Esempio n. 1
0
    def display_grasps(self,
                       object_name,
                       gripper_name,
                       metric_name,
                       config=None):
        """ Display grasps for an object 
        
        Parameters
        ----------
        object_name : :obj:`str`
            Object to display
        gripper_name : :obj:`str`
            Gripper for which to display grasps
        metric_name : :obj:`str`
            Metric to color/rank grasps with
        config : :obj:`dict`
            Configuration dict for visualization. 
            Parameters are in Other parameters. Values from self.default_config are used for keys not provided.
        
        Other Parameters
        ----------------
        gripper_dir
            Directory where the grippers models and parameters are.
        quality_scale
            Range to scale quality metric values to
        show_gripper
            Whether or not to show the gripper in the visualization
        min_metric
            lowest value of metric to show grasps for
        max_plot_gripper
            Number of grasps to plot
        animate
            Whether or not to animate the displayed object
        """
        self._check_opens()
        config = self._get_config(config)

        grippers = os.listdir(config['gripper_dir'])
        if gripper_name not in grippers:
            raise ValueError(
                "{} is not a valid gripper name".format(gripper_name))
        gripper = gr.RobotGripper.load(gripper_name,
                                       gripper_dir=config['gripper_dir'])

        objects = self.dataset.object_keys
        if object_name not in objects:
            raise ValueError(
                "{} is not a valid object name".format(object_name))

        metrics = self.dataset.available_metrics(object_name,
                                                 gripper=gripper.name)
        if metric_name not in metrics:
            raise ValueError(
                "{} is not computed for gripper {}, object {}".format(
                    metric_name, gripper.name, object_name))

        logger.info('Displaying grasps for gripper %s on object %s' %
                    (gripper.name, object_name))
        object = self.dataset[object_name]
        grasps, metrics = self.dataset.sorted_grasps(object_name,
                                                     metric_name,
                                                     gripper=gripper.name)

        if len(grasps) == 0:
            raise RuntimeError('No grasps for gripper %s on object %s' %
                               (gripper.name, object_name))
            return

        low = np.min(metrics)
        high = np.max(metrics)
        if low == high:
            q_to_c = lambda quality: config['quality_scale']
        else:
            q_to_c = lambda quality: config['quality_scale'] * (
                quality - low) / (high - low)

        if config['show_gripper']:
            i = 0
            stable_pose = self.dataset.stable_pose(object.key, 'pose_1')
            for grasp, metric in zip(grasps, metrics):
                if metric <= config['min_metric']:
                    continue

                print 'Grasp %d %s=%.5f' % (grasp.id, metric_name, metric)
                T_obj_world = RigidTransform(from_frame='obj',
                                             to_frame='world')
                color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
                T_obj_gripper = grasp.gripper_pose(gripper)
                grasp = grasp.perpendicular_table(stable_pose)
                vis.figure()
                vis.gripper_on_object(gripper,
                                      grasp,
                                      object,
                                      gripper_color=(0.25, 0.25, 0.25),
                                      stable_pose=stable_pose,
                                      plot_table=False)
                vis.show(animate=config['animate'])
                i += 1
                if i >= config['max_plot_gripper']:
                    break
        else:
            i = 0
            vis.figure()
            vis.mesh(object.mesh, style='surface')
            for grasp, metric in zip(grasps, metrics):
                if metric <= config['min_metric']:
                    continue

                print 'Grasp %d %s=%.5f' % (grasp.id, metric_name, metric)
                T_obj_world = RigidTransform(from_frame='obj',
                                             to_frame='world')
                color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
                T_obj_gripper = grasp.gripper_pose(gripper)
                vis.grasp(grasp, grasp_axis_color=color, endpoint_color=color)
                i += 1
                if i >= config['max_plot_gripper']:
                    break

            vis.show(animate=config['animate'])
Esempio n. 2
0
    def read_grasps(self,
                    object_name,
                    stable_pose_id,
                    max_grasps=10,
                    visualize=False):
        # load gripper
        gripper = RobotGripper.load(
            GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        # read the most robust grasp
        sorted_grasps, metrics = dexnet_handle.dataset.sorted_grasps(
            object_name,
            stable_pose_id=('pose_' + str(stable_pose_id)),
            metric='force_closure',
            gripper=gripper.name)

        if (len(sorted_grasps)) == 0:
            print('no grasps for this stable pose')
            if visualize:
                stable_pose = dexnet_handle.dataset.stable_pose(
                    object_name,
                    stable_pose_id=('pose_' + str(stable_pose_id)))
                obj = dexnet_handle.dataset.graspable(object_name)
                vis.figure()
                T_table_world = RigidTransform(from_frame='table',
                                               to_frame='world')
                T_obj_world = Visualizer3D.mesh_stable_pose(
                    obj.mesh.trimesh,
                    stable_pose.T_obj_world,
                    T_table_world=T_table_world,
                    color=(0.5, 0.5, 0.5),
                    style='surface',
                    plot_table=True,
                    dim=0.15)
                vis.show(False)
            return None, None

        contact_points = map(get_contact_points, sorted_grasps)

        # ------------------------ VISUALIZATION CODE ------------------------
        if visualize:
            low = np.min(metrics)
            high = np.max(metrics)
            if low == high:
                q_to_c = lambda quality: CONFIG['quality_scale']
            else:
                q_to_c = lambda quality: CONFIG['quality_scale'] * (
                    quality - low) / (high - low)

            stable_pose = dexnet_handle.dataset.stable_pose(
                object_name, stable_pose_id=('pose_' + str(stable_pose_id)))
            obj = dexnet_handle.dataset.graspable(object_name)
            vis.figure()

            T_table_world = RigidTransform(from_frame='table',
                                           to_frame='world')
            T_obj_world = Visualizer3D.mesh_stable_pose(
                obj.mesh.trimesh,
                stable_pose.T_obj_world,
                T_table_world=T_table_world,
                color=(0.5, 0.5, 0.5),
                style='surface',
                plot_table=True,
                dim=0.15)
            for grasp, metric in zip(sorted_grasps, metrics):
                color = plt.get_cmap('hsv')((q_to_c(metric)))[:-1]
                vis.grasp(grasp,
                          T_obj_world=stable_pose.T_obj_world,
                          grasp_axis_color=color,
                          endpoint_color=color)
            vis.show(False)
        # ------------------------ END VISUALIZATION CODE ---------------------------

        # ------------------------ START COLLISION CHECKING ---------------------------
        #stable_pose = dexnet_handle.dataset.stable_pose(object_name, stable_pose_id=('pose_'+str(stable_pose_id)))
        #graspable = dexnet_handle.dataset.graspable(object_name)
        #cc = GraspCollisionChecker(gripper).set_graspable_object(graspable, stable_pose.T_obj_world)
        stable_pose_matrix = self.get_stable_pose(object_name, stable_pose_id)
        # CLOSE DATABASE
        dexnet_handle.close_database()
        gripper_poses = []

        for grasp in sorted_grasps[:max_grasps]:
            gripper_pose_matrix = np.eye(4, 4)
            center_world = np.matmul(
                stable_pose_matrix,
                [grasp.center[0], grasp.center[1], grasp.center[2], 1])
            axis_world = np.matmul(
                stable_pose_matrix,
                [grasp.axis_[0], grasp.axis_[1], grasp.axis_[2], 1])
            gripper_angle = math.atan2(axis_world[1], axis_world[0])
            gripper_pose_matrix[:3, 3] = center_world[:3]
            gripper_pose_matrix[0, 0] = math.cos(gripper_angle)
            gripper_pose_matrix[0, 1] = -math.sin(gripper_angle)
            gripper_pose_matrix[1, 0] = math.sin(gripper_angle)
            gripper_pose_matrix[1, 1] = math.cos(gripper_angle)
            #if visualize:
            #    vis.figure()
            #    vis.gripper_on_object(gripper, grasp, obj, stable_pose=stable_pose.T_obj_world)
            #    vis.show(False)
            gripper_poses.append(gripper_pose_matrix)

        return contact_points, gripper_poses
Esempio n. 3
0
    def antipodal_grasp_sampler(self):
    	#of = ObjFile(OBJ_FILENAME)
    	#sf = SdfFile(SDF_FILENAME)
    	#mesh = of.read()
    	#sdf = sf.read()
        #obj = GraspableObject3D(sdf, mesh)
        mass = 1.0
        CONFIG['obj_rescaling_type'] = RescalingType.RELATIVE
        mesh_processor = MeshProcessor(OBJ_FILENAME, CONFIG['cache_dir'])
        mesh_processor.generate_graspable(CONFIG)
        mesh = mesh_processor.mesh
        sdf = mesh_processor.sdf
        obj = GraspableObject3D(sdf, mesh)

        gripper = RobotGripper.load(GRIPPER_NAME)

        ags = AntipodalGraspSampler(gripper, CONFIG)
        grasps = ags.sample_grasps(obj, num_grasps=100)
        print(len(grasps))
  
        quality_config = GraspQualityConfigFactory.create_config(CONFIG['metrics']['robust_ferrari_canny'])
        #quality_config = GraspQualityConfigFactory.create_config(CONFIG['metrics']['force_closure'])
        quality_fn = GraspQualityFunctionFactory.create_quality_function(obj, quality_config)
        

        vis.figure()
        #vis.points(PointCloud(nparraypoints), scale=0.001, color=np.array([0.5,0.5,0.5]))
        #vis.plot3d(nparraypoints)

        metrics = []
        vis.mesh(obj.mesh.trimesh, style='surface')
        for grasp in grasps:
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                #fn_fc = quality_fn(grasp).quality
                true_fc = PointGraspMetrics3D.grasp_quality(grasp, obj, quality_config)
                true_fc = true_fc
                metrics.append(true_fc)

    	    #color = quality_fn(grasp).quality
            #if (true_fc > 1.0):
            #    true_fc = 1.0
            #color = (1.0-true_fc, true_fc, 0.0)

        low = np.min(metrics)
        high = np.max(metrics)
        print(low)
        print(high)
        if low == high:
            q_to_c = lambda quality: CONFIG['quality_scale']
        else:
            q_to_c = lambda quality: CONFIG['quality_scale'] * (quality - low) / (high - low)
        print(len(metrics))
        for grasp, metric in zip(grasps, metrics):
            color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
            print(color)
            vis.grasp(grasp, grasp_axis_color=color,endpoint_color=color)


        vis.show(False)
Esempio n. 4
0
def antipodal_grasp_sampler(visual=False, debug=False):
    mass = 1.0
    CONFIG['obj_rescaling_type'] = RescalingType.RELATIVE
    mesh_processor = MeshProcessor(OBJ_FILENAME, CONFIG['cache_dir'])
    mesh_processor.generate_graspable(CONFIG)
    mesh = mesh_processor.mesh
    sdf = mesh_processor.sdf
    stable_poses = mesh_processor.stable_poses
    obj = GraspableObject3D(sdf, mesh)
    stable_pose = stable_poses[0]
    if visual:
        vis.figure()

    T_table_world = RigidTransform(from_frame='table', to_frame='world')
    T_obj_world = Visualizer3D.mesh_stable_pose(obj.mesh.trimesh,
                                                stable_pose.T_obj_world,
                                                T_table_world=T_table_world,
                                                color=(0.5, 0.5, 0.5),
                                                style='surface',
                                                plot_table=True,
                                                dim=0.15)
    if debug:
        print(len(stable_poses))
    #for stable_pose in stable_poses:
    #    print(stable_pose.p)
    #    print(stable_pose.r)
    #    print(stable_pose.x0)
    #    print(stable_pose.face)
    #    print(stable_pose.id)
    # glass = 22 is standing straight
    if debug:
        print(stable_pose.r)
        print(stable_pose.T_obj_world)
    gripper = RobotGripper.load(
        GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

    ags = AntipodalGraspSampler(gripper, CONFIG)
    stable_pose.id = 0
    grasps = ags.generate_grasps(obj,
                                 target_num_grasps=20,
                                 max_iter=5,
                                 stable_pose=stable_pose.r)

    quality_config = GraspQualityConfigFactory.create_config(
        CONFIG['metrics']['robust_ferrari_canny'])

    metrics = []
    result = []

    #grasps = map(lambda g : g.perpendicular_table(stable_pose), grasps)

    for grasp in grasps:
        c1, c2 = grasp.endpoints
        true_fc = PointGraspMetrics3D.grasp_quality(grasp, obj, quality_config)
        metrics.append(true_fc)
        result.append((c1, c2))

        if debug:
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                print("Grasp:")
                print(c1.point)
                print(c2.point)
                print(true_fc)

    low = np.min(metrics)
    high = np.max(metrics)
    if low == high:
        q_to_c = lambda quality: CONFIG['quality_scale']
    else:
        q_to_c = lambda quality: CONFIG['quality_scale'] * (quality - low) / (
            high - low)

    if visual:
        for grasp, metric in zip(grasps, metrics):
            #grasp2 = grasp.perpendicular_table(stable_pose)
            #c1, c2 = grasp.endpoints
            #axis = ParallelJawPtGrasp3D.axis_from_endpoints(c1, c2)
            #angle = np.dot(np.matmul(stable_pose.r, axis), [1,0,0])
            #angle = math.tan(axis[1]/axis[0])
            #angle = math.degrees(angle)%360
            #print(angle)
            #print(angle/360.0)
            color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
            vis.grasp(grasp,
                      T_obj_world=T_obj_world,
                      grasp_axis_color=color,
                      endpoint_color=color)

        #axis = np.array([[0,0,0], point])
        #points = [(x[0], x[1], x[2]) for x in axis]
        #Visualizer3D.plot3d(points, color=(0,0,1), tube_radius=0.002)
        vis.show(False)

    pose_matrix = np.eye(4, 4)
    pose_matrix[:3, :3] = T_obj_world.rotation
    pose_matrix[:3, 3] = T_obj_world.translation
    return pose_matrix, result