def get_all_relevant_facts( proposition, assumptions=True, context=global_assumptions, use_known_facts=True, iterations=oo, ): # The relevant facts might introduce new keys, e.g., Q.zero(x*y) will # introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until # we stop getting new things. Hopefully this strategy won't lead to an # infinite loop in the future. i = 0 relevant_facts = CNF() exprs = None all_exprs = set() while exprs != set(): exprs, relevant_facts = get_relevant_facts( proposition, assumptions, context, exprs=exprs, relevant_facts=relevant_facts, ) all_exprs |= exprs i += 1 if i >= iterations: break if use_known_facts: known_facts_CNF = CNF() known_facts_CNF.add_clauses(get_all_known_facts()) kf_encoded = EncodedCNF() kf_encoded.from_cnf(known_facts_CNF) def translate_literal(lit, delta): if lit > 0: return lit + delta else: return lit - delta def translate_data(data, delta): return [{translate_literal(i, delta) for i in clause} for clause in data] data = [] symbols = [] n_lit = len(kf_encoded.symbols) for i, expr in enumerate(all_exprs): symbols += [pred(expr) for pred in kf_encoded.symbols] data += translate_data(kf_encoded.data, i * n_lit) encoding = dict(list(zip(symbols, range(1, len(symbols) + 1)))) ctx = EncodedCNF(data, encoding) else: ctx = EncodedCNF() ctx.add_from_cnf(relevant_facts) return ctx
def ask(proposition, assumptions=True, context=global_assumptions): """ Function to evaluate the proposition with assumptions. **Syntax** * ask(proposition) Evaluate the *proposition* in global assumption context. * ask(proposition, assumptions) Evaluate the *proposition* with respect to *assumptions* in global assumption context. This function evaluates the proposition to ``True`` or ``False`` if the truth value can be determined. If not, it returns ``None``. It should be discerned from :func:`~.refine()` which, when applied to a proposition, simplifies the argument to symbolic ``Boolean`` instead of Python built-in ``True``, ``False`` or ``None``. Parameters ========== proposition : any boolean expression Proposition which will be evaluated to boolean value. If this is not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``. assumptions : any boolean expression, optional Local assumptions to evaluate the *proposition*. context : AssumptionsContext, optional Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable. Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False If the truth value cannot be determined, ``None`` will be returned. >>> print(ask(Q.odd(3*x))) # cannot determine unless we know x None **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), x > 0) It is however a work in progress. See Also ======== sympy.assumptions.refine.refine : Simplification using assumptions. Proposition is not reduced to ``None`` if the truth value cannot be determined. """ from sympy.assumptions.satask import satask proposition = sympify(proposition) assumptions = sympify(assumptions) if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind: raise TypeError("proposition must be a valid logical expression") if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind: raise TypeError("assumptions must be a valid logical expression") binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le} if isinstance(proposition, AppliedPredicate): key, args = proposition.function, proposition.arguments elif proposition.func in binrelpreds: key, args = binrelpreds[proposition.func], proposition.args else: key, args = Q.is_true, (proposition, ) # convert local and global assumptions to CNF assump = CNF.from_prop(assumptions) assump.extend(context) # extract the relevant facts from assumptions with respect to args local_facts = _extract_all_facts(assump, args) known_facts_cnf = get_all_known_facts() known_facts_dict = get_known_facts_dict() # convert default facts and assumed facts to encoded CNF enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) # check the satisfiability of given assumptions if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) if local_facts.clauses: # quick exit if the prerequisite of proposition is not true # e.g. proposition = Q.odd(x), assumptions = ~Q.integer(x) if len(local_facts.clauses) == 1: cl, = local_facts.clauses if len(cl) == 1: f, = cl if f.is_Not and f.arg in known_facts_dict.get(key, []): return False for clause in local_facts.clauses: if len(clause) == 1: f, = clause fdict = known_facts_dict.get(f.arg, None) if not f.is_Not else None if fdict is None: pass elif key in fdict: # quick exit if proposition is directly satisfied by assumption # e.g. proposition = Q.integer(x), assumptions = Q.odd(x) return True elif Not(key) in fdict: # quick exit if proposition is directly rejected by assumption # example might be proposition = Q.even(x), assumptions = Q.odd(x) # but known_facts_dict does not have such information yet and # such example is computed by satask. return False # direct resolution method, no logic res = key(*args)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res
def ask(proposition, assumptions=True, context=global_assumptions): """ Method for inferring properties about objects. **Syntax** * ask(proposition) * ask(proposition, assumptions) where ``proposition`` is any boolean expression Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), Q.is_true(x > 0)) It is however a work in progress. """ from sympy.assumptions.satask import satask if not isinstance(proposition, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("proposition must be a valid logical expression") if not isinstance(assumptions, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("assumptions must be a valid logical expression") if isinstance(proposition, AppliedPredicate): key, expr = proposition.func, sympify(proposition.arg) else: key, expr = Q.is_true, sympify(proposition) assump = CNF.from_prop(assumptions) assump.extend(context) local_facts = _extract_all_facts(assump, expr) known_facts_cnf = get_all_known_facts() known_facts_dict = get_known_facts_dict() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) if local_facts.clauses: local_facts_ = CNF.CNF_to_cnf(local_facts) # See if there's a straight-forward conclusion we can make for the inference if local_facts_.is_Atom: if key in known_facts_dict[local_facts_]: return True if Not(key) in known_facts_dict[local_facts_]: return False elif (isinstance(local_facts_, And) and all(k in known_facts_dict for k in local_facts_.args)): for assum in local_facts_.args: if assum.is_Atom: if key in known_facts_dict[assum]: return True if Not(key) in known_facts_dict[assum]: return False elif isinstance(assum, Not) and assum.args[0].is_Atom: if key in known_facts_dict[assum]: return False if Not(key) in known_facts_dict[assum]: return True elif (isinstance(key, Predicate) and isinstance(local_facts_, Not) and local_facts_.args[0].is_Atom): if local_facts_.args[0] in known_facts_dict[key]: return False # direct resolution method, no logic res = key(expr)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res
def ask(proposition, assumptions=True, context=global_assumptions): """ Function to evaluate the proposition with assumptions. **Syntax** * ask(proposition) Evaluate the *proposition* in global assumption context. * ask(proposition, assumptions) Evaluate the *proposition* with respect to *assumptions* in global assumption context. This function evaluates the proposition to ``True`` or ``False`` if the truth value can be determined. If not, it returns ``None``. It should be discerned from :func:`~.refine()` which does not reduce the expression to ``None``. Parameters ========== proposition : any boolean expression Proposition which will be evaluated to boolean value. If this is not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``. assumptions : any boolean expression, optional Local assumptions to evaluate the *proposition*. context : AssumptionsContext, optional Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable. Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False If the truth value cannot be determined, ``None`` will be returned. >>> print(ask(Q.odd(3*x))) # cannot determine unless we know x None **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), Q.is_true(x > 0)) It is however a work in progress. See Also ======== sympy.assumptions.refine.refine : Simplification using assumptions. Proposition is not reduced to ``None`` if the truth value cannot be determined. """ from sympy.assumptions.satask import satask proposition = sympify(proposition) assumptions = sympify(assumptions) if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind: raise TypeError("proposition must be a valid logical expression") if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind: raise TypeError("assumptions must be a valid logical expression") if isinstance(proposition, AppliedPredicate): key, args = proposition.function, proposition.arguments else: key, args = Q.is_true, (proposition, ) assump = CNF.from_prop(assumptions) assump.extend(context) local_facts = _extract_all_facts(assump, args) known_facts_cnf = get_all_known_facts() known_facts_dict = get_known_facts_dict() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) if local_facts.clauses: if len(local_facts.clauses) == 1: cl, = local_facts.clauses f, = cl if len(cl) == 1 else [None] if f and f.is_Not and f.arg in known_facts_dict.get(key, []): return False for clause in local_facts.clauses: if len(clause) == 1: f, = clause fdict = known_facts_dict.get(f.arg, None) if not f.is_Not else None if fdict and key in fdict: return True if fdict and Not(key) in known_facts_dict[f.arg]: return False # direct resolution method, no logic res = key(*args)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res
def ask(proposition, assumptions=True, context=global_assumptions): """ Method for inferring properties about objects. **Syntax** * ask(proposition) * ask(proposition, assumptions) where ``proposition`` is any boolean expression Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), Q.is_true(x > 0)) It is however a work in progress. """ from sympy.assumptions.satask import satask if not isinstance(proposition, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("proposition must be a valid logical expression") if not isinstance(assumptions, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("assumptions must be a valid logical expression") if isinstance(proposition, AppliedPredicate): key, expr = proposition.func, sympify(proposition.arg) else: key, expr = Q.is_true, sympify(proposition) assump = CNF.from_prop(assumptions) assump.extend(context) local_facts = _extract_all_facts(assump, expr) known_facts_cnf = get_all_known_facts() known_facts_dict = get_known_facts_dict() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) if local_facts.clauses: if len(local_facts.clauses) == 1: cl, = local_facts.clauses f, = cl if len(cl) == 1 else [None] if f and f.is_Not and f.arg in known_facts_dict.get(key, []): return False for clause in local_facts.clauses: if len(clause) == 1: f, = clause fdict = known_facts_dict.get(f.arg, None) if not f.is_Not else None if fdict and key in fdict: return True if fdict and Not(key) in known_facts_dict[f.arg]: return False # direct resolution method, no logic res = key(expr)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res
def get_all_relevant_facts(proposition, assumptions, context, use_known_facts=True, iterations=oo): """ Extract all relevant facts from *proposition* and *assumptions*. This function extracts the facts by recursively calling ``get_relevant_facts()``. Extracted facts are converted to ``EncodedCNF`` and returned. Parameters ========== proposition : sympy.assumptions.cnf.CNF CNF generated from proposition expression assumptions : sympy.assumptions.cnf.CNF CNF generated from assumption expression context : sympy.assumptions.cnf.CNF CNF generated from assumptions context use_known_facts : bool, optional If ``True``, facts from ``sympy.assumptions.ask_generated`` module are encoded as well. iterations : int, optional Number of times that relevant facts are recursively extracted. Default is infinite times until no new fact is found. Returns ======= sympy.assumptions.cnf.EncodedCNF Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.satask import get_all_relevant_facts >>> from sympy.abc import x, y >>> props = CNF.from_prop(Q.nonzero(x*y)) >>> assump = CNF.from_prop(Q.nonzero(x)) >>> context = CNF.from_prop(Q.nonzero(y)) >>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP <sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0> """ # The relevant facts might introduce new keys, e.g., Q.zero(x*y) will # introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until # we stop getting new things. Hopefully this strategy won't lead to an # infinite loop in the future. i = 0 relevant_facts = CNF() exprs = None all_exprs = set() while True: if i == 0: exprs = extract_predargs(proposition, assumptions, context) all_exprs |= exprs exprs, relevant_facts = get_relevant_facts(exprs, relevant_facts) i += 1 if i >= iterations: break if not exprs: break if use_known_facts: known_facts_CNF = CNF() known_facts_CNF.add_clauses(get_all_known_facts()) kf_encoded = EncodedCNF() kf_encoded.from_cnf(known_facts_CNF) def translate_literal(lit, delta): if lit > 0: return lit + delta else: return lit - delta def translate_data(data, delta): return [{translate_literal(i, delta) for i in clause} for clause in data] data = [] symbols = [] n_lit = len(kf_encoded.symbols) for i, expr in enumerate(all_exprs): symbols += [pred(expr) for pred in kf_encoded.symbols] data += translate_data(kf_encoded.data, i * n_lit) encoding = dict(list(zip(symbols, range(1, len(symbols) + 1)))) ctx = EncodedCNF(data, encoding) else: ctx = EncodedCNF() ctx.add_from_cnf(relevant_facts) return ctx
def ask(proposition, assumptions=True, context=global_assumptions): """ Function to evaluate the proposition with assumptions. Explanation =========== This function evaluates the proposition to ``True`` or ``False`` if the truth value can be determined. If not, it returns ``None``. It should be discerned from :func:`~.refine()` which, when applied to a proposition, simplifies the argument to symbolic ``Boolean`` instead of Python built-in ``True``, ``False`` or ``None``. **Syntax** * ask(proposition) Evaluate the *proposition* in global assumption context. * ask(proposition, assumptions) Evaluate the *proposition* with respect to *assumptions* in global assumption context. Parameters ========== proposition : Any boolean expression. Proposition which will be evaluated to boolean value. If this is not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``. assumptions : Any boolean expression, optional. Local assumptions to evaluate the *proposition*. context : AssumptionsContext, optional. Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable. Returns ======= ``True``, ``False``, or ``None`` Raises ====== TypeError : *proposition* or *assumptions* is not valid logical expression. ValueError : assumptions are inconsistent. Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False If the truth value cannot be determined, ``None`` will be returned. >>> print(ask(Q.odd(3*x))) # cannot determine unless we know x None ``ValueError`` is raised if assumptions are inconsistent. >>> ask(Q.integer(x), Q.even(x) & Q.odd(x)) Traceback (most recent call last): ... ValueError: inconsistent assumptions Q.even(x) & Q.odd(x) Notes ===== Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), x > 0) It is however a work in progress. See Also ======== sympy.assumptions.refine.refine : Simplification using assumptions. Proposition is not reduced to ``None`` if the truth value cannot be determined. """ from sympy.assumptions.satask import satask proposition = sympify(proposition) assumptions = sympify(assumptions) if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind: raise TypeError("proposition must be a valid logical expression") if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind: raise TypeError("assumptions must be a valid logical expression") binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le} if isinstance(proposition, AppliedPredicate): key, args = proposition.function, proposition.arguments elif proposition.func in binrelpreds: key, args = binrelpreds[proposition.func], proposition.args else: key, args = Q.is_true, (proposition, ) # convert local and global assumptions to CNF assump_cnf = CNF.from_prop(assumptions) assump_cnf.extend(context) # extract the relevant facts from assumptions with respect to args local_facts = _extract_all_facts(assump_cnf, args) # convert default facts and assumed facts to encoded CNF known_facts_cnf = get_all_known_facts() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) # check the satisfiability of given assumptions if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) # quick computation for single fact res = _ask_single_fact(key, local_facts) if res is not None: return res # direct resolution method, no logic res = key(*args)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res