Esempio n. 1
0
def test_translate_override_bounds():
    # Translate a paper that has overridden bounds. The bounds update as well.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4))
    assert_equal(
        paper.bounds(),
        Bounds(3, 4, 4, 5)
    )

    # When bounds=False is passed, then the bounds do not update.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4), bounds=False)
    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))

    # This also works if the bounds are not overridden.
    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))

    p.paper.translate((3, 4), bounds=False)

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    assert_equal(p.last_path().bounds(), Bounds(3, 4, 4, 5))
Esempio n. 2
0
def test_center_on_xy():
    p = Pen()
    p.stroke_mode(2.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(4)

    p.move_to((2, 1))
    p.circle(1)

    p.paper.center_on_x(0)

    assert_equal(
        p.paper.svg_elements(0),
        [
            '<path d="M-2,-1 L-2,1 L2,1 L2,-1 L-2,-1 z" fill="#000000" />',
            '<path d="M2,-1 A 2,2 0 0 0 -2,-1 A 2,2 0 0 0 2,-1 z" fill="#000000" />',
        ]
    )

    p.paper.center_on_y(0)

    assert_equal(
        p.paper.svg_elements(1),
        [
            (
                '<path d="M-2.0,0.0 L-2.0,2.0 L2.0,2.0 L2.0,0.0 L-2.0,0.0 z" '
                'fill="#000000" />'
            ),
            (
                '<path d="M2.0,0.0 A 2.0,2.0 0 0 0 -2.0,0.0 '
                'A 2.0,2.0 0 0 0 2.0,0.0 z" fill="#000000" />'
            ),
        ]
    )
Esempio n. 3
0
def test_center_on_xy():
    p = Pen()
    p.stroke_mode(2.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(4)

    p.move_to((2, 1))
    p.circle(1)

    p.paper.center_on_x(0)

    assert_equal(p.paper.svg_elements(0), [
        '<path d="M-2,-1 L-2,1 L2,1 L2,-1 L-2,-1 z" fill="#000000" />',
        '<path d="M2,-1 A 2,2 0 0 0 -2,-1 A 2,2 0 0 0 2,-1 z" fill="#000000" />',
    ])

    p.paper.center_on_y(0)

    assert_equal(p.paper.svg_elements(1), [
        ('<path d="M-2.0,0.0 L-2.0,2.0 L2.0,2.0 L2.0,0.0 L-2.0,0.0 z" '
         'fill="#000000" />'),
        ('<path d="M2.0,0.0 A 2.0,2.0 0 0 0 -2.0,0.0 '
         'A 2.0,2.0 0 0 0 2.0,0.0 z" fill="#000000" />'),
    ])
Esempio n. 4
0
def test_override_bounds_copy():
    # Get the bounds of a Paper, modify them, then set them back changed.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)

    bounds = paper.bounds()
    bounds.right = 5

    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))
    paper.override_bounds(bounds)
    assert_equal(paper.bounds(), Bounds(0, 0, 5, 1))

    # This works on non-overridden Papers as well.
    paper = Paper()

    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)

    bounds = p.paper.bounds()
    bounds.right = 5

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    p.paper.override_bounds(bounds)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 5, 1))
Esempio n. 5
0
def test_translate():
    p = Pen()
    p.stroke_mode(1.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(3)
    p.arc_left(90, 3)
    p.turn_left(90)
    p.move_forward(3)
    p.fill_mode()
    p.circle(0.5)
    p.move_forward(3)
    p.square(1)

    p.paper.translate((1, 1))

    assert_equal(p.paper.svg_elements(1), [
        ('<path d="M1.0,-1.5 L1.0,-0.5 L4.0,-0.5 A 3.5,3.5 0 0 0 '
         '7.5,-4.0 L6.5,-4.0 A 2.5,2.5 0 0 1 4.0,-1.5 L1.0,-1.5 z" '
         'fill="#000000" />'),
        ('<path d="M4.5,-4.0 A 0.5,0.5 0 0 0 3.5,-4.0 '
         'A 0.5,0.5 0 0 0 4.5,-4.0 z" fill="#000000" />'),
        ('<path d="M0.5,-3.5 L1.5,-3.5 L1.5,-4.5 L0.5,-4.5 L0.5,-3.5 z" '
         'fill="#000000" />'),
    ])
Esempio n. 6
0
def test_override_bounds_copy():
    # Get the bounds of a Paper, modify them, then set them back changed.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)

    bounds = paper.bounds()
    bounds.right = 5

    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))
    paper.override_bounds(bounds)
    assert_equal(paper.bounds(), Bounds(0, 0, 5, 1))

    # This works on non-overridden Papers as well.
    paper = Paper()

    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)

    bounds = p.paper.bounds()
    bounds.right = 5

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    p.paper.override_bounds(bounds)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 5, 1))
Esempio n. 7
0
def test_translate():
    p = Pen()
    p.stroke_mode(1.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(3)
    p.arc_left(90, 3)
    p.turn_left(90)
    p.move_forward(3)
    p.fill_mode()
    p.circle(0.5)
    p.move_forward(3)
    p.square(1)

    p.paper.translate((1, 1))

    assert_equal(
        p.paper.svg_elements(1),
        [
            (
                '<path d="M1.0,-1.5 L1.0,-0.5 L4.0,-0.5 A 3.5,3.5 0 0 0 '
                '7.5,-4.0 L6.5,-4.0 A 2.5,2.5 0 0 1 4.0,-1.5 L1.0,-1.5 z" '
                'fill="#000000" />'
            ),
            (
                '<path d="M4.5,-4.0 A 0.5,0.5 0 0 0 3.5,-4.0 '
                'A 0.5,0.5 0 0 0 4.5,-4.0 z" fill="#000000" />'
            ),
            (
                '<path d="M0.5,-3.5 L1.5,-3.5 L1.5,-4.5 L0.5,-4.5 L0.5,-3.5 z" '
                'fill="#000000" />'
            ),
        ]
    )
def test_circle_bounds():
    p = Pen()
    p.fill_mode()
    p.move_to((1, 1))
    p.circle(1.5)

    assert_equal(
        p.paper.bounds(),
        Bounds(-0.5, -0.5, 2.5, 2.5)
    )
Esempio n. 9
0
    def draw():
        p = Pen()
        p.fill_mode()
        p.move_to((0, 0))
        p.circle(2)
        paper1 = p.paper

        p = Pen()
        p.fill_mode()
        p.move_to((3, 0))
        p.circle(1)
        paper2 = p.paper

        return paper1, paper2
Esempio n. 10
0
    def draw():
        p = Pen()
        p.fill_mode()
        p.move_to((0, 0))
        p.circle(2)
        paper1 = p.paper

        p = Pen()
        p.fill_mode()
        p.move_to((3, 0))
        p.circle(1)
        paper2 = p.paper

        return paper1, paper2
Esempio n. 11
0
def test_translate_override_bounds():
    # Translate a paper that has overridden bounds. The bounds update as well.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4))
    assert_equal(paper.bounds(), Bounds(3, 4, 4, 5))

    # When bounds=False is passed, then the bounds do not update.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4), bounds=False)
    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))

    # This also works if the bounds are not overridden.
    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))

    p.paper.translate((3, 4), bounds=False)

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    assert_equal(p.last_path().bounds(), Bounds(3, 4, 4, 5))
Esempio n. 12
0
def draw():

    p = Pen()

    center_radius = 3.0
    start_radius = radius = 100
    start_width = width = 3.0
    ratio = (1 / 2) ** (1/5)

    series = []
    while radius > center_radius / sqrt2:
        series.append((radius, width))
        radius *= ratio
        width *= ratio

    p.move_to((0, 0))
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.circle(radius)

    # Parametric conic spirals.
    p.move_to((0, 0))

    def spiral(theta):
        b = (1 / 2) ** (-2 / math.pi)
        r = start_radius * (b ** (-theta))
        x = r * math.cos(theta)
        y = r * math.sin(theta)
        z = start_radius - r
        return (x, y, z)

    def spiral_top1(t):
        x, y, z = spiral(t)
        return x, y

    def spiral_top2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return x, y

    # Top spirals.
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_top1, 0, 4*math.pi, .1)
    p.parametric(spiral_top2, 0, 4*math.pi, .1)

    # Blank out the bottom triangle.
    p.fill_mode('white')
    p.move_to((0, 0))
    s = start_radius + start_width
    p.line_to((-s, -s))
    p.line_to((+s, -s))
    p.line_to((0, 0))

    # Horizontal lines for the bottom triangle.
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.move_to((-radius, -radius))
        p.line_to(
            (+radius, -radius),
            start_slant=45,
            end_slant=-45,
        )

    # Front spirals.
    def spiral_front1(t):
        x, y, z = spiral(t)
        return (x, z - start_radius)

    def spiral_front2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return (x, z - start_radius)

    p.move_to((0, 0))
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_front1, 0, math.pi, .1)
    p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
    p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)

    # Fill in the center.
    p.move_to((0, 0))
    p.fill_mode('black')
    p.circle(center_radius)

    return p.paper
Esempio n. 13
0
    return numpy.column_stack((t, c, s))


def draw_parametric_func(pen, f, t_range):
    txy_values = f(t_range)
    t, x, y = txy_values[0]
    pen.move_to((x, y))
    for t, x, y in txy_values[1:]:
        pen.line_to((x, y))
        mod = t % 1.0
        if float_equal(mod, 0) or float_equal(mod, 1.0):
            pen.circle(0.01)


step = 0.01
t_range = numpy.arange(-4 + step, 4, step)

pen = Pen()
pen.stroke_mode(0.01, 'green')
draw_parametric_func(pen, euler_spiral_parametric, t_range)

pen.fill_mode('green')
pen.move_to((0.5, 0.5))
pen.circle(0.01)
pen.move_to((-0.5, -0.5))
pen.circle(0.01)

print(pen.paper.format_svg(5, resolution=500))

# TODO: euler spiral solver to end at a particular point. newton-raphson method for root finding convergence?
Esempio n. 14
0
from canoepaddle import Pen

p = Pen()

p.fill_mode('green')

p.move_to((0, 0))
p.turn_to(0)

radius = 0.01

for _ in range(200):
    p.circle(radius)
    p.turn_left(20)
    new_radius = radius * 1.05
    p.move_forward(radius + new_radius)
    radius = new_radius

print(p.paper.format_svg())
Esempio n. 15
0
from canoepaddle import Pen

p = Pen()


def arm(inner=1.5, outer=3):
    p.stroke_mode(1.0)
    p.move_forward(inner)
    p.turn_right(90)
    p.arc_right(200, radius=outer)
    p.fill_mode()
    p.circle(0.5)  # Makeshift round endcaps.

orientation = 70

p.stroke_mode(1.0)
p.move_to((0, 0))
p.circle(1.5)

p.move_to((0, 0))
p.turn_to(orientation)
arm()

p.move_to((0, 0))
p.turn_to(180 + orientation)
arm()

print(p.paper.format_svg())
Esempio n. 16
0
    return numpy.column_stack((t, c, s))


def draw_parametric_func(pen, f, t_range):
    txy_values = f(t_range)
    t, x, y = txy_values[0]
    pen.move_to((x, y))
    for t, x, y in txy_values[1:]:
        pen.line_to((x, y))
        mod = t % 1.0
        if float_equal(mod, 0) or float_equal(mod, 1.0):
            pen.circle(0.01)


step = 0.01
t_range = numpy.arange(-4 + step, 4, step)

pen = Pen()
pen.stroke_mode(0.01, 'green')
draw_parametric_func(pen, euler_spiral_parametric, t_range)

pen.fill_mode('green')
pen.move_to((0.5, 0.5))
pen.circle(0.01)
pen.move_to((-0.5, -0.5))
pen.circle(0.01)

print(pen.paper.format_svg(5, resolution=500))

#TODO: euler spiral solver to end at a particular point. newton-raphson method for root finding convergence?
Esempio n. 17
0
from canoepaddle import Pen

p = Pen()


def arm(inner=1.5, outer=3):
    p.stroke_mode(1.0)
    p.move_forward(inner)
    p.turn_right(90)
    p.arc_right(200, radius=outer)
    p.fill_mode()
    p.circle(0.5)  # Makeshift round endcaps.


orientation = 70

p.stroke_mode(1.0)
p.move_to((0, 0))
p.circle(1.5)

p.move_to((0, 0))
p.turn_to(orientation)
arm()

p.move_to((0, 0))
p.turn_to(180 + orientation)
arm()

print(p.paper.format_svg())
Esempio n. 18
0
def draw():

    p = Pen()

    center_radius = 3.0
    start_radius = radius = 100
    start_width = width = 3.0
    ratio = (1 / 2) ** (1/5)


    series = []
    while radius > center_radius / sqrt2:
        series.append((radius, width))
        radius *= ratio
        width *= ratio

    p.move_to((0, 0))
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.circle(radius)

    # Parametric conic spirals.
    p.move_to((0, 0))

    def spiral(theta):
        b = (1 / 2) ** (-2 / math.pi)
        r = start_radius * (b ** (-theta))
        x = r * math.cos(theta)
        y = r * math.sin(theta)
        z = start_radius - r
        return (x, y, z)

    def spiral_top1(t):
        x, y, z = spiral(t)
        return x, y

    def spiral_top2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return x, y

    # Top spirals.
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_top1, 0, 4*math.pi, .1)
    p.parametric(spiral_top2, 0, 4*math.pi, .1)

    # Blank out the bottom triangle.
    p.fill_mode('white')
    p.move_to((0, 0))
    s = start_radius + start_width
    p.line_to((-s, -s))
    p.line_to((+s, -s))
    p.line_to((0, 0))

    # Horizontal lines for the bottom triangle.
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.move_to((-radius, -radius))
        p.line_to(
            (+radius, -radius),
            start_slant=45,
            end_slant=-45,
        )

    # Front spirals.
    def spiral_front1(t):
        x, y, z = spiral(t)
        return (x, z - start_radius)

    def spiral_front2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return (x, z - start_radius)

    p.move_to((0, 0))
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_front1, 0, math.pi, .1)
    p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
    p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)

    # Fill in the center.
    p.move_to((0, 0))
    p.fill_mode('black')
    p.circle(center_radius)

    return p.paper