Esempio n. 1
0
def ncstation2cov(save_coverage=True):
    # Open the netcdf dataset
    ds = Dataset('test_data/usgs.nc')
    # Itemize the variable names that we want to include in the coverage
    var_names = ['time','lat','lon','z','streamflow','water_temperature',]

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a ParameterContext object for each of the variables in the dataset and add them to the ParameterDictionaryl
    for v in var_names:
        var = ds.variables[v]

        pcontext = ParameterContext(v, param_type=QuantityType(var.dtype.char))
        if 'units' in var.ncattrs():
            pcontext.uom = var.getncattr('units')
        if 'long_name' in var.ncattrs():
            pcontext.description = var.getncattr('long_name')
        if '_FillValue' in var.ncattrs():
            pcontext.fill_value = var.getncattr('_FillValue')

        # Set the reference_frame for the coordinate parameters
        if v == 'time':
            pcontext.reference_frame = AxisTypeEnum.TIME
        elif v == 'lat':
            pcontext.reference_frame = AxisTypeEnum.LAT
        elif v == 'lon':
            pcontext.reference_frame = AxisTypeEnum.LON
        elif v == 'z':
            pcontext.reference_frame = AxisTypeEnum.HEIGHT

        pdict.add_context(pcontext)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS.standard_temporal()
    scrs = CRS.lat_lon_height()

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 1d spatial topology (station/trajectory)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('sample station coverage_model', pdict, sdom, tdom)

    # Insert the timesteps (automatically expands other arrays)
    tvar=ds.variables['time']
    scov.insert_timesteps(tvar.size)

    # Add data to the parameters - NOT using setters at this point, direct assignment to arrays
    for v in var_names:
        var = ds.variables[v]
        var.set_auto_maskandscale(False)

        # TODO: Sort out how to leave the coordinates sparse internally and only broadcast during read
        scov.range_value[v][:] = var[:]

    if save_coverage:
        SimplexCoverage.save(scov, 'test_data/usgs.cov')

    return scov
Esempio n. 2
0
def oneparamcov(save_coverage=False, in_memory=False):
    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('int64')))
    t_ctxt.reference_frame = AxisTypeEnum.TIME
    t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(t_ctxt)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 0d spatial topology (station/trajectory)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', pdict, tdom, sdom, in_memory)

    # Insert some timesteps (automatically expands other arrays)
    scov.insert_timesteps(10)

    # Add data for the parameter
    scov.set_parameter_values('time', value=np.arange(10))

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/sample.cov')

    return scov
Esempio n. 3
0
def test_plot_1():
    from coverage_model.test.examples import SimplexCoverage
    import matplotlib.pyplot as plt

    cov=SimplexCoverage.load('test_data/usgs.cov')

    log.debug('Plot the \'water_temperature\' and \'streamflow\' for all times')
    wtemp = cov.get_parameter_values('water_temperature')
    wtemp_pc = cov.get_parameter_context('water_temperature')
    sflow = cov.get_parameter_values('streamflow')
    sflow_pc = cov.get_parameter_context('streamflow')
    times = cov.get_parameter_values('time')
    time_pc = cov.get_parameter_context('time')

    fig = plt.figure()
    ax1 = fig.add_subplot(2,1,1)
    ax1.plot(times,wtemp)
    ax1.set_xlabel('{0} ({1})'.format(time_pc.name, time_pc.uom))
    ax1.set_ylabel('{0} ({1})'.format(wtemp_pc.name, wtemp_pc.uom))

    ax2 = fig.add_subplot(2,1,2)
    ax2.plot(times,sflow)
    ax2.set_xlabel('{0} ({1})'.format(time_pc.name, time_pc.uom))
    ax2.set_ylabel('{0} ({1})'.format(sflow_pc.name, sflow_pc.uom))

    plt.show(0)
Esempio n. 4
0
def methodized_read():
    from coverage_model.test.examples import SimplexCoverage
    import numpy as np
    import os

    log.debug('============ Station ============')
    pth = 'test_data/usgs.cov'
    if not os.path.exists(pth):
        raise SystemError('Cannot proceed, \'{0}\' file must exist.  Run the \'ncstation2cov()\' function to generate the file.'.format(pth))

    cov=SimplexCoverage.load(pth)
    ra=np.zeros([0])
    log.debug('\n>> All data for first timestep\n')
    log.debug(cov.get_parameter_values('water_temperature',0,None,ra))
    log.debug('\n>> All data\n')
    log.debug(cov.get_parameter_values('water_temperature',None,None,None))
    log.debug('\n>> All data for second, fifth and sixth timesteps\n')
    log.debug(cov.get_parameter_values('water_temperature',[[1,4,5]],None,None))
    log.debug('\n>> First datapoint (in x) for every 5th timestep\n')
    log.debug(cov.get_parameter_values('water_temperature',slice(0,None,5),0,None))
    log.debug('\n>> First datapoint for first 10 timesteps, passing DOA objects\n')
    tdoa = DomainOfApplication(slice(0,10))
    sdoa = DomainOfApplication(0)
    log.debug(cov.get_parameter_values('water_temperature',tdoa,sdoa,None))

    log.debug('\n============ Grid ============')
    pth = 'test_data/ncom.cov'
    if not os.path.exists(pth):
        raise SystemError('Cannot proceed, \'{0}\' file must exist.  Run the \'ncstation2cov()\' function to generate the file.'.format(pth))

    cov=SimplexCoverage.load(pth)
    ra=np.zeros([0])
    log.debug('\n>> All data for first timestep\n')
    log.debug(cov.get_parameter_values('water_temp',0,None,ra))
    log.debug('\n>> All data\n')
    log.debug(cov.get_parameter_values('water_temp',None,None,None))
    log.debug('\n>> All data for first, fourth, and fifth timesteps\n')
    log.debug(cov.get_parameter_values('water_temp',[[0,3,4]],None,None))
    log.debug('\n>> Data from z=0, y=10, x=10 for every 2nd timestep\n')
    log.debug(cov.get_parameter_values('water_temp',slice(0,None,2),[0,10,10],None))
    log.debug('\n>> Data from z=0-10, y=10, x=10 for the first 2 timesteps, passing DOA objects\n')
    tdoa = DomainOfApplication(slice(0,2))
    sdoa = DomainOfApplication([slice(0,10),10,10])
    log.debug(cov.get_parameter_values('water_temp',tdoa,sdoa,None))
Esempio n. 5
0
def ncgrid2cov(save_coverage=True):
    # Open the netcdf dataset
    ds = Dataset('test_data/ncom.nc')
    # Itemize the variable names that we want to include in the coverage
    var_names = ['time','lat','lon','depth','water_u','water_v','salinity','water_temp',]

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a ParameterContext object for each of the variables in the dataset and add them to the ParameterDictionary
    for v in var_names:
        var = ds.variables[v]

        pcontext = ParameterContext(v, param_type=QuantityType(value_encoding=ds.variables[v].dtype.char))
        if 'units' in var.ncattrs():
            pcontext.uom = var.getncattr('units')
        if 'long_name' in var.ncattrs():
            pcontext.description = var.getncattr('long_name')
        if '_FillValue' in var.ncattrs():
            pcontext.fill_value = var.getncattr('_FillValue')

        # Set the reference_frame for the coordinate parameters
        if v == 'time':
            pcontext.reference_frame = AxisTypeEnum.TIME
        elif v == 'lat':
            pcontext.reference_frame = AxisTypeEnum.LAT
        elif v == 'lon':
            pcontext.reference_frame = AxisTypeEnum.LON
        elif v == 'depth':
            pcontext.reference_frame = AxisTypeEnum.HEIGHT

        pdict.add_context(pcontext)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT, AxisTypeEnum.HEIGHT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal'), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [34,57,89]), scrs, MutabilityEnum.IMMUTABLE) # 3d spatial topology (grid)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('sample grid coverage_model', pdict, sdom, tdom)

    # Insert the timesteps (automatically expands other arrays)
    tvar=ds.variables['time']
    scov.insert_timesteps(tvar.size)

    # Add data to the parameters - NOT using setters at this point, direct assignment to arrays
    for v in var_names:
        var = ds.variables[v]
        var.set_auto_maskandscale(False)
        arr = var[:]
        # TODO: Sort out how to leave these sparse internally and only broadcast during read
        if v == 'depth':
            z,_,_ = my_meshgrid(arr,np.zeros([57]),np.zeros([89]),indexing='ij',sparse=True)
            scov.range_value[v][:] = z
        elif v == 'lat':
            _,y,_ = my_meshgrid(np.zeros([34]),arr,np.zeros([89]),indexing='ij',sparse=True)
            scov.range_value[v][:] = y
        elif v == 'lon':
            _,_,x = my_meshgrid(np.zeros([34]),np.zeros([57]),arr,indexing='ij',sparse=True)
            scov.range_value[v][:] = x
        else:
            scov.range_value[v][:] = var[:]

    if save_coverage:
        SimplexCoverage.save(scov, 'test_data/ncom.cov')

    return scov
Esempio n. 6
0
def samplecov(save_coverage=True):
    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('int64')))
    t_ctxt.reference_frame = AxisTypeEnum.TIME
    t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(t_ctxt)

    lat_ctxt = ParameterContext('lat', param_type=QuantityType(value_encoding=np.dtype('float32')))
    lat_ctxt.reference_frame = AxisTypeEnum.LAT
    lat_ctxt.uom = 'degree_north'
    pdict.add_context(lat_ctxt)

    lon_ctxt = ParameterContext('lon', param_type=QuantityType(value_encoding=np.dtype('float32')))
    lon_ctxt.reference_frame = AxisTypeEnum.LON
    lon_ctxt.uom = 'degree_east'
    pdict.add_context(lon_ctxt)

    temp_ctxt = ParameterContext('temp', param_type=QuantityType(value_encoding=np.dtype('float32')))
    temp_ctxt.uom = 'degree_Celsius'
    pdict.add_context(temp_ctxt)

    cond_ctxt = ParameterContext('conductivity', param_type=QuantityType(value_encoding=np.dtype('float32')))
    cond_ctxt.uom = 'unknown'
    pdict.add_context(cond_ctxt)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 1d spatial topology (station/trajectory)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('sample coverage_model', pdict, sdom, tdom)

    # Insert some timesteps (automatically expands other arrays)
    scov.insert_timesteps(10)

    # Add data for each parameter
    scov.set_parameter_values('time', value=np.arange(10))
    scov.set_parameter_values('lat', value=45)
    scov.set_parameter_values('lon', value=-71)
    # make a random sample of 10 values between 23 and 26
    # Ref: http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample
    # --> To sample  multiply the output of random_sample by (b-a) and add a
    tvals=np.random.random_sample(10)*(26-23)+23
    scov.set_parameter_values('temp', value=tvals)
    scov.set_parameter_values('conductivity', value=np.random.random_sample(10)*(30-20)+20)

    if save_coverage:
        SimplexCoverage.save(scov, 'test_data/sample.cov')

    return scov
Esempio n. 7
0
def nospatialcov(save_coverage=False, in_memory=False):
    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    t_ctxt = ParameterContext('quantity_time', param_type=QuantityType(value_encoding=np.dtype('int64')), variability=VariabilityEnum.TEMPORAL)
    t_ctxt.reference_frame = AxisTypeEnum.TIME
    t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(t_ctxt)

    quant_ctxt = ParameterContext('quantity', param_type=QuantityType(value_encoding=np.dtype('float32')))
    quant_ctxt.long_name = 'example of a parameter of type QuantityType'
    quant_ctxt.uom = 'degree_Celsius'
    pdict.add_context(quant_ctxt)

    const_ctxt = ParameterContext('constant', param_type=ConstantType())
    const_ctxt.long_name = 'example of a parameter of type ConstantType'
    pdict.add_context(const_ctxt)

    arr_ctxt = ParameterContext('array', param_type=ArrayType())
    arr_ctxt.long_name = 'example of a parameter of type ArrayType with base_type ndarray (resolves to \'object\')'
    pdict.add_context(arr_ctxt)

    arr2_ctxt = ParameterContext('array2', param_type=ArrayType())
    arr2_ctxt.long_name = 'example of a parameter of type ArrayType with base_type object'
    pdict.add_context(arr2_ctxt)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', pdict, temporal_domain=tdom, in_memory_storage=in_memory)

    # Insert some timesteps (automatically expands other arrays)
    scov.insert_timesteps(10)

    # Add data for each parameter
    scov.set_parameter_values('quantity_time', value=np.arange(10))
    scov.set_parameter_values('quantity', value=np.random.random_sample(10)*(26-23)+23)
    scov.set_parameter_values('constant', value=20)

    arrval = []
    arr2val = []
    for x in xrange(scov.num_timesteps): # One value (which IS an array) for each member of the domain
        arrval.append(np.random.bytes(np.random.randint(1,20)))
        arr2val.append(np.random.random_sample(np.random.randint(1,10)))
    scov.set_parameter_values('array', value=arrval)
    scov.set_parameter_values('array2', value=arr2val)

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/ptypes.cov')

    return scov
Esempio n. 8
0
def ptypescov(save_coverage=False, in_memory=False):
    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 0d spatial topology (station/trajectory)

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    quant_t_ctxt = ParameterContext('quantity_time', param_type=QuantityType(value_encoding=np.dtype('int64')), variability=VariabilityEnum.TEMPORAL)
    quant_t_ctxt.reference_frame = AxisTypeEnum.TIME
    quant_t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(quant_t_ctxt)

    cnst_int_ctxt = ParameterContext('const_int', param_type=ConstantType(QuantityType(value_encoding=np.dtype('int32'))), variability=VariabilityEnum.NONE)
    cnst_int_ctxt.long_name = 'example of a parameter of type ConstantType, base_type int32'
    cnst_int_ctxt.reference_frame = AxisTypeEnum.LAT
    cnst_int_ctxt.uom = 'degree_north'
    pdict.add_context(cnst_int_ctxt)

    cnst_flt_ctxt = ParameterContext('const_float', param_type=ConstantType(), variability=VariabilityEnum.NONE)
    cnst_flt_ctxt.long_name = 'example of a parameter of type QuantityType, base_type float (default)'
    cnst_flt_ctxt.reference_frame = AxisTypeEnum.LON
    cnst_flt_ctxt.uom = 'degree_east'
    pdict.add_context(cnst_flt_ctxt)

#    func_ctxt = ParameterContext('function', param_type=FunctionType(QuantityType(value_encoding=np.dtype('float32'))))
#    func_ctxt.long_name = 'example of a parameter of type FunctionType'
#    pdict.add_context(func_ctxt)

    quant_ctxt = ParameterContext('quantity', param_type=QuantityType(value_encoding=np.dtype('float32')))
    quant_ctxt.long_name = 'example of a parameter of type QuantityType'
    quant_ctxt.uom = 'degree_Celsius'
    pdict.add_context(quant_ctxt)

    arr_ctxt = ParameterContext('array', param_type=ArrayType())
    arr_ctxt.long_name = 'example of a parameter of type ArrayType, will be filled with variable-length \'byte-string\' data'
    pdict.add_context(arr_ctxt)

    rec_ctxt = ParameterContext('record', param_type=RecordType())
    rec_ctxt.long_name = 'example of a parameter of type RecordType, will be filled with dictionaries'
    pdict.add_context(rec_ctxt)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', pdict, tdom, sdom, in_memory)

    # Insert some timesteps (automatically expands other arrays)
    scov.insert_timesteps(10)

    # Add data for each parameter
    scov.set_parameter_values('quantity_time', value=np.arange(10))
    scov.set_parameter_values('const_int', value=45.32) # Set a constant directly, with incorrect data type (fixed under the hood)
    scov.set_parameter_values('const_float', value=make_range_expr(-71.11)) # Set with a properly formed constant expression
    scov.set_parameter_values('quantity', value=np.random.random_sample(10)*(26-23)+23)

#    # Setting three range expressions such that indices 0-2 == 10, 3-7 == 15 and >=8 == 20
#    scov.set_parameter_values('function', value=make_range_expr(10, 0, 3, min_incl=True, max_incl=False, else_val=-999.9))
#    scov.set_parameter_values('function', value=make_range_expr(15, 3, 8, min_incl=True, max_incl=False, else_val=-999.9))
#    scov.set_parameter_values('function', value=make_range_expr(20, 8, min_incl=True, max_incl=False, else_val=-999.9))

    arrval = []
    recval = []
    letts='abcdefghij'
    for x in xrange(scov.num_timesteps):
        arrval.append(np.random.bytes(np.random.randint(1,20))) # One value (which is a byte string) for each member of the domain
        d = {letts[x]: letts[x:]}
        recval.append(d) # One value (which is a dict) for each member of the domain
    scov.set_parameter_values('array', value=arrval)
    scov.set_parameter_values('record', value=recval)

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/ptypes.cov')

    return scov