > 0 for lit in r.get_model()}

    else:
        # Make solutions sympy compatible by creating a generator
        def _gen(results):
            satisfiable = False
            while results.solve():
                sol = results.get_model()
                yield {expr.symbols[abs(lit) - 1]: lit > 0 for lit in sol}
                if minimal:
                    results.add_clause([-i for i in sol if i > 0])
                else:
                    results.add_clause([-i for i in sol])
                satisfiable = True
            if not satisfiable:
                yield False
            raise StopIteration

        return _gen(r)
Exemple #3
0
def pycosat_satisfiable(expr, all_models=False):
    import pycosat

    if not isinstance(expr, EncodedCNF):
        exprs = EncodedCNF()
        exprs.add_prop(expr)
        expr = exprs

    # Return UNSAT when False (encoded as 0) is present in the CNF
    if {0} in expr.data:
        if all_models:
            return (f for f in [False])
        return False

    if not all_models:
        r = pycosat.solve(expr.data)
        result = r != "UNSAT"
        if not result:
            return result
        return dict((expr.symbols[abs(lit) - 1], lit > 0) for lit in r)
    else:
        r = pycosat.itersolve(expr.data)
        result = r != "UNSAT"
        if not result:
            return result

        # Make solutions sympy compatible by creating a generator
        def _gen(results):
            satisfiable = False
            try:
                while True:
                    sol = next(results)
                    yield dict(
                        (expr.symbols[abs(lit) - 1], lit > 0) for lit in sol)
                    satisfiable = True
            except StopIteration:
                if not satisfiable:
                    yield False

        return _gen(r)
Exemple #4
0
def dpll_satisfiable(expr, all_models=False):
    """
    Check satisfiability of a propositional sentence.
    It returns a model rather than True when it succeeds.
    Returns a generator of all models if all_models is True.

    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.algorithms.dpll2 import dpll_satisfiable
    >>> dpll_satisfiable(A & ~B)
    {A: True, B: False}
    >>> dpll_satisfiable(A & ~A)
    False

    """
    if not isinstance(expr, EncodedCNF):
        exprs = EncodedCNF()
        exprs.add_prop(expr)
        expr = exprs

    # Return UNSAT when False (encoded as 0) is present in the CNF
    if {0} in expr.data:
        if all_models:
            return (f for f in [False])
        return False

    solver = SATSolver(expr.data, expr.variables, set(), expr.symbols)
    models = solver._find_model()

    if all_models:
        return _all_models(models)

    try:
        return next(models)
    except StopIteration:
        return False