Esempio n. 1
0
def new_graph(G):
    for node_id, node in G.nodes(data=True):
        if node['node_type'] == 'action':
            continue
        print 'Pose {}, GQ: {}'.format(node_id, node['gq'])
        env.state.obj.T_obj_world = node['pose']
        env.render_3d_scene()
        vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 2
0
def noise_vis():
    print 'best actions', np.max(action.metadata['vertex_probs'], axis=0)
    render_3d_scene(env)
    j = 113
    j = np.argmax(action.metadata['vertex_probs'][:, 1])
    a = j * policy.toppling_model.n_trials
    b = (j + 1) * policy.toppling_model.n_trials
    for i in range(a, b):
        start = policy.toppling_model.vertices[i]
        end = start - .01 * policy.toppling_model.push_directions[i]
        vis3d.plot([start, end], color=[0, 1, 0], radius=.0002)
    vis3d.show(starting_camera_pose=camera_pose())
def vis_topple_probs(vertices, topple_probs):
    vis3d.figure()
    env.render_3d_scene()
    for vertex, prob in zip(vertices, topple_probs):
       color = [min(1, 2*(1-prob)), min(2*prob, 1), 0]
       vis3d.points(Point(vertex, 'world'), scale=.001, color=color)
    for bottom_point in policy.toppling_model.bottom_points:
       vis3d.points(Point(bottom_point, 'world'), scale=.001, color=[0,0,0])
    vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 4
0
def test_multi_push(env):
    env = GraspingEnv(config, config['vis'])
    policy = MultiTopplePolicy(config, use_sensitivity=True)
    config['model']['load'] = 0
    rand_policy = RandomTopplePolicy(config, use_sensitivity=True)
    with open("/nfs/diskstation/db/toppling/tuned_params/obj_ids.json",
              "r") as read_file:
        obj_ids = json.load(read_file)
    while True:
        env.reset()
        if env.state.obj.key not in obj_ids:
            continue
        env.state.material_props._color = np.array([0.5] * 3)
        policy.set_environment(env.environment)
        rand_policy.set_environment(env.environment)

        if args.before:
            vis3d.figure()
            env.render_3d_scene()
            vis3d.show(starting_camera_pose=CAMERA_POSE)
        planning_time = policy.action(env.state)
        logger.info(env.state.obj.key)
        logger.info('Value Iteration')
        path = forward_sim(policy.G, 'Value Iteration', 'value')
        logger.info('Value Iteration Path: ' + str(path))
        logger.info('Value Iteration Path Length: ' + str(len(path) - 1))
        logger.info('Value Iteration Planning Time: ' + str(planning_time))
        logger.info('Value Iteration No Actions: ' +
                    str(len(policy.G.nodes()) == 1))
        logger.info('Value Iteration Already Best: ' +
                    str(len(policy.G.nodes()) > 1 and len(path) == 1))
        logger.info('Greedy')
        path = forward_sim(policy.G, 'Greedy', 'single_push_q')
        logger.info('Greedy Path: ' + str(path))
        logger.info('Greedy Path Length: ' + str(len(path) - 1))
        logger.info('Greedy Planning Time: ' + str(
            np.sum(
                [policy.G.nodes[node_id]['planning_time']
                 for node_id in path])))
        logger.info('Greedy No Actions: ' + str(len(policy.G.nodes()) == 1))
        logger.info('Greedy Already Best: ' +
                    str((len(policy.G.nodes()) > 1 and len(path) == 1)))
        a = time()
        path_length, planning_time = forward_sim_random(env, rand_policy)
        logger.info('Random Path Length: ' + str(path_length))
        logger.info('Random Planning Time: ' + str(planning_time))
        logger.info('\n')
Esempio n. 5
0
    def compute_topple(self, state):
        # raise NotImplementedError
        mesh = state.mesh.copy().apply_transform(state.T_obj_world.matrix)

        mesh.fix_normals()
        vertices, face_ind = sample.sample_surface_even(mesh, self.num_samples)
        # Cut out vertices that are too close to the ground
        z_comp = vertices[:,2]
        valid_vertex_ind = z_comp > (1-self.thresh)*np.min(z_comp) + self.thresh*np.max(z_comp)
        vertices, face_ind = vertices[valid_vertex_ind], face_ind[valid_vertex_ind]

        normals = mesh.face_normals[face_ind]
        push_directions = -deepcopy(normals)

        self.toppling_model.load_object(state)
        poses, vertex_probs, min_required_forces = self.toppling_model.predict(
            vertices, 
            normals, 
            push_directions, 
            use_sensitivity=self.use_sensitivity
        )

        from dexnet.visualization import DexNetVisualizer3D as vis3d
        from autolab_core import Point
        # j = 6 # gearbox
        j = 50 # vase
        a = j*self.toppling_model.n_trials
        b = (j+1)*self.toppling_model.n_trials
        for i in range(a,b):
            start = self.toppling_model.vertices[i]
            end = start - .01 * self.toppling_model.push_directions[i]
            vis3d.plot3d([start, end], color=[0,1,0], tube_radius=.0002)
        vis3d.mesh(state.mesh, state.T_obj_world)
        vis3d.show()
        return vertices, normals, poses, vertex_probs, min_required_forces
Esempio n. 6
0
def vis_axes(origin, y_dir):
    y = [origin, origin + .0075 * y_dir]
    z = [origin, origin + .0075 * up]
    x = [origin, origin + .0075 * np.cross(y_dir, up)]
    vis3d.plot3d(x, color=[1, 0, 0], tube_radius=.0006)
    vis3d.plot3d(y, color=[0, 1, 0], tube_radius=.0006)
    vis3d.plot3d(z, color=[0, 0, 1], tube_radius=.0006)
Esempio n. 7
0
    def display_stable_poses(self, object_name, config=None):
        """Display an object's stable poses
        
        Parameters
        ----------
        object_name : :obj:`str`
            Object to display.
        config : :obj:`dict`
            Configuration dict for visualization.
            Parameters are in Other parameters. Values from self.default_config are used for keys not provided.
        
        Other Parameters
        ----------------
        animate
            Whether or not to animate the displayed object
            
        Raises
        ------
        ValueError
            invalid object name
        RuntimeError
            Database or dataset not opened.
        """
        self._check_opens()
        config = self._get_config(config)

        if object_name not in self.dataset.object_keys:
            raise ValueError(
                "{} is not a valid object name".format(object_name))

        logger.info('Displaying stable poses for'.format(object_name))
        obj = self.dataset[object_name]
        stable_poses = self.dataset.stable_poses(object_name)

        for stable_pose in stable_poses:
            print 'Stable pose %s with p=%.3f' % (stable_pose.id,
                                                  stable_pose.p)
            vis.figure()
            vis.mesh_stable_pose(obj.mesh,
                                 stable_pose,
                                 color=(0.5, 0.5, 0.5),
                                 style='surface')
            vis.pose(RigidTransform(), alpha=0.15)
            vis.show(animate=config['animate'])
Esempio n. 8
0
def sim_to_real_tf(sim_point_cloud_masked, vis=False):
    # Capture point cloud from physical depth camera
    _, depth_im, _ = phoxi_sensor.frames()
    phys_point_cloud = phoxi_tf*phoxi_sensor.ir_intrinsics.deproject(depth_im)
    phys_point_cloud_masked, _ = phys_point_cloud.box_mask(mask_box)
    if phys_point_cloud_masked.num_points == 0:
        logging.warn('Object not found! Skipping...')
        quit()
    
    pcs_config = {'overlap': 0.6, 'accuracy': 0.001, 'samples': 500, 'timeout': 10, 'cache_dir': '/home/chriscorrea14/Super4PCS/cache'}
    pcs_aligner = Super4PCSAligner(pcs_config)

    sim_to_real_tf = pcs_aligner.align(phys_point_cloud_masked, sim_point_cloud_masked)
    if vis:
        vis3d.figure()
        vis3d.points(phys_point_cloud_masked.data.T, color=(1,0,0), scale=.001)
        vis3d.points((sim_to_real_tf*sim_point_cloud_masked).data.T, color=(0,1,0), scale=.001)
        vis3d.show(title='Predicted pose from Sim 2 Real')
    return sim_to_real_tf
Esempio n. 9
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker, grasp_metrics, stable_pose):
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames('obj', T_stp_camera.from_frame)
        aligned_grasps = self.align_grasps_with_camera(grasps)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        camera_pose = self.get_camera_pose(sample)
        self.tensor_datapoint['camera_poses'] = camera_pose
        shifted_camera_intr = sample.camera.camera_intr

        for cnt, aligned_grasp in enumerate(aligned_grasps):
            collision_free = self.is_grasp_collision_free(aligned_grasp, collision_checker)
            # Project grasp coordinates in image
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera, shifted_camera_intr)
            grasp_point = aligned_grasp.close_fingers(self.obj, vis=False, check_approach=False)

            if not grasp_point[0]:
                Warning("Could not find contact points")
                continue
            # Get grasp width in pixel from endpoints
            p_1 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][0].point, 1).T).T[:3]
            p_2 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][1].point, 1).T).T[:3]
            grasp_width_px = self.width_px(shifted_camera_intr, p_1, p_2)

            grasp_width = aligned_grasp.width_from_endpoints(grasp_point[1][0].point, grasp_point[1][1].point)

            depth_im_no_rot = self.prepare_images(depth_im_table, grasp_2d)

            T_grasp_camera = aligned_grasp.gripper_pose(self.gripper).inverse() * self.T_obj_camera.inverse()

            if VISUALISE_3D:
                z_axis = T_grasp_camera.z_axis
                theta = np.rad2deg(np.arccos((z_axis[2]) /
                                             (np.sqrt((z_axis[0] ** 2 + z_axis[1] ** 2 + z_axis[2] ** 2)))))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world, style='surface', dim=0.5, plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper, aligned_grasp, T_obj_world, color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                print(theta)
                vis.show()

            hand_pose = self.get_hand_pose(grasp_2d, T_grasp_camera, grasp_width, grasp_width_px)

            self.add_datapoint(depth_im_no_rot, hand_pose,
                               collision_free, aligned_grasp, grasp_metrics)
        self.cur_image_label += 1
Esempio n. 10
0
def visualize(env, datasets, obj_id_to_keys, models, model_names,
              use_sensitivities):
    for dataset, obj_id_to_key in zip(datasets, obj_id_to_keys):
        for i in range(dataset.num_datapoints):
            datapoint = dataset.datapoint(i)

            dataset_name, key = obj_id_to_key[str(
                datapoint['obj_id'])].split(KEY_SEP_TOKEN)
            obj = env._state_space._database.dataset(dataset_name)[key]
            orig_pose = to_rigid(datapoint['obj_pose'])
            obj.T_obj_world = orig_pose
            env.state.obj = obj

            actual = 0
            for i in range(NUM_PER_DATAPOINT):
                mat = datapoint['actual_poses'][i * 4:(i + 1) * 4]
                actual_pose = to_rigid(mat)
                if not is_equivalent_pose(actual_pose, orig_pose):
                    actual += 1
            actual /= float(NUM_PER_DATAPOINT)

            probs = []
            for model, model_name, use_sensitivity in zip(
                    models, model_names, use_sensitivities):
                model.load_object(env.state)
                _, vertex_probs, _ = model.predict(
                    [datapoint['vertex']],
                    [datapoint['normal']],
                    [-datapoint['normal']],  # push dir
                    use_sensitivity=use_sensitivity)
                probs.append(1 - vertex_probs[0, 0])

            if -(abs(probs[3] - actual) - abs(probs[2] - actual)) > .1:
                print 'actual {} {} {} {} {} {} {} {} {}'.format(
                    actual, model_names[0], probs[0], model_names[1], probs[1],
                    model_names[2], probs[2], model_names[3], probs[3])
                env.render_3d_scene()
                start_point = datapoint['vertex'] + .06 * datapoint['normal']
                end_point = datapoint['vertex']
                shaft_points = [start_point, end_point]
                h1 = np.array([[0.7071, -0.7071, 0], [0.7071, 0.7071, 0],
                               [0, 0, 1]]).dot(-datapoint['normal'])
                h2 = np.array([[0.7071, 0.7071, 0], [-0.7071, 0.7071, 0],
                               [0, 0, 1]]).dot(-datapoint['normal'])
                head_points = [
                    end_point - 0.02 * h2, end_point, end_point - 0.02 * h1
                ]
                vis3d.plot3d(shaft_points, color=[1, 0, 0], tube_radius=.002)
                vis3d.plot3d(head_points, color=[1, 0, 0], tube_radius=.002)
                vis3d.show()
Esempio n. 11
0
    def antipodal_grasp_sampler(self):
        of = ObjFile(OBJ_FILENAME)
        sf = SdfFile(SDF_FILENAME)
        mesh = of.read()
        sdf = sf.read()
        obj = GraspableObject3D(sdf, mesh)

        gripper = RobotGripper.load(GRIPPER_NAME)

        ags = AntipodalGraspSampler(gripper, CONFIG)
        grasps = ags.generate_grasps(obj, target_num_grasps=10)

        quality_config = GraspQualityConfigFactory.create_config(
            CONFIG['metrics']['force_closure'])
        quality_fn = GraspQualityFunctionFactory.create_quality_function(
            obj, quality_config)

        q_to_c = lambda quality: CONFIG['quality_scale']

        i = 0
        vis.figure()
        vis.mesh(obj.mesh.trimesh, style='surface')
        for grasp in grasps:
            print(grasp.frame)
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                fn_fc = quality_fn(grasp).quality
                true_fc = PointGraspMetrics3D.force_closure(
                    c1, c2, quality_config.friction_coef)
        #print(grasp)
            T_obj_world = RigidTransform(from_frame='obj', to_frame='world')
            color = plt.get_cmap('hsv')(q_to_c(CONFIG['metrics']))[:-1]
            T_obj_gripper = grasp.gripper_pose(gripper)
            #vis.grasp(grasp,grasp_axis_color=color,endpoint_color=color)
            i += 1
        #T_obj_world = RigidTransform(from_frame='obj',to_frame='world')
        vis.show(False)
Esempio n. 12
0
    def display_object(self, object_name, config=None):
        """Display an object
        
        Parameters
        ----------
        object_name : :obj:`str`
            Ob
            ject to display.
        config : :obj:`dict`
            Configuration dict for visualization.
            Parameters are in Other parameters. Values from self.default_config are used for keys not provided.
        
        Other Parameters
        ----------------
        animate
            Whether or not to animate the displayed object
            
        Raises
        ------
        ValueError
            invalid object name
        RuntimeError
            Database or dataset not opened.
        """
        self._check_opens()
        config = self._get_config(config)

        if object_name not in self.dataset.object_keys:
            raise ValueError(
                "{} is not a valid object name".format(object_name))

        logger.info('Displaying {}'.format(object_name))
        obj = self.dataset[object_name]

        vis.figure(bgcolor=(1, 1, 1), size=(1000, 1000))
        vis.mesh(obj.mesh, color=(0.5, 0.5, 0.5), style='surface')
        vis.show(animate=config['animate'])
Esempio n. 13
0
def figure_0():
    action = policy.action(env.state)
    env.render_3d_scene()
    bottom_points = policy.toppling_model.bottom_points
    vis3d.plot3d(bottom_points[:2], color=[0, 0, 0], tube_radius=.001)

    mesh = env.state.mesh.copy().apply_transform(env.state.T_obj_world.matrix)
    mesh.fix_normals()
    direction = normalize([0, -.04, 0])
    origin = mesh.center_mass + np.array([0, .04, .09])
    intersect, _, face_ind = mesh.ray.intersects_location([origin],
                                                          [direction],
                                                          multiple_hits=False)
    normal = mesh.face_normals[face_ind[0]]
    start_point = intersect[0] + .06 * normal
    end_point = intersect[0]
    shaft_points = [start_point, end_point]
    h1 = np.array([[1, 0, 0], [0, 0.7071, -0.7071], [0, 0.7071,
                                                     0.7071]]).dot(-normal)
    h2 = np.array([[1, 0, 0], [0, 0.7071, 0.7071], [0, -0.7071,
                                                    0.7071]]).dot(-normal)
    head_points = [end_point - 0.02 * h2, end_point, end_point - 0.02 * h1]
    vis3d.plot3d(shaft_points, color=[1, 0, 0], tube_radius=.002)
    vis3d.plot3d(head_points, color=[1, 0, 0], tube_radius=.002)
    vis3d.points(Point(end_point), scale=.004, color=[0, 0, 0])
    hand_pose = RigidTransform(rotation=policy.get_hand_pose(
        start_point, end_point)[0].rotation,
                               translation=start_point,
                               from_frame='grasp',
                               to_frame='world')
    orig_pose = env.state.obj.T_obj_world.copy()
    env.state.obj.T_obj_world = policy.toppling_model.final_poses[1]
    action = policy.grasping_policy.action(env.state)
    env.state.obj.T_obj_world = orig_pose

    gripper = env.gripper(action)
    #vis3d.mesh(gripper.mesh, hand_pose * gripper.T_mesh_grasp, color=light_blue)
    # mesh = trimesh.load('~/Downloads/chris.stl')
    rot = np.array([[0, -1, 0], [1, 0, 0],
                    [0, 0,
                     1]]).dot(np.array([[0, 0, 1], [0, 1, 0], [-1, 0, 0]]))
    T = RigidTransform(rotation=rot,
                       translation=np.array([0, -.09, .1]),
                       to_frame='mesh',
                       from_frame='mesh')
    # vis3d.mesh(mesh, hand_pose * gripper.T_mesh_grasp * T, color=light_blue)
    vis3d.mesh(gripper.mesh,
               hand_pose * gripper.T_mesh_grasp * T,
               color=light_blue)
    vis3d.show(starting_camera_pose=CAMERA_POSE)

    env.state.obj.T_obj_world = policy.toppling_model.final_poses[1]
    action = policy.grasping_policy.action(env.state)
    print 'q:', action.q_value
    env.render_3d_scene()
    vis3d.gripper(env.gripper(action),
                  action.grasp(env.gripper(action)),
                  color=light_blue)
    vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 14
0
def render_3d_scene(env):
    vis3d.mesh(env.state.mesh,
               env.state.T_obj_world.matrix,
               color=env.state.color)
Esempio n. 15
0
def generate_gqcnn_dataset(dataset_path, database, target_object_keys,
                           env_rv_params, gripper_name, config):
    """
    Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras.

    Parameters
    ----------
    dataset_path : str
        path to save the dataset to
    database : :obj:`Hdf5Database`
        Dex-Net database containing the 3D meshes, grasps, and grasp metrics
    target_object_keys : :obj:`OrderedDict`
        dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys)
    env_rv_params : :obj:`OrderedDict`
        parameters of the camera and object random variables used in sampling (see meshpy_berkeley.UniformPlanarWorksurfaceImageRandomVariable for more info)
    gripper_name : str
        name of the gripper to use
    config : :obj:`autolab_core.YamlConfig`
        other parameters for dataset generation

    Notes
    -----
    Required parameters of config are specified in Other Parameters

    Other Parameters
    ----------------    
    images_per_stable_pose : int
        number of object and camera poses to sample for each stable pose
    stable_pose_min_p : float
        minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses
    
    gqcnn/crop_width : int
        width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/crop_height : int
        height, in pixels,  of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/final_width : int
        width, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)
    gqcnn/final_height : int
        height, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)

    table_alignment/max_approach_table_angle : float
        max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal
    table_alignment/max_approach_offset : float
        max deviation from perpendicular approach direction to use in grasp collision checking
    table_alignment/num_approach_offset_samples : int
        number of approach samples to use in collision checking

    collision_checking/table_offset : float
        max allowable interpenetration between the gripper and table to be considered collision free
    collision_checking/table_mesh_filename : str
        path to a table mesh for collision checking (default data/meshes/table.obj)
    collision_checking/approach_dist : float
        distance, in meters, between the approach pose and final grasp pose along the grasp axis
    collision_checking/delta_approach : float
        amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose

    tensors/datapoints_per_file : int
        number of datapoints to store in each unique tensor file on disk
    tensors/fields : :obj:`dict`
        dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor

    debug : bool
        True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise
    vis/candidate_grasps : bool
        True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging)
    vis/rendered_images : bool
        True (or 1) if the rendered images for each stable pose should be displayed (for debugging)
    vis/grasp_images : bool
        True (or 1) if the transformed grasp images should be displayed (for debugging)
    """
    # read data gen params
    output_dir = dataset_path
    gripper = RobotGripper.load(gripper_name)
    image_samples_per_stable_pose = config['images_per_stable_pose']
    stable_pose_min_p = config['stable_pose_min_p']

    # read gqcnn params
    gqcnn_params = config['gqcnn']
    im_crop_height = gqcnn_params['crop_height']
    im_crop_width = gqcnn_params['crop_width']
    im_final_height = gqcnn_params['final_height']
    im_final_width = gqcnn_params['final_width']
    cx_crop = float(im_crop_width) / 2
    cy_crop = float(im_crop_height) / 2

    # open database
    dataset_names = target_object_keys.keys()
    datasets = [database.dataset(dn) for dn in dataset_names]

    # set target objects
    for dataset in datasets:
        if target_object_keys[dataset.name] == 'all':
            target_object_keys[dataset.name] = dataset.object_keys

    # setup grasp params
    table_alignment_params = config['table_alignment']
    min_grasp_approach_offset = -np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_offset = np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_table_angle = np.deg2rad(
        table_alignment_params['max_approach_table_angle'])
    num_grasp_approach_samples = table_alignment_params[
        'num_approach_offset_samples']

    phi_offsets = []
    if max_grasp_approach_offset == min_grasp_approach_offset:
        phi_inc = 1
    elif num_grasp_approach_samples == 1:
        phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1
    else:
        phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / (
            num_grasp_approach_samples - 1)

    phi = min_grasp_approach_offset
    while phi <= max_grasp_approach_offset:
        phi_offsets.append(phi)
        phi += phi_inc

    # setup collision checking
    coll_check_params = config['collision_checking']
    approach_dist = coll_check_params['approach_dist']
    delta_approach = coll_check_params['delta_approach']
    table_offset = coll_check_params['table_offset']

    table_mesh_filename = coll_check_params['table_mesh_filename']
    if not os.path.isabs(table_mesh_filename):
        table_mesh_filename = os.path.join(
            os.path.dirname(os.path.realpath(__file__)), '..',
            table_mesh_filename)
    table_mesh = ObjFile(table_mesh_filename).read()

    # set tensor dataset config
    tensor_config = config['tensors']
    tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height
    tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width
    tensor_config['fields']['obj_masks']['height'] = im_final_height
    tensor_config['fields']['obj_masks']['width'] = im_final_width

    # add available metrics (assuming same are computed for all objects)
    metric_names = []
    dataset = datasets[0]
    obj_keys = dataset.object_keys
    if len(obj_keys) == 0:
        raise ValueError('No valid objects in dataset %s' % (dataset.name))

    obj = dataset[obj_keys[0]]
    grasps = dataset.grasps(obj.key, gripper=gripper.name)
    grasp_metrics = dataset.grasp_metrics(obj.key,
                                          grasps,
                                          gripper=gripper.name)
    metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys()
    for metric_name in metric_names:
        tensor_config['fields'][metric_name] = {}
        tensor_config['fields'][metric_name]['dtype'] = 'float32'

    # init tensor dataset
    tensor_dataset = TensorDataset(output_dir, tensor_config)
    tensor_datapoint = tensor_dataset.datapoint_template

    # setup log file
    experiment_log_filename = os.path.join(output_dir,
                                           'dataset_generation.log')
    formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    hdlr = logging.FileHandler(experiment_log_filename)
    hdlr.setFormatter(formatter)
    logging.getLogger().addHandler(hdlr)
    root_logger = logging.getLogger()

    # copy config
    out_config_filename = os.path.join(output_dir, 'dataset_generation.json')
    ordered_dict_config = collections.OrderedDict()
    for key in config.keys():
        ordered_dict_config[key] = config[key]
    with open(out_config_filename, 'w') as outfile:
        json.dump(ordered_dict_config, outfile)

    # 1. Precompute the set of valid grasps for each stable pose:
    #    i) Perpendicular to the table
    #   ii) Collision-free along the approach direction

    # load grasps if they already exist
    grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME)
    if os.path.exists(grasp_cache_filename):
        logging.info('Loading grasp candidates from file')
        candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb'))
    # otherwise re-compute by reading from the database and enforcing constraints
    else:
        # create grasps dict
        candidate_grasps_dict = {}

        # loop through datasets and objects
        for dataset in datasets:
            logging.info('Reading dataset %s' % (dataset.name))
            for obj in dataset:
                if obj.key not in target_object_keys[dataset.name]:
                    continue

                # init candidate grasp storage
                candidate_grasps_dict[obj.key] = {}

                # setup collision checker
                collision_checker = GraspCollisionChecker(gripper)
                collision_checker.set_graspable_object(obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(obj.key)
                for i, stable_pose in enumerate(stable_poses):
                    # render images if stable pose is valid
                    if stable_pose.p > stable_pose_min_p:
                        candidate_grasps_dict[obj.key][stable_pose.id] = []

                        # setup table in collision checker
                        T_obj_stp = stable_pose.T_obj_table.as_frames(
                            'obj', 'stp')
                        T_obj_table = obj.mesh.get_T_surface_obj(
                            T_obj_stp,
                            delta=table_offset).as_frames('obj', 'table')
                        T_table_obj = T_obj_table.inverse()
                        collision_checker.set_table(table_mesh_filename,
                                                    T_table_obj)

                        # read grasp and metrics
                        grasps = dataset.grasps(obj.key, gripper=gripper.name)
                        logging.info(
                            'Aligning %d grasps for object %s in stable %s' %
                            (len(grasps), obj.key, stable_pose.id))

                        # align grasps with the table
                        aligned_grasps = [
                            grasp.perpendicular_table(stable_pose)
                            for grasp in grasps
                        ]

                        # check grasp validity
                        logging.info(
                            'Checking collisions for %d grasps for object %s in stable %s'
                            % (len(grasps), obj.key, stable_pose.id))
                        for aligned_grasp in aligned_grasps:
                            # check angle with table plane and skip unaligned grasps
                            _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z(
                                stable_pose)
                            perpendicular_table = (
                                np.abs(grasp_approach_table_angle) <
                                max_grasp_approach_table_angle)
                            if not perpendicular_table:
                                continue

                            # check whether any valid approach directions are collision free
                            collision_free = False
                            for phi_offset in phi_offsets:
                                rotated_grasp = aligned_grasp.grasp_y_axis_offset(
                                    phi_offset)
                                collides = collision_checker.collides_along_approach(
                                    rotated_grasp, approach_dist,
                                    delta_approach)
                                if not collides:
                                    collision_free = True
                                    break

                            # store if aligned to table
                            candidate_grasps_dict[obj.key][
                                stable_pose.id].append(
                                    GraspInfo(aligned_grasp, collision_free))

                            # visualize if specified
                            if collision_free and config['vis'][
                                    'candidate_grasps']:
                                logging.info('Grasp %d' % (aligned_grasp.id))
                                vis.figure()
                                vis.gripper_on_object(gripper, aligned_grasp,
                                                      obj,
                                                      stable_pose.T_obj_world)
                                vis.show()

        # save to file
        logging.info('Saving to file')
        pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb'))

    # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database

    # setup variables
    obj_category_map = {}
    pose_category_map = {}

    cur_pose_label = 0
    cur_obj_label = 0
    cur_image_label = 0

    # render images for each stable pose of each object in the dataset
    render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE]
    for dataset in datasets:
        logging.info('Generating data for dataset %s' % (dataset.name))

        # iterate through all object keys
        object_keys = dataset.object_keys
        for obj_key in object_keys:
            obj = dataset[obj_key]
            if obj.key not in target_object_keys[dataset.name]:
                continue

            # read in the stable poses of the mesh
            stable_poses = dataset.stable_poses(obj.key)
            for i, stable_pose in enumerate(stable_poses):

                # render images if stable pose is valid
                if stable_pose.p > stable_pose_min_p:
                    # log progress
                    logging.info('Rendering images for object %s in %s' %
                                 (obj.key, stable_pose.id))

                    # add to category maps
                    if obj.key not in obj_category_map.keys():
                        obj_category_map[obj.key] = cur_obj_label
                    pose_category_map['%s_%s' %
                                      (obj.key,
                                       stable_pose.id)] = cur_pose_label

                    # read in candidate grasps and metrics
                    candidate_grasp_info = candidate_grasps_dict[obj.key][
                        stable_pose.id]
                    candidate_grasps = [g.grasp for g in candidate_grasp_info]
                    grasp_metrics = dataset.grasp_metrics(obj.key,
                                                          candidate_grasps,
                                                          gripper=gripper.name)

                    # compute object pose relative to the table
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table',
                                                 to_frame='obj')
                    scene_objs = {
                        'table': SceneObject(table_mesh, T_table_obj)
                    }
                    urv = UniformPlanarWorksurfaceImageRandomVariable(
                        obj.mesh,
                        render_modes,
                        'camera',
                        env_rv_params,
                        stable_pose=stable_pose,
                        scene_objs=scene_objs)

                    render_start = time.time()
                    render_samples = urv.rvs(
                        size=image_samples_per_stable_pose)
                    render_stop = time.time()
                    logging.info('Rendering images took %.3f sec' %
                                 (render_stop - render_start))

                    # visualize
                    if config['vis']['rendered_images']:
                        d = int(np.ceil(
                            np.sqrt(image_samples_per_stable_pose)))

                        # binary
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.SEGMASK].image)

                        # depth table
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.DEPTH_SCENE].image)
                        vis2d.show()

                    # tally total amount of data
                    num_grasps = len(candidate_grasps)
                    num_images = image_samples_per_stable_pose
                    num_save = num_images * num_grasps
                    logging.info('Saving %d datapoints' % (num_save))

                    # for each candidate grasp on the object compute the projection
                    # of the grasp into image space
                    for render_sample in render_samples:
                        # read images
                        binary_im = render_sample.renders[
                            RenderMode.SEGMASK].image
                        depth_im_table = render_sample.renders[
                            RenderMode.DEPTH_SCENE].image
                        # read camera params
                        T_stp_camera = render_sample.camera.object_to_camera_pose
                        shifted_camera_intr = render_sample.camera.camera_intr

                        # read pixel offsets
                        cx = depth_im_table.center[1]
                        cy = depth_im_table.center[0]

                        # compute intrinsics for virtual camera of the final
                        # cropped and rescaled images
                        camera_intr_scale = float(im_final_height) / float(
                            im_crop_height)
                        cropped_camera_intr = shifted_camera_intr.crop(
                            im_crop_height, im_crop_width, cy, cx)
                        final_camera_intr = cropped_camera_intr.resize(
                            camera_intr_scale)

                        # create a thumbnail for each grasp
                        for grasp_info in candidate_grasp_info:
                            # read info
                            grasp = grasp_info.grasp
                            collision_free = grasp_info.collision_free

                            # get the gripper pose
                            T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
                                'obj', T_stp_camera.from_frame)
                            grasp_2d = grasp.project_camera(
                                T_obj_camera, shifted_camera_intr)

                            # center images on the grasp, rotate to image x axis
                            dx = cx - grasp_2d.center.x
                            dy = cy - grasp_2d.center.y
                            translation = np.array([dy, dx])

                            binary_im_tf = binary_im.transform(
                                translation, grasp_2d.angle)
                            depth_im_tf_table = depth_im_table.transform(
                                translation, grasp_2d.angle)

                            # crop to image size
                            binary_im_tf = binary_im_tf.crop(
                                im_crop_height, im_crop_width)
                            depth_im_tf_table = depth_im_tf_table.crop(
                                im_crop_height, im_crop_width)

                            # resize to image size
                            binary_im_tf = binary_im_tf.resize(
                                (im_final_height, im_final_width),
                                interp='nearest')
                            depth_im_tf_table = depth_im_tf_table.resize(
                                (im_final_height, im_final_width))

                            # visualize the transformed images
                            if config['vis']['grasp_images']:
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)
                                tf_grasp_2d = Grasp2D(
                                    grasp_center,
                                    0,
                                    grasp_2d.depth,
                                    width=gripper.max_width,
                                    camera_intr=final_camera_intr)

                                # plot 2D grasp image
                                vis2d.figure()
                                vis2d.subplot(2, 2, 1)
                                vis2d.imshow(binary_im)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 2)
                                vis2d.imshow(depth_im_table)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 3)
                                vis2d.imshow(binary_im_tf)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.subplot(2, 2, 4)
                                vis2d.imshow(depth_im_tf_table)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.title('Coll Free? %d' %
                                            (grasp_info.collision_free))
                                vis2d.show()

                                # plot 3D visualization
                                vis.figure()
                                T_obj_world = vis.mesh_stable_pose(
                                    obj.mesh,
                                    stable_pose.T_obj_world,
                                    style='surface',
                                    dim=0.5)
                                vis.gripper(gripper,
                                            grasp,
                                            T_obj_world,
                                            color=(0.3, 0.3, 0.3))
                                vis.show()

                            # form hand pose array
                            hand_pose = np.r_[grasp_2d.center.y,
                                              grasp_2d.center.x,
                                              grasp_2d.depth, grasp_2d.angle,
                                              grasp_2d.center.y -
                                              shifted_camera_intr.cy,
                                              grasp_2d.center.x -
                                              shifted_camera_intr.cx,
                                              grasp_2d.width_px]

                            # store to data buffers
                            tensor_datapoint[
                                'depth_ims_tf_table'] = depth_im_tf_table.raw_data
                            tensor_datapoint[
                                'obj_masks'] = binary_im_tf.raw_data
                            tensor_datapoint['hand_poses'] = hand_pose
                            tensor_datapoint['collision_free'] = collision_free
                            tensor_datapoint['obj_labels'] = cur_obj_label
                            tensor_datapoint['pose_labels'] = cur_pose_label
                            tensor_datapoint['image_labels'] = cur_image_label

                            for metric_name, metric_val in grasp_metrics[
                                    grasp.id].iteritems():
                                coll_free_metric = (
                                    1 * collision_free) * metric_val
                                tensor_datapoint[
                                    metric_name] = coll_free_metric
                            tensor_dataset.add(tensor_datapoint)

                        # update image label
                        cur_image_label += 1

                    # update pose label
                    cur_pose_label += 1

                    # force clean up
                    gc.collect()

            # update object label
            cur_obj_label += 1

            # force clean up
            gc.collect()

    # save last file
    tensor_dataset.flush()

    # save category mappings
    obj_cat_filename = os.path.join(output_dir, 'object_category_map.json')
    json.dump(obj_category_map, open(obj_cat_filename, 'w'))
    pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json')
    json.dump(pose_category_map, open(pose_cat_filename, 'w'))
Esempio n. 16
0
def benchmark_bin_picking_policy(policy,
                                 # input_dataset_path,
                                 # heap_ids,
                                 # timesteps,
                                 # output_dataset_path,
                                 config,
                                 # excluded_heaps_file):
                                 ):
    """ Benchmark a bin picking policy.

    Parameters
    ----------
    policy : :obj:`Policy`
        policy to roll out
    input_dataset_path : str
        path to the input dataset
    heap_ids : list
        integer identifiers for the heaps to re-run
    timesteps : list
        integer timesteps to seed the simulation from
    output_dataset_path : str
        path to store the results
    config : dict
        dictionary-like objects containing parameters of the simulator and visualization
    """
    # read subconfigs
    vis_config = config['vis']
    dataset_config = config['dataset']

    # read parameters
    fully_observed = config['fully_observed']
    steps_per_test_case = config['steps_per_test_case']
    rollouts_per_garbage_collect = config['rollouts_per_garbage_collect']
    debug = config['debug']
    im_height = config['state_space']['camera']['im_height']
    im_width = config['state_space']['camera']['im_width']
    max_obj_per_pile = config['state_space']['object']['max_obj_per_pile']

    if debug:
        random.seed(SEED)
        np.random.seed(SEED)

    # read ids
    # if len(heap_ids) != len(timesteps):
    #     raise ValueError('Must provide same number of heap ids and timesteps')
    # num_rollouts = len(heap_ids)
    num_rollouts = 1
        
    # set dataset params
    tensor_config = dataset_config['tensors']
    fields_config = tensor_config['fields']
    # fields_config['color_ims']['height'] = im_height
    # fields_config['color_ims']['width'] = im_width
    # fields_config['depth_ims']['height'] = im_height
    # fields_config['depth_ims']['width'] = im_width
    fields_config['obj_poses']['height'] = POSE_DIM * max_obj_per_pile
    fields_config['obj_coms']['height'] = POINT_DIM * max_obj_per_pile
    fields_config['obj_ids']['height'] = max_obj_per_pile
    fields_config['bin_distances']['height'] = max_obj_per_pile
    # matrix has (n choose 2) elements in it
    max_distance_matrix_length = int(comb(max_obj_per_pile, 2))
    fields_config['distance_matrix']['height'] = max_distance_matrix_length

    # sample a process id
    proc_id = utils.gen_experiment_id()
    # if not os.path.exists(output_dataset_path):
    #     try:
    #         os.mkdir(output_dataset_path)
    #     except:
    #         logging.warning('Failed to create %s. The dataset path may have been created simultaneously by another process' %(dataset_path))
    # proc_id = 'clustering_2'
    # output_dataset_path = os.path.join(output_dataset_path, 'dataset_%s' %(proc_id))

    # open input dataset
    # logging.info('Opening input dataset: %s' % input_dataset_path)
    # input_dataset = TensorDataset.open(input_dataset_path)
    
    # open output_dataset
    # logging.info('Opening output dataset: %s' % output_dataset_path)
    # dataset = TensorDataset(output_dataset_path, tensor_config)
    # datapoint = dataset.datapoint_template

    # setup logging
    # experiment_log_filename = os.path.join(output_dataset_path, 'dataset_generation.log')
    # formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    # hdlr = logging.FileHandler(experiment_log_filename)
    # hdlr.setFormatter(formatter)
    # logging.getLogger().addHandler(hdlr)
    # config.save(os.path.join(output_dataset_path, 'dataset_generation_params.yaml'))
    
    # key mappings
    # we add the empty string as a mapping because if you don't evaluate dexnet on the 'before' state of the push
    obj_id = 1
    obj_ids = {'': 0}
    action_ids = {
        'ParallelJawGraspAction': 0,
        'SuctionGraspAction': 1,
        'LinearPushAction': 2
    }
    
    # add action ids
    reverse_action_ids = utils.reverse_dictionary(action_ids)
    # dataset.add_metadata('action_ids', reverse_action_ids)
    
    # perform rollouts
    n = 0
    rollout_start = time.time()
    current_heap_id = None
    while n < num_rollouts:
        # create env
        create_start = time.time()
        bin_picking_env = GraspingEnv(config, vis_config)
        create_stop = time.time()
        logging.info('Creating env took %.3f sec' %(create_stop-create_start))

        # perform rollouts
        rollouts_remaining = num_rollouts - n
        for i in range(min(rollouts_per_garbage_collect, rollouts_remaining)):
            # log current rollout
            logging.info('\n')
            if n % vis_config['log_rate'] == 0:
                logging.info('Rollout: %03d' %(n))

            try:    
                # mark rollout status
                data_saved = False
                num_steps = 0
                
                # read heap id
                # heap_id = heap_ids[n]
                # timestep = timesteps[n]
                # while heap_id == current_heap_id:# or heap_id < 81:#[226, 287, 325, 453, 469, 577, 601, 894, 921]: 26
                #     n += 1
                #     heap_id = heap_ids[n]
                #     timestep = timesteps[n]
                push_logger = logging.getLogger('push')
                # push_logger.info('~')
                # push_logger.info('Heap ID %d' % heap_id)
                # current_heap_id = heap_id
                
                # reset env
                reset_start = time.time()
                # bin_picking_env.reset_from_dataset(input_dataset,
                #                                    heap_id,
                #                                    timestep)
                bin_picking_env.reset()
                state = bin_picking_env.state
                environment = bin_picking_env.environment
                if fully_observed:
                    observation = None
                else:
                    observation = bin_picking_env.observation
                policy.set_environment(environment) 
                reset_stop = time.time()

                # add objects to mapping
                for obj_key in state.obj_keys:
                    if obj_key not in obj_ids.keys():
                        obj_ids[obj_key] = obj_id
                        obj_id += 1
                    push_logger.info(obj_key)
                # save id mappings
                reverse_obj_ids = utils.reverse_dictionary(obj_ids)
                # dataset.add_metadata('obj_ids', reverse_obj_ids)
                        
                # store datapoint env params
                # datapoint['heap_ids'] = current_heap_id
                # datapoint['camera_poses'] = environment.camera.T_camera_world.vec
                # datapoint['camera_intrs'] = environment.camera.intrinsics.vec
                # datapoint['robot_poses'] = environment.robot.T_robot_world.vec
            
                # render
                if vis_config['initial_state']:
                    vis3d.figure()
                    bin_picking_env.render_3d_scene()
                    vis3d.pose(environment.robot.T_robot_world)
                    vis3d.show(starting_camera_pose=CAMERA_POSE)
            
                # observe
                if vis_config['initial_obs']:
                    vis2d.figure()
                    vis2d.imshow(observation, auto_subplot=True)
                    vis2d.show()

                # rollout on current satte
                done = False
                failed = False
                # if isinstance(policy, SingulationFullRolloutPolicy):
                #     policy.reset_num_failed_grasps()
                while not done:
                    if vis_config['step_stats']:
                        logging.info('Heap ID: %s' % heap_id)
                        logging.info('Timestep: %s' % bin_picking_env.timestep)

                    # get action
                    policy_start = time.time()
                    if fully_observed:
                        action = policy.action(state)
                    else:
                        action = policy.action(observation)
                    policy_stop = time.time()
                    logging.info('Composite Policy took %.3f sec' %(policy_stop-policy_start))

                    # render scene before
                    if vis_config['action']:
                        #gripper = bin_picking_env.gripper(action)
                        vis3d.figure()
			            # GRASPINGENV
                        # bin_picking_env.render_3d_scene(render_camera=False, workspace_objs_wireframe=False)
                        bin_picking_env.render_3d_scene()
                        if isinstance(action, GraspAction):
                            vis3d.gripper(gripper, action.grasp(gripper))
                        #if isinstance(action, LinearPushAction):
                        else:
                            # # T_start_world = action.T_begin_world * gripper.T_mesh_grasp
                            # # T_end_world = action.T_end_world * gripper.T_mesh_grasp
                            # #start_point = action.T_begin_world.translation
                            # start_point = action['start']
                            # #end_point = action.T_end_world.translation
                            # end_point = action['end']
                            # vec = (end_point - start_point) / np.linalg.norm(end_point-start_point) if np.linalg.norm(end_point-start_point) > 0 else end_point-start_point 
                            # #h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(vec)
                            # #h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(vec)
                            # arrow_len = np.linalg.norm(start_point - end_point)
                            # h1 = (end_point - start_point + np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2))
                            # h2 = (end_point - start_point - np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2))
                            # shaft_points = [start_point, end_point]
                            # head_points = [end_point - 0.03*h2, end_point, end_point - 0.03*h1]
                            # #vis3d.plot3d(shaft_points, color=[0,0,1])
                            # #vis3d.plot3d(head_points, color=[0,0,1])
                            
                            # Displaying all potential topple points
                            for vertex, prob in zip(action['vertices'], action['probabilities']):
                                color = np.array([min(1, 2*(1-prob)), min(2*prob, 1), 0])
                                vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)

                            for vertex in action['bottom_points']:
                                color = np.array([0,0,1])
                                vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(action['com'], 'world'), scale=.005, color=np.array([0,0,1]))
                            vis3d.points(Point(np.array([0,0,0]), 'world'), scale=.005, color=np.array([0,1,0]))
                            
                            #set_of_lines = action['set_of_lines']
                            #for i, line in enumerate(set_of_lines):
                            #    color = str(bin(i+1))[2:].zfill(3)
                            #    color = np.array([color[2], color[1], color[0]])
                            #    vis3d.plot3d(line, color=color)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)

                        # Show 
                        vis3d.figure()
                        bin_picking_env.render_3d_scene()
                        final_pose_ind = action['final_pose_ind'] / np.amax(action['final_pose_ind'])
                        for vertex, final_pose_ind in zip(action['vertices'], final_pose_ind):
                            color = np.array([0, min(1, 2*(1-prob)), min(2*prob, 1)])
                            vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)



                        color=np.array([0,0,1])
                        original_pose = state.obj.T_obj_world
                        pose_num = 0
                        for pose, edge_point1, edge_point2 in zip(action['final_poses'], action['bottom_points'], np.roll(action['bottom_points'],-1,axis=0)):
                            print 'Pose:', pose_num
                            pose_num += 1
                            pose = pose.T_obj_table
                            vis3d.figure()
                            state.obj.T_obj_world = original_pose
                            bin_picking_env.render_3d_scene()
                            vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color)
                            vis3d.show(starting_camera_pose=CAMERA_POSE)

                            vis3d.figure()
                            state.obj.T_obj_world = pose
                            bin_picking_env.render_3d_scene()
                            vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color)
                            vis3d.show(starting_camera_pose=CAMERA_POSE)
                         #vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_before.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE)
                    # store datapoint pre-step data
                    j = 0
                    obj_poses = np.zeros(fields_config['obj_poses']['height'])
                    obj_coms = np.zeros(fields_config['obj_coms']['height'])
                    obj_ids_vec = np.iinfo(np.uint32).max * np.ones(fields_config['obj_ids']['height'])
                    for obj_state in state.obj_states:
                        obj_poses[j*POSE_DIM:(j+1)*POSE_DIM] = obj_state.T_obj_world.vec
                        obj_coms[j*POINT_DIM:(j+1)*POINT_DIM] = obj_state.center_of_mass
                        obj_ids_vec[j] = obj_ids[obj_state.key]
                        j += 1
                    action_poses = np.zeros(fields_config['action_poses']['height'])
                    #if isinstance(action, GraspAction):
                    #    action_poses[:7] = action.T_grasp_world.vec
                    #else:
                    #    action_poses[:7] = action.T_begin_world.vec
                    #    action_poses[7:] = action.T_end_world.vec

                    # if isinstance(policy, SingulationMetricsCompositePolicy):
                    #     actual_distance_matrix_length = int(comb(len(state.objs), 2))
                    #     bin_distances = np.append(action.metadata['bin_distances'], 
                    #                               np.zeros(max_obj_per_pile-len(state.objs))
                    #                             )
                    #     distance_matrix = np.append(action.metadata['distance_matrix'], 
                    #                                 np.zeros(max_distance_matrix_length - actual_distance_matrix_length)
                    #                             )
                    #     datapoint['bin_distances'] = bin_distances
                    #     datapoint['distance_matrix'] = distance_matrix
                    #     datapoint['T_begin_world'] = action.T_begin_world.matrix
                    #     datapoint['T_end_world'] = action.T_end_world.matrix
                    #     datapoint['parallel_jaw_best_q_value'] = action.metadata['parallel_jaw_best_q_value']
                    #     # datapoint['parallel_jaw_mean_q_value'] = action.metadata['parallel_jaw_mean_q_value']
                    #     # datapoint['parallel_jaw_num_grasps'] = action.metadata['parallel_jaw_num_grasps']
                    #     datapoint['suction_best_q_value'] = action.metadata['suction_best_q_value']
                    #     # datapoint['suction_mean_q_value'] = action.metadata['suction_mean_q_value']
                    #     # datapoint['suction_num_grasps'] = action.metadata['suction_num_grasps']
                    #     # logging.info('Suction Q: %f, PJ Q: %f' % (action.metadata['suction_q_value'], action.metadata['parallel_jaw_q_value']))
                    #     # datapoint['obj_index'] = action.metadata['obj_index']

                    #     # datapoint['parallel_jaw_best_q_value_single'] = action.metadata['parallel_jaw_best_q_value_single']
                    #     # datapoint['suction_best_q_value_single'] = action.metadata['suction_best_q_value_single']
                    #     datapoint['singulated_obj_index'] = action.metadata['singulated_obj_index']
                    #     datapoint['parallel_jaw_grasped_obj_index'] = obj_ids[action.metadata['parallel_jaw_grasped_obj_key']]
                    #     datapoint['suction_grasped_obj_index'] = obj_ids[action.metadata['suction_grasped_obj_key']]
                    # else:
                    #     datapoint['bin_distances'] = np.zeros(max_obj_per_pile)
                    #     datapoint['distance_matrix'] = np.zeros(max_distance_matrix_length)
                    #     datapoint['T_begin_world'] = np.zeros((4,4))
                    #     datapoint['T_end_world'] = np.zeros((4,4))
                    #     datapoint['parallel_jaw_best_q_value'] = -1
                    #     datapoint['suction_best_q_value'] = -1
                    #     datapoint['singulated_obj_index'] = -1
                    #     datapoint['parallel_jaw_grasped_obj_index'] = -1
                    #     datapoint['suction_grasped_obj_index'] = -1

                    # policy_id = 0
                    # if 'policy_id' in action.metadata.keys():
                    #     policy_id = action.metadata['policy_id']
                    # greedy_q_value = 0
                    # if 'greedy_q_value' in action.metadata.keys():
                    #     greedy_q_value = action.metadata['greedy_q_value']
                        
                    # datapoint['timesteps'] = bin_picking_env.timestep
                    # datapoint['obj_poses'] = obj_poses
                    # datapoint['obj_coms'] = obj_coms
                    # datapoint['obj_ids'] = obj_ids_vec
                    # # if bin_picking_env.render_mode == RenderMode.RGBD:
                    # #     color_data = observation.color.raw_data
                    # #     depth_data = observation.depth.raw_data
                    # # elif bin_picking_env.render_mode == RenderMode.DEPTH:
                    # #     color_data = np.zeros(observation.shape).astype(np.uint8)
                    # #     depth_data = observation.raw_data
                    # # elif bin_picking_env.render_mode == RenderMode.COLOR:
                    # #     color_data = observation.raw_data
                    # #     depth_data = np.zeros(observation.shape)
                    # # datapoint['color_ims'] = color_data
                    # # datapoint['depth_ims'] = depth_data
                    # datapoint['action_ids'] = action_ids[type(action).__name__]
                    # datapoint['action_poses'] = action_poses
                    # datapoint['policy_ids'] = policy_id
                    # datapoint['greedy_q_values'] = greedy_q_value
                    # datapoint['pred_q_values'] = action.q_value
                    
                    # step the policy
                    #observation, reward, done, info = bin_picking_env.step(action)
                    #state = bin_picking_env.state
                    state.objs[0].T_obj_world = action['final_state']

                    # if isinstance(policy, SingulationFullRolloutPolicy):
                    #     policy.grasp_succeeds(info['grasp_succeeds'])
        
                    # debugging info
                    if vis_config['step_stats']:
                        logging.info('Action type: %s' %(type(action).__name__))
                        logging.info('Action Q-value: %.3f' %(action.q_value))
                        logging.info('Reward: %d' %(reward))
                        logging.info('Policy took %.3f sec' %(policy_stop-policy_start))
                        logging.info('Num objects remaining: %d' %(bin_picking_env.num_objects))
                        if info['cleared_pile']:
                            logging.info('Cleared pile!')
                        
                    # # store datapoint post-step data
                    # datapoint['rewards'] = reward
                    # datapoint['grasp_metrics'] = info['grasp_metric']
                    # datapoint['collisions'] = 1 * info['collides']
                    # datapoint['collisions_with_env'] = 1 * info['collides_with_static_obstacles']
                    # datapoint['grasped_obj_ids'] = obj_ids[info['grasped_obj_key']]
                    # datapoint['cleared_pile'] = 1 * info['cleared_pile']

                    # # store datapoint
                    # # dataset.add(datapoint)
                    # data_saved = True    
                    
                    # render observation
                    if vis_config['obs']:
                        vis2d.figure()
                        vis2d.imshow(observation, auto_subplot=True)
                        vis2d.show()
        
                    # render scene after
                    if vis_config['state']:
                        vis3d.figure()
                        bin_picking_env.render_3d_scene(render_camera=False)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)
                        # vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_after.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE)
                    state.objs[0].T_obj_world = action['tmpR']
                    vis3d.figure()
                    bin_picking_env.render_3d_scene(render_camera=False)
                    vis3d.show(starting_camera_pose=CAMERA_POSE)
                    state.objs[0].T_obj_world = action['final_state']
                    # increment the number of steps
                    num_steps += 1
                    if num_steps >= steps_per_test_case:
                        done = True
                        
            except NoActionFoundException as e:
                logging.warning('The policy failed to plan an action!')
                done = True                    
            except Exception as e:
                # log an error
                logging.warning('Rollout failed!')
                logging.warning('%s' %(str(e)))
                logging.warning(traceback.print_exc())
                # if debug:
                #     raise
                
                # reset env
                del bin_picking_env
                gc.collect()
                bin_picking_env = BinPickingEnv(config, vis_config)

                # terminate current rollout
                failed = True
                done = True

            # update test case id
            n += 1
            # dataset.flush()
            # logging.info("\n\nflushing")
            # logging.info("exiting")
            # sys.exit()
                
        # garbage collect
        del bin_picking_env
        gc.collect()

    # return the dataset 
    # dataset.flush()

    # log time
    rollout_stop = time.time()
    logging.info('Rollouts took %.3f sec' %(rollout_stop-rollout_start))

    return dataset
        obj_config = config['state_space']['object']
        stable_poses, _ = env.state.obj.mesh.compute_stable_poses(
            sigma=obj_config['stp_com_sigma'],
            n_samples=obj_config['stp_num_samples'],
            threshold=obj_config['stp_min_prob']
        )
        print 'num poses', len(stable_poses)
        for pose_num, pose in enumerate(stable_poses):
            print 'Computing Topples for pose', pose_num
            rot, trans = RigidTransform.rotation_and_translation_from_matrix(pose)
            env.state.obj.T_obj_world = RigidTransform(rot, trans, 'obj', 'world')
            # pose = env.state.obj.T_obj_world.matrix

            if args.before:
                env.render_3d_scene()        
                vis3d.show(starting_camera_pose=CAMERA_POSE)
                skip = raw_input('skip?')
                if skip == 'y':
                    continue

            vertices, normals, final_poses, vertex_probs, min_required_forces = policy.compute_topple(env.state)
            num_final_poses = len(final_poses)
            num_vertices = len(vertices)
            if num_final_poses > MAX_FINAL_POSES:
                print 'Too Many Poses!  Skipping'
                continue

            if args.topple_probs:
                topple_probs = np.sum(vertex_probs[:,1:], axis=1)
                vis_topple_probs(vertices, topple_probs)
Esempio n. 18
0
    return parser.parse_args()


if __name__ == '__main__':
    args = parse_args()
    config = YamlConfig(args.config_filename)
    policy = MultiTopplePolicy(config, use_sensitivity=True, num_samples=800)

    if config['debug']:
        random.seed(SEED)
        np.random.seed(SEED)

    env = GraspingEnv(config, config['vis'])
    env.reset()
    #env.state.material_props._color = np.array([0.86274509803] * 3)
    env.state.material_props._color = np.array([0.5] * 3)

    if args.before:
        env.render_3d_scene()
        color = np.array([0, 0, 0])
        vert = np.array([-0.01091172, 0.02806294, 0.06962403])
        normal = vert + .01 * np.array([-0.84288757, -0.3828792, 0.37807943])
        vis3d.points(Point(vert), scale=.001, color=color)
        vis3d.points(Point(normal), scale=.001, color=np.array([1, 0, 0]))
        vis3d.show(starting_camera_pose=CAMERA_POSE)

    policy.set_environment(env.environment)
    policy.action(env.state)
    #show_graph(policy.G, policy.edge_alphas)
    new_graph(policy.G)
Esempio n. 19
0
            )

            for push_num in range(10):
                push_idx = None
                # push_idx = 33
                sample_id = 0
                num_toppled, pose_angles, actual_poses = [], [], []
                print '\n\n\n\n\n\nSTARTING DIFFERENT PUSH', push_num
                while sample_id < 10:
                    sample_id += 1
                    # sim_point_cloud_masked = get_sim_point_cloud(depth_scene, env.state.obj)
                    usr_input = 'n'
                    while usr_input != 'y' and usr_input != 'a':
                        usr_input = utils.keyboard_input('\n\nPut the object in position y: continue, v: vis pose, a: abort push[y/v/a]:')
                        if usr_input == 'v':
                            vis3d.figure()
                            env.state.obj.T_obj_world = orig_pose
                            env.render_3d_scene()
                            vis3d.show(starting_camera_pose=CAMERA_POSE)
                    if usr_input == 'a':
                        print 'trying different push'
                        push_idx = None
                        sample_id = 0
                        num_toppled, pose_angles, actual_poses = [], [], []
                        continue

                    usr_input = 'n'
                    while usr_input != 'y':
                        s2r = sim_to_real_tf(sim_point_cloud_masked, vis=True)
                        usr_input = utils.keyboard_input('Did the pose registration work? [y/n]:')
                    env.state.obj.T_obj_world = s2r*orig_pose
Esempio n. 20
0
def display_or_save(filename):
    if args.save:
        vis3d.save_loop(filename, starting_camera_pose=CAMERA_POSE)
    else:
        vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 21
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker,
                     grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
            'obj', T_stp_camera.from_frame)
        if UNALIGNED or STP_ALIGNED:
            aligned_grasps = grasps
        else:
            aligned_grasps = self.align_grasps_with_camera(grasps)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image

        self.tensor_datapoint['camera_poses'] = self.get_camera_pose(sample)

        final_camera_intr = sample.camera.camera_intr.crop(
            self.crop_height, self.crop_width, depth_im_table.center[0],
            depth_im_table.center[1])
        self.tensor_datapoint['camera_intrs'] = np.r_[final_camera_intr.fx,
                                                      final_camera_intr.fy,
                                                      final_camera_intr.cx,
                                                      final_camera_intr.cy]
        if not IM_TENSOR:
            self.save_image(depth_im_table)
        else:
            depth_im_tf = self._crop(depth_im_table, size=None)

        for cnt, aligned_grasp in enumerate(aligned_grasps):
            if UNALIGNED:
                aligned_grasp = aligned_grasp.grasp_y_axis_offset(
                    np.random.uniform(0, 2 * np.pi))
                T_stp_grasp = RigidTransform(
                    stable_pose.r, from_frame='obj',
                    to_frame='stp') * aligned_grasp.T_grasp_obj
                if T_stp_grasp.x_axis[-1] > 0:
                    # Grasp from below table, rotate by 180 degrees
                    aligned_grasp = aligned_grasp.grasp_y_axis_offset(np.pi)
            T_grasp_camera = aligned_grasp.gripper_pose(self.gripper).inverse() * \
                             self.T_obj_camera.inverse()

            # Calculate psi, the angle between the grasp approach axis and the camera principal ray
            z_axis = T_grasp_camera.z_axis
            psi = np.arccos(
                z_axis[2] /
                np.sqrt(z_axis[0]**2 + z_axis[1]**2 + z_axis[2]**2))

            # if np.rad2deg(psi) > 20:
            #     continue

            # Get gamma, the angle between the grasp approach axis and the table normal
            _, gamma, _ = aligned_grasp.grasp_angles_from_stp_z(stable_pose)

            if LIMIT_BETA:
                perpendicular_table = (np.abs(gamma) < np.deg2rad(5))
                if not perpendicular_table:
                    continue

            if VISUALISE_3D:
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world,
                                                   style='surface',
                                                   dim=0.5,
                                                   plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper,
                            aligned_grasp,
                            T_obj_world,
                            color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                # vis.gripper(self.gripper, grasps[cnt], T_obj_world, color=(0.3, 0.3, 0.3))
                # print(psi)
                vis.show()

            collision_free = self.is_grasp_collision_free(
                aligned_grasp, collision_checker)
            # Project grasp coordinates in image
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera,
                                                    final_camera_intr)

            if IM_TENSOR:
                im, new_grasp = self.random_im_crop(depth_im_tf, (32, 32),
                                                    grasp_2d.center.x,
                                                    grasp_2d.center.y)
                self.tensor_datapoint['depth_ims_tf_table'] = im
                hand_pose = self.get_hand_pose(grasp_2d,
                                               T_grasp_camera.quaternion,
                                               psi,
                                               gamma,
                                               new_grasp=new_grasp)
            else:
                hand_pose = self.get_hand_pose(grasp_2d,
                                               T_grasp_camera.quaternion, psi,
                                               gamma)

            self.add_datapoint(hand_pose, collision_free, aligned_grasp,
                               grasp_metrics)
        self.cur_image_label += 1
Esempio n. 22
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker,
                     grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
            'obj', T_stp_camera.from_frame)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        camera_pose = self.get_camera_pose(sample)
        shifted_camera_intr = sample.camera.camera_intr
        aligned_grasps = self.align_grasps_with_camera(grasps)

        cx = depth_im_table.center[1]
        cy = depth_im_table.center[0]

        self.tensor_datapoint['camera_intrs'] = np.r_[shifted_camera_intr.fx,
                                                      shifted_camera_intr.fy,
                                                      shifted_camera_intr.cx,
                                                      shifted_camera_intr.cy]

        for aligned_grasp in aligned_grasps:
            if not self.is_grasp_aligned(aligned_grasp):
                continue
            collision_free = self.is_grasp_collision_free(
                aligned_grasp, collision_checker)
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera,
                                                    shifted_camera_intr)

            depth_im_tf = self.prepare_images(depth_im_table, grasp_2d, cx, cy)
            T_grasp_camera = aligned_grasp.gripper_pose(
                self.gripper).inverse() * self.T_obj_camera.inverse()

            if VISUALISE_3D:
                z_axis = T_grasp_camera.z_axis
                theta = np.rad2deg(
                    np.arccos((z_axis[2]) / (np.sqrt(
                        (z_axis[0]**2 + z_axis[1]**2 + z_axis[2]**2)))))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world,
                                                   style='surface',
                                                   dim=0.5,
                                                   plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper,
                            aligned_grasp,
                            T_obj_world,
                            color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                vis.show()

            theta = grasp_2d.angle
            R = np.array([[np.cos(theta), -np.sin(theta), 0],
                          [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
            rot = RigidTransform(rotation=R,
                                 to_frame='camera',
                                 from_frame='camera')

            new_quaternion = T_grasp_camera * rot

            hand_pose = self.get_hand_pose(grasp_2d, new_quaternion.quaternion)
            self.add_datapoint(depth_im_tf, hand_pose, collision_free,
                               camera_pose, aligned_grasp, grasp_metrics)
        self.cur_image_label += 1
Esempio n. 23
0
    config = YamlConfig(args.config_filename)
    policy = SingleTopplePolicy(config['policy'], use_sensitivity=True)

    if config['debug']:
        random.seed(SEED)
        np.random.seed(SEED)

    env = GraspingEnv(config, config['vis'])
    env.reset()
    env.state.material_props._color = np.array([0.86274509803] * 3)
    obj_name = env.state.obj.key
    policy.set_environment(env.environment)
    if args.before:
        env.render_3d_scene()
        vis3d.show(starting_camera_pose=CAMERA_POSE)
    action = policy.action(env.state)

    vis3d.figure()
    env.render_3d_scene()
    num_vertices = len(action.metadata['vertices'])
    for i, vertex, q_increase in zip(np.arange(num_vertices),
                                     action.metadata['vertices'],
                                     action.metadata['quality_increases']):
        topples = action.metadata['final_pose_ind'][i] != 0
        color = np.array(
            [min(1, 2 * (1 - q_increase)),
             min(2 * q_increase, 1), 0]) if topples else np.array([0, 0, 0])
        # color = np.array([min(1, 2*(1-q_increase)), min(2*q_increase, 1), 0])
        scale = .001 if i != action.metadata['best_ind'] else .003
        vis3d.points(Point(vertex, 'world'), scale=scale, color=color)
Esempio n. 24
0
        random.seed(SEED)
        np.random.seed(SEED)

    env = GraspingEnv(config, config['vis'])
    env.reset()
    #env.state.material_props._color = np.array([0.86274509803] * 3)
    #env.state.material_props._color = np.array([.345, .094, .27])
    env.state.material_props._color = np.array([0.5] * 3)
    obj_name = env.state.obj.key
    policy.set_environment(env.environment)

    if False:
        while True:
            env.reset()
            env.render_3d_scene()
            vis3d.show(starting_camera_pose=CAMERA_POSE)

    if args.before:
        env.state.obj.T_obj_world.translation += np.array([-.095, -.025, .001])
        # action = policy.grasping_policy.action(env.state)
        # print 'q', action.q_value
        # gripper(env.gripper(action), action.grasp(env.gripper(action)))
        # vis3d.mesh(env._grippers[GripperType.SUCTION].mesh)
        # color = [0,0,0]
        # mesh = env.state.obj.mesh.copy()
        # mesh.apply_transform(env.state.T_obj_world.matrix)
        # #vis3d.points(Point(np.mean(mesh.vertices, axis=0)), scale=.001)
        # #vis3d.points(Point(mesh.center_mass+np.array([0,.04,.04])), scale=.001)
        # vis3d.mesh(mesh, color=env.state.color)
        # #vis3d.points(env.state.T_obj_world.translation, radius=.001)
        # vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 25
0
def figure_1():
    env.state.obj.T_obj_world.translation += np.array([-.01, -.05, .001])
    action = policy.action(env.state)
    env.render_3d_scene()
    bottom_points = policy.toppling_model.bottom_points
    vis3d.plot3d(bottom_points[:2], color=[0, 0, 0], tube_radius=.0005)
    vis3d.points(Point(bottom_points[0]), color=[0, 0, 0], scale=.001)
    vis3d.points(Point(bottom_points[1]), color=[0, 0, 0], scale=.001)
    y_dir = normalize(bottom_points[1] - bottom_points[0])
    origin = policy.toppling_model.com_projected_on_edges[0] - .005 * y_dir
    vis_axes(origin, y_dir)

    #mesh = env.state.mesh.copy().apply_transform(env.state.T_obj_world.matrix)
    #mesh.fix_normals()
    #direction = normalize([-.03, -.07, 0])
    #intersect, _, face_ind = mesh.ray.intersects_location([[.02, -.005, .09]], [direction], multiple_hits=False)
    #normal = mesh.face_normals[face_ind[0]]
    #start_point = intersect[0] + .03*normal
    #end_point = intersect[0]
    #shaft_points = [start_point, end_point]
    #h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(-normal)
    #h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(-normal)
    #head_points = [end_point - 0.01*h2, end_point, end_point - 0.01*h1]
    #vis3d.plot3d(shaft_points, color=[1,0,0], tube_radius=.001)
    #vis3d.plot3d(head_points, color=[1,0,0], tube_radius=.001)
    #vis3d.points(Point(end_point), scale=.002, color=[0,0,0])

    # Center of Mass
    #start_point = env.state.T_obj_world.translation - .0025*y_dir - np.array([0,0,.005])
    start_point = env.state.T_obj_world.translation
    end_point = start_point - np.array([0, 0, .03])
    vis3d.points(Point(start_point), scale=.002, color=[0, 0, 0])
    shaft_points = [start_point, end_point]
    h1 = np.array([[1, 0, 0], [0, 0.7071, -0.7071], [0, 0.7071,
                                                     0.7071]]).dot(-up)
    h2 = np.array([[1, 0, 0], [0, 0.7071, 0.7071], [0, -0.7071,
                                                    0.7071]]).dot(-up)
    head_points = [end_point - 0.01 * h2, end_point, end_point - 0.01 * h1]
    vis3d.plot3d(shaft_points, color=[1, 0, 0], tube_radius=.001)
    vis3d.plot3d(head_points, color=[1, 0, 0], tube_radius=.001)
    vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 26
0
def figure_2():
    env.state.material_props._color = np.array([0.75] * 3)
    # env.state.obj.T_obj_world.translation += np.array([-.095,.025,.001])
    env.state.obj.T_obj_world.translation += np.array([-.01, -.04, .001])
    action = policy.action(env.state)
    env.render_3d_scene()
    bottom_points = policy.toppling_model.bottom_points
    edge = 1
    vis3d.plot3d(bottom_points[edge:edge + 2],
                 color=[0, 0, 0],
                 tube_radius=.0005)
    vis3d.points(Point(bottom_points[edge]), color=[0, 0, 0], scale=.001)
    vis3d.points(Point(bottom_points[edge + 1]), color=[0, 0, 0], scale=.001)
    y_dir = normalize(bottom_points[edge + 1] - bottom_points[edge])
    origin = policy.toppling_model.com_projected_on_edges[
        edge]  # - .0025*y_dir
    vis_axes(origin, y_dir)

    mesh = env.state.mesh.copy().apply_transform(env.state.T_obj_world.matrix)
    mesh.fix_normals()
    #direction = normalize([-.03, -.07, 0])
    #intersect, _, face_ind = mesh.ray.intersects_location([[.02, -.005, .09]], [direction], multiple_hits=False)
    ray_origin = mesh.center_mass + np.array([.1, -.1, .035])
    direction = normalize([-.1, .1, 0])
    intersect, _, face_ind = mesh.ray.intersects_location([ray_origin],
                                                          [direction],
                                                          multiple_hits=False)
    normal = mesh.face_normals[face_ind[0]]
    start_point = intersect[0] + .03 * normal
    end_point = intersect[0]
    shaft_points = [start_point, end_point]
    h1 = np.array([[0.7071, 0, -0.7071], [0, 1, 0], [0.7071, 0,
                                                     0.7071]]).dot(-normal)
    h2 = np.array([[0.7071, 0, 0.7071], [0, 1, 0], [-0.7071, 0,
                                                    0.7071]]).dot(-normal)
    head_points = [end_point - 0.01 * h2, end_point, end_point - 0.01 * h1]
    vis3d.plot3d(shaft_points, color=red, tube_radius=.001)
    vis3d.plot3d(head_points, color=red, tube_radius=.001)
    vis3d.points(Point(end_point), scale=.002, color=[0, 0, 0])

    # Center of Mass
    #start_point = env.state.T_obj_world.translation# - .0025*y_dir - np.array([0,0,.005])
    start_point = mesh.center_mass
    end_point = start_point - np.array([0, 0, .03])
    vis3d.points(Point(start_point), scale=.002, color=[0, 0, 0])
    shaft_points = [start_point, end_point]
    h1 = np.array([[1, 0, 0], [0, 0.7071, -0.7071], [0, 0.7071,
                                                     0.7071]]).dot(-up)
    h2 = np.array([[1, 0, 0], [0, 0.7071, 0.7071], [0, -0.7071,
                                                    0.7071]]).dot(-up)
    head_points = [end_point - 0.01 * h2, end_point, end_point - 0.01 * h1]
    vis3d.plot3d(shaft_points, color=red, tube_radius=.001)
    vis3d.plot3d(head_points, color=red, tube_radius=.001)

    # Dotted lines
    r_gs = dotted_line(start_point, origin)
    for r_g in r_gs:
        vis3d.plot3d(r_g, color=orange, tube_radius=.0006)
    s = normalize(bottom_points[edge + 1] - bottom_points[edge])
    vertex_projected_on_edge = (
        intersect[0] - bottom_points[edge]).dot(s) * s + bottom_points[edge]
    r_fs = dotted_line(intersect[0], vertex_projected_on_edge)
    for r_f in r_fs:
        vis3d.plot3d(r_f, color=orange, tube_radius=.0006)
    vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 27
0
def failure_modes():
    # dataset = env._state_space._database.dataset('mini_dexnet')
    # obj = dataset['pawn']
    # obj.T_obj_world = dataset.stable_poses('pawn')[8].T_obj_table
    # env.state.obj = obj

    # mesh = obj.mesh.copy().apply_transform(env.state.T_obj_world.matrix)
    # mesh.fix_normals()
    # direction = normalize([1, -.005, 0])
    # intersect, _, face_ind = mesh.ray.intersects_location([[-1, 0, .09]], [direction], multiple_hits=False)
    # direction = normalize([1,-0.25,0])
    # start_point = intersect[0] - .03*direction
    # end_point = intersect[0]
    # shaft_points = [start_point, end_point]
    # h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(direction)
    # h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(direction)
    # head_points = [end_point - 0.01*h2, end_point, end_point - 0.01*h1]
    # vis3d.plot3d(shaft_points, color=red, tube_radius=.001)
    # vis3d.plot3d(head_points, color=red, tube_radius=.001)

    # env.render_3d_scene()
    # vis3d.show(starting_camera_pose=CAMERA_POSE)

    # env.render_3d_scene()
    # vis3d.show(starting_camera_pose=CAMERA_POSE)

    # env.state.obj.T_obj_world = dataset.stable_poses('pawn')[0].T_obj_table
    # env.render_3d_scene()
    # vis3d.show(starting_camera_pose=CAMERA_POSE)

    # dataset = env._state_space._database.dataset('mini_dexnet')
    # obj = dataset['yoda']
    # obj.T_obj_world = dataset.stable_poses('yoda')[2].T_obj_table
    # env.state.obj = obj

    # mesh = obj.mesh.copy().apply_transform(env.state.T_obj_world.matrix)
    # mesh.fix_normals()
    # direction = normalize([0, .1, 0])
    # intersect = mesh.center_mass + np.array([0,-.015,.037])
    # start_point = intersect - .03*direction
    # end_point = intersect
    # shaft_points = [start_point, end_point]
    # h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(direction)
    # h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(direction)
    # head_points = [end_point - 0.01*h2, end_point, end_point - 0.01*h1]
    # vis3d.plot3d(shaft_points, color=red, tube_radius=.001)
    # vis3d.plot3d(head_points, color=red, tube_radius=.001)

    # env.render_3d_scene()
    # vis3d.show(starting_camera_pose=CAMERA_POSE)

    # env.state.obj.T_obj_world = dataset.stable_poses('yoda')[4].T_obj_table
    # env.render_3d_scene()
    # vis3d.show(starting_camera_pose=CAMERA_POSE)

    dataset = env._state_space._database.dataset('mini_dexnet')
    obj = dataset['vase']
    obj.T_obj_world = dataset.stable_poses('vase')[5].T_obj_table
    env.state.obj = obj

    mesh = obj.mesh.copy().apply_transform(env.state.T_obj_world.matrix)
    mesh.fix_normals()
    direction = normalize([.03, .1, 0])
    intersect = mesh.center_mass + np.array([-.019, -.02, .02])
    start_point = intersect - .03 * direction
    end_point = intersect
    shaft_points = [start_point, end_point]
    h1 = np.array([[0.7071, -0.7071, 0], [0.7071, 0.7071, 0],
                   [0, 0, 1]]).dot(direction)
    h2 = np.array([[0.7071, 0.7071, 0], [-0.7071, 0.7071, 0],
                   [0, 0, 1]]).dot(direction)
    head_points = [end_point - 0.01 * h2, end_point, end_point - 0.01 * h1]
    vis3d.plot3d(shaft_points, color=red, tube_radius=.001)
    vis3d.plot3d(head_points, color=red, tube_radius=.001)

    env.render_3d_scene()
    vis3d.show(starting_camera_pose=CAMERA_POSE)

    env.state.obj.T_obj_world = dataset.stable_poses('vase')[4].T_obj_table
    env.render_3d_scene()
    vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 28
0
def figure_3():
    #env.state.obj.T_obj_world.translation += np.array([-.01,-.05,.01])
    action = policy.action(env.state)
    mesh = env.state.obj.mesh.copy().apply_transform(
        env.state.T_obj_world.matrix)
    mesh = mesh.slice_plane([0, 0, .0005], -up)
    from dexnet.grasping import GraspableObject3D
    env.state.obj = GraspableObject3D(mesh)
    env.render_3d_scene()
    bottom_points = policy.toppling_model.bottom_points
    vis3d.plot3d(bottom_points[:2], color=[0, 0, 0], tube_radius=.0005)
    vis3d.points(Point(bottom_points[0]), color=[0, 0, 0], scale=.001)
    vis3d.points(Point(bottom_points[1]), color=[0, 0, 0], scale=.001)
    y_dir = normalize(bottom_points[1] - bottom_points[0])
    origin = policy.toppling_model.com_projected_on_edges[0] - .0025 * y_dir
    vis3d.points(Point(origin), color=[0, 0, 1], scale=.001)

    # t = .002
    # x = np.cross(y_dir, up)
    # while t < np.linalg.norm(origin - bottom_points[0]):
    #     start_point = origin - t*y_dir
    #     end_point = start_point + .0075*x
    #     shaft_points = [start_point, end_point]
    #     h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(x)
    #     h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(x)
    #     head_points = [end_point - 0.001*h2, end_point, end_point - 0.001*h1]
    #     vis3d.plot3d(shaft_points, color=purple, tube_radius=.0002)
    #     vis3d.plot3d(head_points, color=purple, tube_radius=.0002)
    #     t += .002

    ## try 2
    x = np.cross(y_dir, up)
    t = .004
    arrow_dir = x
    start_point = origin - t * y_dir
    end_point = start_point + .0075 * arrow_dir
    shaft_points = [start_point, end_point]
    h1 = np.array([[0.7071, -0.7071, 0], [0.7071, 0.7071, 0], [0, 0,
                                                               1]]).dot(x)
    h2 = np.array([[0.7071, 0.7071, 0], [-0.7071, 0.7071, 0], [0, 0,
                                                               1]]).dot(x)
    head_points = [end_point - 0.001 * h2, end_point, end_point - 0.001 * h1]
    vis3d.plot3d(shaft_points, color=purple, tube_radius=.0002)
    vis3d.plot3d(head_points, color=purple, tube_radius=.0002)

    # t = .000
    # while t < np.linalg.norm(origin - bottom_points[1]):
    #     arrow_dir = x
    #     start_point = origin + t*y_dir
    #     end_point = start_point + .0075*arrow_dir
    #     shaft_points = [start_point, end_point]
    #     h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(arrow_dir)
    #     h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(arrow_dir)
    #     head_points = [end_point - 0.001*h2, end_point, end_point - 0.001*h1]
    #     vis3d.plot3d(shaft_points, color=purple, tube_radius=.0002)
    #     vis3d.plot3d(head_points, color=purple, tube_radius=.0002)
    #     t += .002

    ## try 2
    t = .01
    arrow_dir = -x
    start_point = origin + t * y_dir
    end_point = start_point + .0075 * arrow_dir
    shaft_points = [start_point, end_point]
    h1 = np.array([[0.7071, -0.7071, 0], [0.7071, 0.7071, 0],
                   [0, 0, 1]]).dot(arrow_dir)
    h2 = np.array([[0.7071, 0.7071, 0], [-0.7071, 0.7071, 0],
                   [0, 0, 1]]).dot(arrow_dir)
    head_points = [end_point - 0.001 * h2, end_point, end_point - 0.001 * h1]
    vis3d.plot3d(shaft_points, color=purple, tube_radius=.0002)
    vis3d.plot3d(head_points, color=purple, tube_radius=.0002)

    #arrow_dir = np.cross(y_dir, up)
    #start_point = origin - .005*y_dir
    #end_point = start_point + .0075*arrow_dir
    #shaft_points = [start_point, end_point]
    #h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(arrow_dir)
    #h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(arrow_dir)
    #head_points = [end_point - 0.001*h2, end_point, end_point - 0.001*h1]
    #vis3d.plot3d(shaft_points, color=purple, tube_radius=.0002)
    #vis3d.plot3d(head_points, color=purple, tube_radius=.0002)

    #arrow_dir = -up
    #end_point = start_point + .0075*arrow_dir
    #shaft_points = [start_point, end_point]
    #h1 = np.array([[1,0,0],[0,0.7071,-0.7071],[0,0.7071,0.7071]]).dot(arrow_dir)
    #h2 = np.array([[1,0,0],[0,0.7071,0.7071],[0,-0.7071,0.7071]]).dot(arrow_dir)
    #head_points = [end_point - 0.001*h2, end_point, end_point - 0.001*h1]
    #vis3d.plot3d(shaft_points, color=blue, tube_radius=.0002)
    #vis3d.plot3d(head_points, color=blue, tube_radius=.0002)
    #
    #vis3d.points(Point(start_point), color=[0,1,0], scale=.001)
    #vis_axes(origin, y_dir)
    vis3d.show(starting_camera_pose=CAMERA_POSE)
    sys.exit()
Esempio n. 29
0
    def display_grasps(self,
                       object_name,
                       gripper_name,
                       metric_name,
                       config=None):
        """ Display grasps for an object 
        
        Parameters
        ----------
        object_name : :obj:`str`
            Object to display
        gripper_name : :obj:`str`
            Gripper for which to display grasps
        metric_name : :obj:`str`
            Metric to color/rank grasps with
        config : :obj:`dict`
            Configuration dict for visualization. 
            Parameters are in Other parameters. Values from self.default_config are used for keys not provided.
        
        Other Parameters
        ----------------
        gripper_dir
            Directory where the grippers models and parameters are.
        quality_scale
            Range to scale quality metric values to
        show_gripper
            Whether or not to show the gripper in the visualization
        min_metric
            lowest value of metric to show grasps for
        max_plot_gripper
            Number of grasps to plot
        animate
            Whether or not to animate the displayed object
        """
        self._check_opens()
        config = self._get_config(config)

        grippers = os.listdir(config['gripper_dir'])
        if gripper_name not in grippers:
            raise ValueError(
                "{} is not a valid gripper name".format(gripper_name))
        gripper = gr.RobotGripper.load(gripper_name,
                                       gripper_dir=config['gripper_dir'])

        objects = self.dataset.object_keys
        if object_name not in objects:
            raise ValueError(
                "{} is not a valid object name".format(object_name))

        metrics = self.dataset.available_metrics(object_name,
                                                 gripper=gripper.name)
        if metric_name not in metrics:
            raise ValueError(
                "{} is not computed for gripper {}, object {}".format(
                    metric_name, gripper.name, object_name))

        logger.info('Displaying grasps for gripper %s on object %s' %
                    (gripper.name, object_name))
        object = self.dataset[object_name]
        grasps, metrics = self.dataset.sorted_grasps(object_name,
                                                     metric_name,
                                                     gripper=gripper.name)

        if len(grasps) == 0:
            raise RuntimeError('No grasps for gripper %s on object %s' %
                               (gripper.name, object_name))
            return

        low = np.min(metrics)
        high = np.max(metrics)
        if low == high:
            q_to_c = lambda quality: config['quality_scale']
        else:
            q_to_c = lambda quality: config['quality_scale'] * (
                quality - low) / (high - low)

        if config['show_gripper']:
            i = 0
            stable_pose = self.dataset.stable_pose(object.key, 'pose_1')
            for grasp, metric in zip(grasps, metrics):
                if metric <= config['min_metric']:
                    continue

                print 'Grasp %d %s=%.5f' % (grasp.id, metric_name, metric)
                T_obj_world = RigidTransform(from_frame='obj',
                                             to_frame='world')
                color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
                T_obj_gripper = grasp.gripper_pose(gripper)
                grasp = grasp.perpendicular_table(stable_pose)
                vis.figure()
                vis.gripper_on_object(gripper,
                                      grasp,
                                      object,
                                      gripper_color=(0.25, 0.25, 0.25),
                                      stable_pose=stable_pose,
                                      plot_table=False)
                vis.show(animate=config['animate'])
                i += 1
                if i >= config['max_plot_gripper']:
                    break
        else:
            i = 0
            vis.figure()
            vis.mesh(object.mesh, style='surface')
            for grasp, metric in zip(grasps, metrics):
                if metric <= config['min_metric']:
                    continue

                print 'Grasp %d %s=%.5f' % (grasp.id, metric_name, metric)
                T_obj_world = RigidTransform(from_frame='obj',
                                             to_frame='world')
                color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
                T_obj_gripper = grasp.gripper_pose(gripper)
                vis.grasp(grasp, grasp_axis_color=color, endpoint_color=color)
                i += 1
                if i >= config['max_plot_gripper']:
                    break

            vis.show(animate=config['animate'])
Esempio n. 30
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker, grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames('obj', T_stp_camera.from_frame)
        aligned_grasps = self.align_grasps_with_camera(grasps)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        cx = depth_im_table.center[1]
        cy = depth_im_table.center[0]
        camera_pose = self.get_camera_pose(sample)
        self.tensor_datapoint['camera_poses'] = camera_pose
        shifted_camera_intr = sample.camera.camera_intr
        self.tensor_datapoint['camera_intrs'] = np.r_[shifted_camera_intr.fx,
                                                      shifted_camera_intr.fy,
                                                      shifted_camera_intr.cx,
                                                      shifted_camera_intr.cy]
        self.save_orig_image(depth_im_table, camera_pose, stable_pose, shifted_camera_intr)

        grid_space = 200
        grids = 3
        centre = np.empty((grids, grids, 2))
        saved = np.ones((grids, grids)) * -1

        depth_images = np.empty((grids, grids, 32, 32, 1))
        # Crop images in a grid around the centre
        for x_grid in range(grids):
            x_pos = grid_space / 4 - x_grid * grid_space / (grids + 1)
            for y_grid in range(grids):
                y_pos = grid_space / 4 - y_grid * grid_space / (grids + 1)
                depth_im = self.prepare_images(depth_im_table, x_pos, y_pos)
                self._show_image(depth_im)
                depth_images[x_grid, y_grid, :, :, :] = depth_im
                centre[x_grid, y_grid, 0] = x_pos
                centre[x_grid, y_grid, 1] = y_pos

        for cnt, aligned_grasp in enumerate(aligned_grasps):
            collision_free = self.is_grasp_collision_free(aligned_grasp, collision_checker)
            # Project grasp coordinates in image
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera, shifted_camera_intr)

            grasp_point = aligned_grasp.close_fingers(self.obj, vis=False, check_approach=False)

            if not grasp_point[0]:
                Warning("Could not find contact points")
                continue
            # Get grasp width in pixel from endpoints
            p_1 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][0].point, 1).T).T[:3]
            p_2 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][1].point, 1).T).T[:3]
            grasp_width_px = self.width_px(shifted_camera_intr, p_1, p_2)

            grasp_width = aligned_grasp.width_from_endpoints(grasp_point[1][0].point, grasp_point[1][1].point)

            pos_x = cx - grasp_2d.center.x
            pos_y = cy - grasp_2d.center.y

            distance = np.abs((centre[:, :, 0] - pos_x)**2 + (centre[:, :, 1] - pos_y)**2)

            idx = np.where(distance == np.amin(distance))
            idx_x = idx[0][0]
            idx_y = idx[1][0]

            grasp_center_x = (300 - grasp_2d.center.x - centre[idx_x, idx_y, 0])//3
            grasp_center_y = (300 - grasp_2d.center.y - centre[idx_x, idx_y, 1])//3

            if saved[idx_x, idx_y] == -1:
                np.save(self.image_dir + "/depth_im_{:07d}.npy".format(self.cur_image_file),
                        depth_images[idx_x, idx_y, :, :, :])
                saved[idx_x, idx_y] = self.cur_image_file
                self.tensor_datapoint['image_files'] = self.cur_image_file
                self.cur_image_file += 1
            else:
                self.tensor_datapoint['image_files'] = saved[idx_x, idx_y]

            T_grasp_camera = aligned_grasp.gripper_pose(self.gripper).inverse() * self.T_obj_camera.inverse()

            if VISUALISE_3D:
                z_axis = T_grasp_camera.z_axis
                theta = np.rad2deg(np.arccos((z_axis[2]) /
                                             (np.sqrt((z_axis[0] ** 2 + z_axis[1] ** 2 + z_axis[2] ** 2)))))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world, style='surface', dim=0.5, plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper, aligned_grasp, T_obj_world, color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                print(theta)
                vis.show()

            hand_pose = self.get_hand_pose(grasp_center_x, grasp_center_y, grasp_2d, T_grasp_camera,
                                           grasp_width, grasp_width_px)

            self.add_datapoint(hand_pose,
                               collision_free, aligned_grasp, grasp_metrics)
        self.cur_image_label += 1