Esempio n. 1
0
def test_override_bounds_copy():
    # Get the bounds of a Paper, modify them, then set them back changed.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)

    bounds = paper.bounds()
    bounds.right = 5

    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))
    paper.override_bounds(bounds)
    assert_equal(paper.bounds(), Bounds(0, 0, 5, 1))

    # This works on non-overridden Papers as well.
    paper = Paper()

    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)

    bounds = p.paper.bounds()
    bounds.right = 5

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    p.paper.override_bounds(bounds)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 5, 1))
Esempio n. 2
0
def draw_letter(
    letter,
    mode,
    fixed_width=None,
    show_template=False,
    show_bounds=False,
    fuse=True,
):
    """
    Draw the given letter and return a Paper.

    The letter is located centered on x=0, and with y=0 as the
    character baseline.

    If `fixed_width` is specified, use that for the paper width.
    """
    if DEBUG_OUTPUT:
        print(str(letter), file=sys.stderr)

    try:
        character_paper = letter.draw_character(mode, fuse=fuse)
    except Exception:
        if DEBUG_OUTPUT:
            traceback.print_exc()
            # Return an error pattern.
            pen = Pen()
            pen.fill_mode()
            pen.square(1)
            character_paper = pen.paper
        else:
            raise

    if fixed_width is not None:
        bounds = character_paper.bounds()
        bounds.left = -fixed_width / 2
        bounds.right = +fixed_width / 2
        character_paper.override_bounds(bounds)

    template_paper = Paper()
    if show_template:
        template_paper = draw_template_path()
    else:
        template_paper = Paper()

    letter_paper = Paper()
    letter_paper.merge(template_paper)
    letter_paper.merge(character_paper)

    # Set proper bounds for typesetting. Use the character bounds as our basis
    # so the template doesn't increase the size.
    bounds = character_paper.bounds()
    letter_paper.override_bounds(bounds)

    if show_bounds:
        pen = Pen()
        pen.fill_mode('#aaa')
        bounds.draw(pen)
        letter_paper.merge_under(pen.paper)

    return letter_paper
Esempio n. 3
0
def test_override_bounds_copy():
    # Get the bounds of a Paper, modify them, then set them back changed.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)

    bounds = paper.bounds()
    bounds.right = 5

    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))
    paper.override_bounds(bounds)
    assert_equal(paper.bounds(), Bounds(0, 0, 5, 1))

    # This works on non-overridden Papers as well.
    paper = Paper()

    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)

    bounds = p.paper.bounds()
    bounds.right = 5

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    p.paper.override_bounds(bounds)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 5, 1))
Esempio n. 4
0
def test_paper_merge():
    # Merge two drawings together.
    paper = Paper()

    p = Pen()
    p.fill_mode()
    p.turn_to(0)
    p.arc_left(180, 5)
    p.paper.center_on_x(0)
    paper.merge(p.paper)

    p = Pen()
    p.fill_mode()
    p.turn_to(180)
    p.arc_left(180, 5)
    p.paper.center_on_x(0)
    paper.merge(p.paper)

    assert_path_data(
        paper, 1,
        [
            'M-2.5,0.0 A 5.0,5.0 0 0 0 -2.5,-10.0',
            'M2.5,0.0 A 5.0,5.0 0 0 0 2.5,10.0',
        ]
    )
Esempio n. 5
0
def test_translate():
    p = Pen()
    p.stroke_mode(1.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(3)
    p.arc_left(90, 3)
    p.turn_left(90)
    p.move_forward(3)
    p.fill_mode()
    p.circle(0.5)
    p.move_forward(3)
    p.square(1)

    p.paper.translate((1, 1))

    assert_equal(
        p.paper.svg_elements(1),
        [
            (
                '<path d="M1.0,-1.5 L1.0,-0.5 L4.0,-0.5 A 3.5,3.5 0 0 0 '
                '7.5,-4.0 L6.5,-4.0 A 2.5,2.5 0 0 1 4.0,-1.5 L1.0,-1.5 z" '
                'fill="#000000" />'
            ),
            (
                '<path d="M4.5,-4.0 A 0.5,0.5 0 0 0 3.5,-4.0 '
                'A 0.5,0.5 0 0 0 4.5,-4.0 z" fill="#000000" />'
            ),
            (
                '<path d="M0.5,-3.5 L1.5,-3.5 L1.5,-4.5 L0.5,-4.5 L0.5,-3.5 z" '
                'fill="#000000" />'
            ),
        ]
    )
def test_join_paths_reference():
    # Join paths in such a way that a single path object must be
    # used as both the "left" and "right" path in different joins.
    p = Pen()
    p.fill_mode()

    p.move_to((3, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((5, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M5,0 L4,0 L3,0 L2,0 L1,0 L0,0'
    )
Esempio n. 7
0
def test_translate_override_bounds():
    # Translate a paper that has overridden bounds. The bounds update as well.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4))
    assert_equal(
        paper.bounds(),
        Bounds(3, 4, 4, 5)
    )

    # When bounds=False is passed, then the bounds do not update.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4), bounds=False)
    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))

    # This also works if the bounds are not overridden.
    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))

    p.paper.translate((3, 4), bounds=False)

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    assert_equal(p.last_path().bounds(), Bounds(3, 4, 4, 5))
Esempio n. 8
0
def test_copy_log():
    p1 = Pen()
    p1.fill_mode()
    p1.move_to((0, 0))
    p1.turn_to(0)
    p1.line_forward(5)
    p2 = p1.copy(paper=True)
    p2.line_forward(5)

    assert_equal(
        p1.log(),
        [
            'fill_mode()', 'move_to((0, 0))', 'turn_to(0)', 'line_forward(5)',
        ]
    )
    assert_path_data(
        p1, 0,
        'M0,0 L5,0'
    )
    assert_equal(
        p2.log(),
        [
            'fill_mode()', 'move_to((0, 0))', 'turn_to(0)', 'line_forward(5)',
            'line_forward(5)',
        ]
    )
    assert_path_data(
        p2, 0,
        'M0,0 L5,0 L10,0'
    )
Esempio n. 9
0
def test_translate():
    p = Pen()
    p.stroke_mode(1.0)

    p.move_to((0, 0))
    p.turn_to(0)
    p.line_forward(3)
    p.arc_left(90, 3)
    p.turn_left(90)
    p.move_forward(3)
    p.fill_mode()
    p.circle(0.5)
    p.move_forward(3)
    p.square(1)

    p.paper.translate((1, 1))

    assert_equal(p.paper.svg_elements(1), [
        ('<path d="M1.0,-1.5 L1.0,-0.5 L4.0,-0.5 A 3.5,3.5 0 0 0 '
         '7.5,-4.0 L6.5,-4.0 A 2.5,2.5 0 0 1 4.0,-1.5 L1.0,-1.5 z" '
         'fill="#000000" />'),
        ('<path d="M4.5,-4.0 A 0.5,0.5 0 0 0 3.5,-4.0 '
         'A 0.5,0.5 0 0 0 4.5,-4.0 z" fill="#000000" />'),
        ('<path d="M0.5,-3.5 L1.5,-3.5 L1.5,-4.5 L0.5,-4.5 L0.5,-3.5 z" '
         'fill="#000000" />'),
    ])
Esempio n. 10
0
def test_copy_arc_to():
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(0)
    p.arc_to((5, 5))
    p = p.copy(paper=True)

    assert_path_data(p, 0, 'M0,0 A 5,5 0 0 0 5,-5')
Esempio n. 11
0
def test_draw_bounds():
    p = Pen()
    p.fill_mode()
    Bounds(-2, -3, 1, 2).draw(p)

    assert_path_data(
        p, 0,
        'M-2,3 L1,3 L1,-2 L-2,-2 L-2,3 z'
    )
Esempio n. 12
0
def test_circle_bounds():
    p = Pen()
    p.fill_mode()
    p.move_to((1, 1))
    p.circle(1.5)

    assert_equal(
        p.paper.bounds(),
        Bounds(-0.5, -0.5, 2.5, 2.5)
    )
Esempio n. 13
0
def test_square_bounds():
    p = Pen()
    p.fill_mode()
    p.move_to((1, 1))
    p.square(4)

    assert_equal(
        p.paper.bounds(),
        Bounds(-1, -1, 3, 3)
    )
Esempio n. 14
0
def test_copy_no_paper():
    p1 = Pen()
    p1.fill_mode()
    p1.move_to((0, 0))
    p1.turn_to(0)
    p1.line_forward(5)
    p2 = p1.copy()
    p2.line_forward(5)

    assert_path_data(p1, 0, 'M0,0 L5,0')
    assert_path_data(p2, 0, 'M5,0 L10,0')
Esempio n. 15
0
def test_copy_arc_to():
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(0)
    p.arc_to((5, 5))
    p = p.copy(paper=True)

    assert_path_data(
        p, 0,
        'M0,0 A 5,5 0 0 0 5,-5'
    )
Esempio n. 16
0
def test_two_pens_one_paper():
    paper = Paper()
    p1 = Pen(paper)
    p2 = Pen(paper)
    p1.fill_mode()
    p2.fill_mode()
    p1.move_to((0, 0))
    p2.move_to((0, 0))
    p1.line_to((0, 1))
    p2.line_to((2, 0))

    assert_path_data(paper, 0, ['M0,0 L0,-1', 'M0,0 L2,0'])
Esempio n. 17
0
def test_copy_arc():
    p1 = Pen()
    p1.fill_mode()

    p1.move_to((0, 0))
    p1.turn_to(0)
    p1.arc_left(90, radius=5)

    p2 = p1.copy(paper=True)
    p2.arc_left(90, radius=5)

    assert_path_data(p1, 0, 'M0,0 A 5,5 0 0 0 5,-5')
    assert_path_data(p2, 0, 'M0,0 A 5,5 0 0 0 5,-5 A 5,5 0 0 0 0,-10')
Esempio n. 18
0
    def draw():
        p = Pen()
        p.fill_mode()
        p.move_to((0, 0))
        p.circle(2)
        paper1 = p.paper

        p = Pen()
        p.fill_mode()
        p.move_to((3, 0))
        p.circle(1)
        paper2 = p.paper

        return paper1, paper2
Esempio n. 19
0
    def draw():
        p = Pen()
        p.fill_mode()
        p.move_to((0, 0))
        p.circle(2)
        paper1 = p.paper

        p = Pen()
        p.fill_mode()
        p.move_to((3, 0))
        p.circle(1)
        paper2 = p.paper

        return paper1, paper2
Esempio n. 20
0
def test_two_pens_one_paper():
    paper = Paper()
    p1 = Pen(paper)
    p2 = Pen(paper)
    p1.fill_mode()
    p2.fill_mode()
    p1.move_to((0, 0))
    p2.move_to((0, 0))
    p1.line_to((0, 1))
    p2.line_to((2, 0))

    assert_path_data(
        paper, 0,
        ['M0,0 L0,-1', 'M0,0 L2,0']
    )
Esempio n. 21
0
def test_copy_no_paper():
    p1 = Pen()
    p1.fill_mode()
    p1.move_to((0, 0))
    p1.turn_to(0)
    p1.line_forward(5)
    p2 = p1.copy()
    p2.line_forward(5)

    assert_path_data(
        p1, 0,
        'M0,0 L5,0'
    )
    assert_path_data(
        p2, 0,
        'M5,0 L10,0'
    )
Esempio n. 22
0
def test_copy_arc():
    p1 = Pen()
    p1.fill_mode()

    p1.move_to((0, 0))
    p1.turn_to(0)
    p1.arc_left(90, radius=5)

    p2 = p1.copy(paper=True)
    p2.arc_left(90, radius=5)

    assert_path_data(
        p1, 0,
        'M0,0 A 5,5 0 0 0 5,-5'
    )
    assert_path_data(
        p2, 0,
        'M0,0 A 5,5 0 0 0 5,-5 A 5,5 0 0 0 0,-10'
    )
Esempio n. 23
0
def test_paper_merge():
    # Merge two drawings together.
    paper = Paper()

    p = Pen()
    p.fill_mode()
    p.turn_to(0)
    p.arc_left(180, 5)
    p.paper.center_on_x(0)
    paper.merge(p.paper)

    p = Pen()
    p.fill_mode()
    p.turn_to(180)
    p.arc_left(180, 5)
    p.paper.center_on_x(0)
    paper.merge(p.paper)

    assert_path_data(paper, 1, [
        'M-2.5,0.0 A 5.0,5.0 0 0 0 -2.5,-10.0',
        'M2.5,0.0 A 5.0,5.0 0 0 0 2.5,10.0',
    ])
Esempio n. 24
0
def test_copy_log():
    p1 = Pen()
    p1.fill_mode()
    p1.move_to((0, 0))
    p1.turn_to(0)
    p1.line_forward(5)
    p2 = p1.copy(paper=True)
    p2.line_forward(5)

    assert_equal(p1.log(), [
        'fill_mode()',
        'move_to((0, 0))',
        'turn_to(0)',
        'line_forward(5)',
    ])
    assert_path_data(p1, 0, 'M0,0 L5,0')
    assert_equal(p2.log(), [
        'fill_mode()',
        'move_to((0, 0))',
        'turn_to(0)',
        'line_forward(5)',
        'line_forward(5)',
    ])
    assert_path_data(p2, 0, 'M0,0 L5,0 L10,0')
Esempio n. 25
0
def test_join_paths_reference():
    # Join paths in such a way that a single path object must be
    # used as both the "left" and "right" path in different joins.
    p = Pen()
    p.fill_mode()

    p.move_to((3, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((5, 0))

    p.paper.join_paths()

    assert_path_data(p, 0, 'M5,0 L4,0 L3,0 L2,0 L1,0 L0,0')
Esempio n. 26
0
def test_line_segment_bounds():
    # Fill mode segment.
    p = Pen()
    p.fill_mode()
    p.move_to((1, 0))
    p.line_to((2, 3))

    line = p.last_segment()
    assert_equal(
        line.bounds(),
        Bounds(1, 0, 2, 3)
    )

    # Stroke mode segment.
    p = Pen()
    p.stroke_mode(sqrt2)
    p.move_to((0, 0))
    p.line_to((5, 5))

    line = p.last_segment()
    assert_equal(
        line.bounds(),
        Bounds(-0.5, -0.5, 5.5, 5.5)
    )
Esempio n. 27
0
def test_translate_override_bounds():
    # Translate a paper that has overridden bounds. The bounds update as well.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4))
    assert_equal(paper.bounds(), Bounds(3, 4, 4, 5))

    # When bounds=False is passed, then the bounds do not update.
    paper = Paper()
    paper.override_bounds(0, 0, 1, 1)
    paper.translate((3, 4), bounds=False)
    assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))

    # This also works if the bounds are not overridden.
    p = Pen()
    p.fill_mode()
    p.move_to((0.5, 0.5))
    p.circle(0.5)
    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))

    p.paper.translate((3, 4), bounds=False)

    assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
    assert_equal(p.last_path().bounds(), Bounds(3, 4, 4, 5))
def test_join_paths_loop():
    # Already looped paths should not be affected by join_paths.
    p = Pen()
    p.fill_mode()

    p.move_to((0, 0))
    p.square(2)

    target = 'M-1,1 L1,1 L1,-1 L-1,-1 L-1,1 z'
    assert_path_data(p, 0, target)
    p.paper.join_paths()
    assert_path_data(p, 0, target)

    # Loops can also be created by joining paths.
    p = Pen()
    p.fill_mode()

    p.move_to((0, 0))
    p.line_to((1, 0))
    p.line_to((1, 1))
    p.break_stroke()
    p.line_to((0, 1))
    p.line_to((0, 0))

    p.paper.join_paths()
    assert_path_data(
        p, 0,
        'M1,-1 L1,0 L0,0 L0,-1 L1,-1 z'
    )

    # The joins can get complicated.
    p = Pen()
    p.fill_mode()

    p.move_to((3, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 2))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((2, 2))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M1,0 L2,-2 L4,0 L3,0 L2,0 L1,0 z',
    )
Esempio n. 29
0
def test_join_paths_loop():
    # Already looped paths should not be affected by join_paths.
    p = Pen()
    p.fill_mode()

    p.move_to((0, 0))
    p.square(2)

    target = 'M-1,1 L1,1 L1,-1 L-1,-1 L-1,1 z'
    assert_path_data(p, 0, target)
    p.paper.join_paths()
    assert_path_data(p, 0, target)

    # Loops can also be created by joining paths.
    p = Pen()
    p.fill_mode()

    p.move_to((0, 0))
    p.line_to((1, 0))
    p.line_to((1, 1))
    p.break_stroke()
    p.line_to((0, 1))
    p.line_to((0, 0))

    p.paper.join_paths()
    assert_path_data(p, 0, 'M1,-1 L1,0 L0,0 L0,-1 L1,-1 z')

    # The joins can get complicated.
    p = Pen()
    p.fill_mode()

    p.move_to((3, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 2))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((4, 0))
    p.line_to((2, 2))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M1,0 L2,-2 L4,0 L3,0 L2,0 L1,0 z',
    )
from canoepaddle import Pen

p = Pen()

p.fill_mode('#84f')


def petal(start_radius, distance, heading):
    radius = start_radius
    p.move_to((0, 0))
    p.turn_to(heading)
    p.move_forward(distance)
    for _ in range(50):
        p.circle(radius)
        p.turn_left(12)
        new_radius = radius / 1.1
        p.move_forward(radius + new_radius)
        radius = new_radius

num_petals = 8
heading = 0
for _ in range(num_petals):
    petal(0.7, 2.0, heading)
    heading += (360 / num_petals)

print(p.paper.format_svg())
from canoepaddle import Pen

p = Pen()

p.fill_mode('#84f')


def petal(start_radius, distance, heading):
    radius = start_radius
    p.move_to((0, 0))
    p.turn_to(heading)
    p.move_forward(distance)
    for _ in range(50):
        p.circle(radius)
        p.turn_left(12)
        new_radius = radius / 1.1
        p.move_forward(radius + new_radius)
        radius = new_radius


num_petals = 8
heading = 0
for _ in range(num_petals):
    petal(0.7, 2.0, heading)
    heading += (360 / num_petals)

print(p.paper.format_svg())
Esempio n. 32
0
def draw():

    p = Pen()

    center_radius = 3.0
    start_radius = radius = 100
    start_width = width = 3.0
    ratio = (1 / 2) ** (1/5)

    series = []
    while radius > center_radius / sqrt2:
        series.append((radius, width))
        radius *= ratio
        width *= ratio

    p.move_to((0, 0))
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.circle(radius)

    # Parametric conic spirals.
    p.move_to((0, 0))

    def spiral(theta):
        b = (1 / 2) ** (-2 / math.pi)
        r = start_radius * (b ** (-theta))
        x = r * math.cos(theta)
        y = r * math.sin(theta)
        z = start_radius - r
        return (x, y, z)

    def spiral_top1(t):
        x, y, z = spiral(t)
        return x, y

    def spiral_top2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return x, y

    # Top spirals.
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_top1, 0, 4*math.pi, .1)
    p.parametric(spiral_top2, 0, 4*math.pi, .1)

    # Blank out the bottom triangle.
    p.fill_mode('white')
    p.move_to((0, 0))
    s = start_radius + start_width
    p.line_to((-s, -s))
    p.line_to((+s, -s))
    p.line_to((0, 0))

    # Horizontal lines for the bottom triangle.
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.move_to((-radius, -radius))
        p.line_to(
            (+radius, -radius),
            start_slant=45,
            end_slant=-45,
        )

    # Front spirals.
    def spiral_front1(t):
        x, y, z = spiral(t)
        return (x, z - start_radius)

    def spiral_front2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return (x, z - start_radius)

    p.move_to((0, 0))
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_front1, 0, math.pi, .1)
    p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
    p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)

    # Fill in the center.
    p.move_to((0, 0))
    p.fill_mode('black')
    p.circle(center_radius)

    return p.paper
Esempio n. 33
0
def draw():

    p = Pen()

    center_radius = 3.0
    start_radius = radius = 100
    start_width = width = 3.0
    ratio = (1 / 2) ** (1/5)


    series = []
    while radius > center_radius / sqrt2:
        series.append((radius, width))
        radius *= ratio
        width *= ratio

    p.move_to((0, 0))
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.circle(radius)

    # Parametric conic spirals.
    p.move_to((0, 0))

    def spiral(theta):
        b = (1 / 2) ** (-2 / math.pi)
        r = start_radius * (b ** (-theta))
        x = r * math.cos(theta)
        y = r * math.sin(theta)
        z = start_radius - r
        return (x, y, z)

    def spiral_top1(t):
        x, y, z = spiral(t)
        return x, y

    def spiral_top2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return x, y

    # Top spirals.
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_top1, 0, 4*math.pi, .1)
    p.parametric(spiral_top2, 0, 4*math.pi, .1)

    # Blank out the bottom triangle.
    p.fill_mode('white')
    p.move_to((0, 0))
    s = start_radius + start_width
    p.line_to((-s, -s))
    p.line_to((+s, -s))
    p.line_to((0, 0))

    # Horizontal lines for the bottom triangle.
    for radius, width in series:
        p.stroke_mode(width, 'black')
        p.move_to((-radius, -radius))
        p.line_to(
            (+radius, -radius),
            start_slant=45,
            end_slant=-45,
        )

    # Front spirals.
    def spiral_front1(t):
        x, y, z = spiral(t)
        return (x, z - start_radius)

    def spiral_front2(t):
        x, y, z = spiral(t)
        x = -x
        y = -y
        return (x, z - start_radius)

    p.move_to((0, 0))
    p.stroke_mode(start_width, 'black')
    p.parametric(spiral_front1, 0, math.pi, .1)
    p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
    p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)

    # Fill in the center.
    p.move_to((0, 0))
    p.fill_mode('black')
    p.circle(center_radius)

    return p.paper
Esempio n. 34
0
def test_arc_segment_bounds():
    # Arc which occupies its entire circle.
    p = Pen()
    p.fill_mode()
    p.move_to((1, 0))
    p.turn_to(90)
    p.arc_left(359, 1)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(-1, -1, 1, 1)
    )

    # Arc which pushes the boundary only with the endpoints.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(30)
    p.move_forward(1)
    p.turn_left(90)
    p.arc_left(30, center=(0, 0))

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(0.5, 0.5, sqrt3 / 2, sqrt3 / 2)
    )

    # Arc which pushes the boundary with the middle in one spot.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(-45)
    p.move_forward(1)
    p.turn_left(90)
    p.arc_left(90, center=(0, 0))

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(sqrt2 / 2, -sqrt2 / 2, 1, sqrt2 / 2)
    )

    # Arc which goes right.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(45)
    p.arc_right(90, 3)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(0, 0, 3 * sqrt2, 3 - 1.5 * sqrt2)
    )

    # Arc which pushes the boundary with the middle in two spots.
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(-45)
    p.move_forward(1)
    p.turn_left(90)
    p.arc_left(180, center=(0, 0))

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(-sqrt2 / 2, -sqrt2 / 2, 1, 1)
    )

    # Half circle, right side
    p = Pen()
    p.fill_mode()
    p.move_to((0, 0))
    p.turn_to(0)
    p.arc_right(180, 5)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(0, -10, 5, 0)
    )

    # Thick circle,
    p = Pen()
    p.stroke_mode(1.0)
    p.move_to((0, 0))
    p.turn_to(0)
    p.move_forward(5)
    p.turn_left(90)
    p.arc_left(180, 5, start_slant=45)

    arc = p.last_segment()
    assert_equal(
        arc.bounds(),
        Bounds(-5.5, -0.5314980314970469, 5.5, 5.5)
    )
Esempio n. 35
0
    return numpy.column_stack((t, c, s))


def draw_parametric_func(pen, f, t_range):
    txy_values = f(t_range)
    t, x, y = txy_values[0]
    pen.move_to((x, y))
    for t, x, y in txy_values[1:]:
        pen.line_to((x, y))
        mod = t % 1.0
        if float_equal(mod, 0) or float_equal(mod, 1.0):
            pen.circle(0.01)


step = 0.01
t_range = numpy.arange(-4 + step, 4, step)

pen = Pen()
pen.stroke_mode(0.01, 'green')
draw_parametric_func(pen, euler_spiral_parametric, t_range)

pen.fill_mode('green')
pen.move_to((0.5, 0.5))
pen.circle(0.01)
pen.move_to((-0.5, -0.5))
pen.circle(0.01)

print(pen.paper.format_svg(5, resolution=500))

# TODO: euler spiral solver to end at a particular point. newton-raphson method for root finding convergence?
def test_join_paths():
    # Join two paths starting from the same point.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M0,0 L1,0 L2,0',
    )

    # Join two paths that end in the same point.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((1, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M0,0 L1,0 L2,0',
    )

    # Join three paths going left in normal order.
    p = Pen()
    p.fill_mode()

    p.move_to((3, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((0, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M3,0 L2,0 L1,0 L0,0',
    )

    # Join three paths going right in normal order.
    p = Pen()
    p.fill_mode()

    p.move_to((0, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((3, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M0,0 L1,0 L2,0 L3,0',
    )

    # Join three paths going left in reverse order.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((3, 0))
    p.line_to((2, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M0,0 L1,0 L2,0 L3,0',
    )

    # Join three paths going right in reverse order.
    p = Pen()
    p.fill_mode()

    p.move_to((2, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((0, 0))
    p.line_to((1, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M3,0 L2,0 L1,0 L0,0',
    )

    # Join multiple paths together.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((1, 1))
    p.break_stroke()
    p.move_to((1, 1))
    p.line_to((2, 1))
    p.break_stroke()
    p.move_to((2, 2))
    p.line_to((2, 1))
    p.break_stroke()

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M0,0 L1,0 L1,-1 L2,-1 L2,-2'
    )

    # Join three paths so one path must reverse multiple times.
    p = Pen()
    p.fill_mode()

    p.move_to((2, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((0, 0))

    p.paper.join_paths()

    assert_path_data(
        p, 0,
        'M3,0 L2,0 L1,0 L0,0',
    )
Esempio n. 37
0
from canoepaddle import Pen

p = Pen()

p.fill_mode('green')

p.move_to((0, 0))
p.turn_to(0)

radius = 0.01

for _ in range(200):
    p.circle(radius)
    p.turn_left(20)
    new_radius = radius * 1.05
    p.move_forward(radius + new_radius)
    radius = new_radius

print(p.paper.format_svg())
Esempio n. 38
0
    return numpy.column_stack((t, c, s))


def draw_parametric_func(pen, f, t_range):
    txy_values = f(t_range)
    t, x, y = txy_values[0]
    pen.move_to((x, y))
    for t, x, y in txy_values[1:]:
        pen.line_to((x, y))
        mod = t % 1.0
        if float_equal(mod, 0) or float_equal(mod, 1.0):
            pen.circle(0.01)


step = 0.01
t_range = numpy.arange(-4 + step, 4, step)

pen = Pen()
pen.stroke_mode(0.01, 'green')
draw_parametric_func(pen, euler_spiral_parametric, t_range)

pen.fill_mode('green')
pen.move_to((0.5, 0.5))
pen.circle(0.01)
pen.move_to((-0.5, -0.5))
pen.circle(0.01)

print(pen.paper.format_svg(5, resolution=500))

#TODO: euler spiral solver to end at a particular point. newton-raphson method for root finding convergence?
Esempio n. 39
0
def test_join_paths():
    # Join two paths starting from the same point.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M0,0 L1,0 L2,0',
    )

    # Join two paths that end in the same point.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((1, 0))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M0,0 L1,0 L2,0',
    )

    # Join three paths going left in normal order.
    p = Pen()
    p.fill_mode()

    p.move_to((3, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((0, 0))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M3,0 L2,0 L1,0 L0,0',
    )

    # Join three paths going right in normal order.
    p = Pen()
    p.fill_mode()

    p.move_to((0, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((3, 0))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M0,0 L1,0 L2,0 L3,0',
    )

    # Join three paths going left in reverse order.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((3, 0))
    p.line_to((2, 0))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M0,0 L1,0 L2,0 L3,0',
    )

    # Join three paths going right in reverse order.
    p = Pen()
    p.fill_mode()

    p.move_to((2, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((2, 0))
    p.break_stroke()
    p.move_to((0, 0))
    p.line_to((1, 0))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M3,0 L2,0 L1,0 L0,0',
    )

    # Join multiple paths together.
    p = Pen()
    p.fill_mode()

    p.move_to((1, 0))
    p.line_to((0, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((1, 1))
    p.break_stroke()
    p.move_to((1, 1))
    p.line_to((2, 1))
    p.break_stroke()
    p.move_to((2, 2))
    p.line_to((2, 1))
    p.break_stroke()

    p.paper.join_paths()

    assert_path_data(p, 0, 'M0,0 L1,0 L1,-1 L2,-1 L2,-2')

    # Join three paths so one path must reverse multiple times.
    p = Pen()
    p.fill_mode()

    p.move_to((2, 0))
    p.line_to((1, 0))
    p.break_stroke()
    p.move_to((2, 0))
    p.line_to((3, 0))
    p.break_stroke()
    p.move_to((1, 0))
    p.line_to((0, 0))

    p.paper.join_paths()

    assert_path_data(
        p,
        0,
        'M3,0 L2,0 L1,0 L0,0',
    )