Esempio n. 1
0
    def showgraspfrompickle(self, object_name,metric_name,onlynagative,onlypositive,openravechecker):    
        object = self.dataset[object_name] 
        labelgrasps,labelmetrics=self.readdatafrompickle(object_name)

        vis.figure()
        vis.mesh(object.mesh.trimesh ,style='surface')
        config=self._get_config(None)
        low =0.0  
        high = np.max([labelmetrics[i][metric_name] for i in range(len(labelmetrics))])
     #   print 'high',high,config['quality_scale']
        if low == high:
            q_to_c = lambda quality: config['quality_scale']
        else:
            
            q_to_c = lambda quality: config['quality_scale'] * (quality - low) / (high - low)

        recalculate_grasp=[]    
        for i in range(len(labelgrasps)):
                 
                        if labelmetrics[i][metric_name]==0 :
                           if not onlypositive:
                               vis.graspwithapproachvectorusingcenter_point(labelgrasps[i] ,approaching_color=(1,0,0), grasp_axis_color=(1,0,0) )
                        elif  labelmetrics[i][metric_name]==-1   :
                            if not onlypositive:
                                 vis.shownormals(labelgrasps[i][1],labelgrasps[i][0],color=(1,0,0) )
                                 recalculate_grasp.append(labelgrasps[i])
                        elif  labelmetrics[i][metric_name]>0   :
                                if not onlynagative:
                                    color = plt.get_cmap('hsv')(q_to_c(labelmetrics[i][metric_name]))[:-1] 
                                    vis.graspwithapproachvectorusingcenter_point(labelgrasps[i] ,approaching_color=color, grasp_axis_color=color )
                                recalculate_grasp.append(labelgrasps[i])
                        print i   # ,high
                                
        vis.pose(RigidTransform(), alpha=0.1)
        vis.show(animate=False)       
def vis_topple_probs(vertices, topple_probs):
    vis3d.figure()
    env.render_3d_scene()
    for vertex, prob in zip(vertices, topple_probs):
       color = [min(1, 2*(1-prob)), min(2*prob, 1), 0]
       vis3d.points(Point(vertex, 'world'), scale=.001, color=color)
    for bottom_point in policy.toppling_model.bottom_points:
       vis3d.points(Point(bottom_point, 'world'), scale=.001, color=[0,0,0])
    vis3d.show(starting_camera_pose=CAMERA_POSE)
Esempio n. 3
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker, grasp_metrics, stable_pose):
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames('obj', T_stp_camera.from_frame)
        aligned_grasps = self.align_grasps_with_camera(grasps)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        camera_pose = self.get_camera_pose(sample)
        self.tensor_datapoint['camera_poses'] = camera_pose
        shifted_camera_intr = sample.camera.camera_intr

        for cnt, aligned_grasp in enumerate(aligned_grasps):
            collision_free = self.is_grasp_collision_free(aligned_grasp, collision_checker)
            # Project grasp coordinates in image
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera, shifted_camera_intr)
            grasp_point = aligned_grasp.close_fingers(self.obj, vis=False, check_approach=False)

            if not grasp_point[0]:
                Warning("Could not find contact points")
                continue
            # Get grasp width in pixel from endpoints
            p_1 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][0].point, 1).T).T[:3]
            p_2 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][1].point, 1).T).T[:3]
            grasp_width_px = self.width_px(shifted_camera_intr, p_1, p_2)

            grasp_width = aligned_grasp.width_from_endpoints(grasp_point[1][0].point, grasp_point[1][1].point)

            depth_im_no_rot = self.prepare_images(depth_im_table, grasp_2d)

            T_grasp_camera = aligned_grasp.gripper_pose(self.gripper).inverse() * self.T_obj_camera.inverse()

            if VISUALISE_3D:
                z_axis = T_grasp_camera.z_axis
                theta = np.rad2deg(np.arccos((z_axis[2]) /
                                             (np.sqrt((z_axis[0] ** 2 + z_axis[1] ** 2 + z_axis[2] ** 2)))))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world, style='surface', dim=0.5, plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper, aligned_grasp, T_obj_world, color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                print(theta)
                vis.show()

            hand_pose = self.get_hand_pose(grasp_2d, T_grasp_camera, grasp_width, grasp_width_px)

            self.add_datapoint(depth_im_no_rot, hand_pose,
                               collision_free, aligned_grasp, grasp_metrics)
        self.cur_image_label += 1
Esempio n. 4
0
def test_multi_push(env):
    env = GraspingEnv(config, config['vis'])
    policy = MultiTopplePolicy(config, use_sensitivity=True)
    config['model']['load'] = 0
    rand_policy = RandomTopplePolicy(config, use_sensitivity=True)
    with open("/nfs/diskstation/db/toppling/tuned_params/obj_ids.json",
              "r") as read_file:
        obj_ids = json.load(read_file)
    while True:
        env.reset()
        if env.state.obj.key not in obj_ids:
            continue
        env.state.material_props._color = np.array([0.5] * 3)
        policy.set_environment(env.environment)
        rand_policy.set_environment(env.environment)

        if args.before:
            vis3d.figure()
            env.render_3d_scene()
            vis3d.show(starting_camera_pose=CAMERA_POSE)
        planning_time = policy.action(env.state)
        logger.info(env.state.obj.key)
        logger.info('Value Iteration')
        path = forward_sim(policy.G, 'Value Iteration', 'value')
        logger.info('Value Iteration Path: ' + str(path))
        logger.info('Value Iteration Path Length: ' + str(len(path) - 1))
        logger.info('Value Iteration Planning Time: ' + str(planning_time))
        logger.info('Value Iteration No Actions: ' +
                    str(len(policy.G.nodes()) == 1))
        logger.info('Value Iteration Already Best: ' +
                    str(len(policy.G.nodes()) > 1 and len(path) == 1))
        logger.info('Greedy')
        path = forward_sim(policy.G, 'Greedy', 'single_push_q')
        logger.info('Greedy Path: ' + str(path))
        logger.info('Greedy Path Length: ' + str(len(path) - 1))
        logger.info('Greedy Planning Time: ' + str(
            np.sum(
                [policy.G.nodes[node_id]['planning_time']
                 for node_id in path])))
        logger.info('Greedy No Actions: ' + str(len(policy.G.nodes()) == 1))
        logger.info('Greedy Already Best: ' +
                    str((len(policy.G.nodes()) > 1 and len(path) == 1)))
        a = time()
        path_length, planning_time = forward_sim_random(env, rand_policy)
        logger.info('Random Path Length: ' + str(path_length))
        logger.info('Random Planning Time: ' + str(planning_time))
        logger.info('\n')
Esempio n. 5
0
    def display_stable_poses(self, object_name, config=None):
        """Display an object's stable poses
        
        Parameters
        ----------
        object_name : :obj:`str`
            Object to display.
        config : :obj:`dict`
            Configuration dict for visualization.
            Parameters are in Other parameters. Values from self.default_config are used for keys not provided.
        
        Other Parameters
        ----------------
        animate
            Whether or not to animate the displayed object
            
        Raises
        ------
        ValueError
            invalid object name
        RuntimeError
            Database or dataset not opened.
        """
        self._check_opens()
        config = self._get_config(config)

        if object_name not in self.dataset.object_keys:
            raise ValueError(
                "{} is not a valid object name".format(object_name))

        logger.info('Displaying stable poses for'.format(object_name))
        obj = self.dataset[object_name]
        stable_poses = self.dataset.stable_poses(object_name)

        for stable_pose in stable_poses:
            print 'Stable pose %s with p=%.3f' % (stable_pose.id,
                                                  stable_pose.p)
            vis.figure()
            vis.mesh_stable_pose(obj.mesh,
                                 stable_pose,
                                 color=(0.5, 0.5, 0.5),
                                 style='surface')
            vis.pose(RigidTransform(), alpha=0.15)
            vis.show(animate=config['animate'])
Esempio n. 6
0
def sim_to_real_tf(sim_point_cloud_masked, vis=False):
    # Capture point cloud from physical depth camera
    _, depth_im, _ = phoxi_sensor.frames()
    phys_point_cloud = phoxi_tf*phoxi_sensor.ir_intrinsics.deproject(depth_im)
    phys_point_cloud_masked, _ = phys_point_cloud.box_mask(mask_box)
    if phys_point_cloud_masked.num_points == 0:
        logging.warn('Object not found! Skipping...')
        quit()
    
    pcs_config = {'overlap': 0.6, 'accuracy': 0.001, 'samples': 500, 'timeout': 10, 'cache_dir': '/home/chriscorrea14/Super4PCS/cache'}
    pcs_aligner = Super4PCSAligner(pcs_config)

    sim_to_real_tf = pcs_aligner.align(phys_point_cloud_masked, sim_point_cloud_masked)
    if vis:
        vis3d.figure()
        vis3d.points(phys_point_cloud_masked.data.T, color=(1,0,0), scale=.001)
        vis3d.points((sim_to_real_tf*sim_point_cloud_masked).data.T, color=(0,1,0), scale=.001)
        vis3d.show(title='Predicted pose from Sim 2 Real')
    return sim_to_real_tf
Esempio n. 7
0
    def antipodal_grasp_sampler(self):
        of = ObjFile(OBJ_FILENAME)
        sf = SdfFile(SDF_FILENAME)
        mesh = of.read()
        sdf = sf.read()
        obj = GraspableObject3D(sdf, mesh)

        gripper = RobotGripper.load(GRIPPER_NAME)

        ags = AntipodalGraspSampler(gripper, CONFIG)
        grasps = ags.generate_grasps(obj, target_num_grasps=10)

        quality_config = GraspQualityConfigFactory.create_config(
            CONFIG['metrics']['force_closure'])
        quality_fn = GraspQualityFunctionFactory.create_quality_function(
            obj, quality_config)

        q_to_c = lambda quality: CONFIG['quality_scale']

        i = 0
        vis.figure()
        vis.mesh(obj.mesh.trimesh, style='surface')
        for grasp in grasps:
            print(grasp.frame)
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                fn_fc = quality_fn(grasp).quality
                true_fc = PointGraspMetrics3D.force_closure(
                    c1, c2, quality_config.friction_coef)
        #print(grasp)
            T_obj_world = RigidTransform(from_frame='obj', to_frame='world')
            color = plt.get_cmap('hsv')(q_to_c(CONFIG['metrics']))[:-1]
            T_obj_gripper = grasp.gripper_pose(gripper)
            #vis.grasp(grasp,grasp_axis_color=color,endpoint_color=color)
            i += 1
        #T_obj_world = RigidTransform(from_frame='obj',to_frame='world')
        vis.show(False)
Esempio n. 8
0
    def display_object(self, object_name, config=None):
        """Display an object
        
        Parameters
        ----------
        object_name : :obj:`str`
            Ob
            ject to display.
        config : :obj:`dict`
            Configuration dict for visualization.
            Parameters are in Other parameters. Values from self.default_config are used for keys not provided.
        
        Other Parameters
        ----------------
        animate
            Whether or not to animate the displayed object
            
        Raises
        ------
        ValueError
            invalid object name
        RuntimeError
            Database or dataset not opened.
        """
        self._check_opens()
        config = self._get_config(config)

        if object_name not in self.dataset.object_keys:
            raise ValueError(
                "{} is not a valid object name".format(object_name))

        logger.info('Displaying {}'.format(object_name))
        obj = self.dataset[object_name]

        vis.figure(bgcolor=(1, 1, 1), size=(1000, 1000))
        vis.mesh(obj.mesh, color=(0.5, 0.5, 0.5), style='surface')
        vis.show(animate=config['animate'])
Esempio n. 9
0
def benchmark_bin_picking_policy(policy,
                                 # input_dataset_path,
                                 # heap_ids,
                                 # timesteps,
                                 # output_dataset_path,
                                 config,
                                 # excluded_heaps_file):
                                 ):
    """ Benchmark a bin picking policy.

    Parameters
    ----------
    policy : :obj:`Policy`
        policy to roll out
    input_dataset_path : str
        path to the input dataset
    heap_ids : list
        integer identifiers for the heaps to re-run
    timesteps : list
        integer timesteps to seed the simulation from
    output_dataset_path : str
        path to store the results
    config : dict
        dictionary-like objects containing parameters of the simulator and visualization
    """
    # read subconfigs
    vis_config = config['vis']
    dataset_config = config['dataset']

    # read parameters
    fully_observed = config['fully_observed']
    steps_per_test_case = config['steps_per_test_case']
    rollouts_per_garbage_collect = config['rollouts_per_garbage_collect']
    debug = config['debug']
    im_height = config['state_space']['camera']['im_height']
    im_width = config['state_space']['camera']['im_width']
    max_obj_per_pile = config['state_space']['object']['max_obj_per_pile']

    if debug:
        random.seed(SEED)
        np.random.seed(SEED)

    # read ids
    # if len(heap_ids) != len(timesteps):
    #     raise ValueError('Must provide same number of heap ids and timesteps')
    # num_rollouts = len(heap_ids)
    num_rollouts = 1
        
    # set dataset params
    tensor_config = dataset_config['tensors']
    fields_config = tensor_config['fields']
    # fields_config['color_ims']['height'] = im_height
    # fields_config['color_ims']['width'] = im_width
    # fields_config['depth_ims']['height'] = im_height
    # fields_config['depth_ims']['width'] = im_width
    fields_config['obj_poses']['height'] = POSE_DIM * max_obj_per_pile
    fields_config['obj_coms']['height'] = POINT_DIM * max_obj_per_pile
    fields_config['obj_ids']['height'] = max_obj_per_pile
    fields_config['bin_distances']['height'] = max_obj_per_pile
    # matrix has (n choose 2) elements in it
    max_distance_matrix_length = int(comb(max_obj_per_pile, 2))
    fields_config['distance_matrix']['height'] = max_distance_matrix_length

    # sample a process id
    proc_id = utils.gen_experiment_id()
    # if not os.path.exists(output_dataset_path):
    #     try:
    #         os.mkdir(output_dataset_path)
    #     except:
    #         logging.warning('Failed to create %s. The dataset path may have been created simultaneously by another process' %(dataset_path))
    # proc_id = 'clustering_2'
    # output_dataset_path = os.path.join(output_dataset_path, 'dataset_%s' %(proc_id))

    # open input dataset
    # logging.info('Opening input dataset: %s' % input_dataset_path)
    # input_dataset = TensorDataset.open(input_dataset_path)
    
    # open output_dataset
    # logging.info('Opening output dataset: %s' % output_dataset_path)
    # dataset = TensorDataset(output_dataset_path, tensor_config)
    # datapoint = dataset.datapoint_template

    # setup logging
    # experiment_log_filename = os.path.join(output_dataset_path, 'dataset_generation.log')
    # formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    # hdlr = logging.FileHandler(experiment_log_filename)
    # hdlr.setFormatter(formatter)
    # logging.getLogger().addHandler(hdlr)
    # config.save(os.path.join(output_dataset_path, 'dataset_generation_params.yaml'))
    
    # key mappings
    # we add the empty string as a mapping because if you don't evaluate dexnet on the 'before' state of the push
    obj_id = 1
    obj_ids = {'': 0}
    action_ids = {
        'ParallelJawGraspAction': 0,
        'SuctionGraspAction': 1,
        'LinearPushAction': 2
    }
    
    # add action ids
    reverse_action_ids = utils.reverse_dictionary(action_ids)
    # dataset.add_metadata('action_ids', reverse_action_ids)
    
    # perform rollouts
    n = 0
    rollout_start = time.time()
    current_heap_id = None
    while n < num_rollouts:
        # create env
        create_start = time.time()
        bin_picking_env = GraspingEnv(config, vis_config)
        create_stop = time.time()
        logging.info('Creating env took %.3f sec' %(create_stop-create_start))

        # perform rollouts
        rollouts_remaining = num_rollouts - n
        for i in range(min(rollouts_per_garbage_collect, rollouts_remaining)):
            # log current rollout
            logging.info('\n')
            if n % vis_config['log_rate'] == 0:
                logging.info('Rollout: %03d' %(n))

            try:    
                # mark rollout status
                data_saved = False
                num_steps = 0
                
                # read heap id
                # heap_id = heap_ids[n]
                # timestep = timesteps[n]
                # while heap_id == current_heap_id:# or heap_id < 81:#[226, 287, 325, 453, 469, 577, 601, 894, 921]: 26
                #     n += 1
                #     heap_id = heap_ids[n]
                #     timestep = timesteps[n]
                push_logger = logging.getLogger('push')
                # push_logger.info('~')
                # push_logger.info('Heap ID %d' % heap_id)
                # current_heap_id = heap_id
                
                # reset env
                reset_start = time.time()
                # bin_picking_env.reset_from_dataset(input_dataset,
                #                                    heap_id,
                #                                    timestep)
                bin_picking_env.reset()
                state = bin_picking_env.state
                environment = bin_picking_env.environment
                if fully_observed:
                    observation = None
                else:
                    observation = bin_picking_env.observation
                policy.set_environment(environment) 
                reset_stop = time.time()

                # add objects to mapping
                for obj_key in state.obj_keys:
                    if obj_key not in obj_ids.keys():
                        obj_ids[obj_key] = obj_id
                        obj_id += 1
                    push_logger.info(obj_key)
                # save id mappings
                reverse_obj_ids = utils.reverse_dictionary(obj_ids)
                # dataset.add_metadata('obj_ids', reverse_obj_ids)
                        
                # store datapoint env params
                # datapoint['heap_ids'] = current_heap_id
                # datapoint['camera_poses'] = environment.camera.T_camera_world.vec
                # datapoint['camera_intrs'] = environment.camera.intrinsics.vec
                # datapoint['robot_poses'] = environment.robot.T_robot_world.vec
            
                # render
                if vis_config['initial_state']:
                    vis3d.figure()
                    bin_picking_env.render_3d_scene()
                    vis3d.pose(environment.robot.T_robot_world)
                    vis3d.show(starting_camera_pose=CAMERA_POSE)
            
                # observe
                if vis_config['initial_obs']:
                    vis2d.figure()
                    vis2d.imshow(observation, auto_subplot=True)
                    vis2d.show()

                # rollout on current satte
                done = False
                failed = False
                # if isinstance(policy, SingulationFullRolloutPolicy):
                #     policy.reset_num_failed_grasps()
                while not done:
                    if vis_config['step_stats']:
                        logging.info('Heap ID: %s' % heap_id)
                        logging.info('Timestep: %s' % bin_picking_env.timestep)

                    # get action
                    policy_start = time.time()
                    if fully_observed:
                        action = policy.action(state)
                    else:
                        action = policy.action(observation)
                    policy_stop = time.time()
                    logging.info('Composite Policy took %.3f sec' %(policy_stop-policy_start))

                    # render scene before
                    if vis_config['action']:
                        #gripper = bin_picking_env.gripper(action)
                        vis3d.figure()
			            # GRASPINGENV
                        # bin_picking_env.render_3d_scene(render_camera=False, workspace_objs_wireframe=False)
                        bin_picking_env.render_3d_scene()
                        if isinstance(action, GraspAction):
                            vis3d.gripper(gripper, action.grasp(gripper))
                        #if isinstance(action, LinearPushAction):
                        else:
                            # # T_start_world = action.T_begin_world * gripper.T_mesh_grasp
                            # # T_end_world = action.T_end_world * gripper.T_mesh_grasp
                            # #start_point = action.T_begin_world.translation
                            # start_point = action['start']
                            # #end_point = action.T_end_world.translation
                            # end_point = action['end']
                            # vec = (end_point - start_point) / np.linalg.norm(end_point-start_point) if np.linalg.norm(end_point-start_point) > 0 else end_point-start_point 
                            # #h1 = np.array([[0.7071,-0.7071,0],[0.7071,0.7071,0],[0,0,1]]).dot(vec)
                            # #h2 = np.array([[0.7071,0.7071,0],[-0.7071,0.7071,0],[0,0,1]]).dot(vec)
                            # arrow_len = np.linalg.norm(start_point - end_point)
                            # h1 = (end_point - start_point + np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2))
                            # h2 = (end_point - start_point - np.array([0,0,arrow_len])) / (arrow_len*math.sqrt(2))
                            # shaft_points = [start_point, end_point]
                            # head_points = [end_point - 0.03*h2, end_point, end_point - 0.03*h1]
                            # #vis3d.plot3d(shaft_points, color=[0,0,1])
                            # #vis3d.plot3d(head_points, color=[0,0,1])
                            
                            # Displaying all potential topple points
                            for vertex, prob in zip(action['vertices'], action['probabilities']):
                                color = np.array([min(1, 2*(1-prob)), min(2*prob, 1), 0])
                                vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)

                            for vertex in action['bottom_points']:
                                color = np.array([0,0,1])
                                vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(action['com'], 'world'), scale=.005, color=np.array([0,0,1]))
                            vis3d.points(Point(np.array([0,0,0]), 'world'), scale=.005, color=np.array([0,1,0]))
                            
                            #set_of_lines = action['set_of_lines']
                            #for i, line in enumerate(set_of_lines):
                            #    color = str(bin(i+1))[2:].zfill(3)
                            #    color = np.array([color[2], color[1], color[0]])
                            #    vis3d.plot3d(line, color=color)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)

                        # Show 
                        vis3d.figure()
                        bin_picking_env.render_3d_scene()
                        final_pose_ind = action['final_pose_ind'] / np.amax(action['final_pose_ind'])
                        for vertex, final_pose_ind in zip(action['vertices'], final_pose_ind):
                            color = np.array([0, min(1, 2*(1-prob)), min(2*prob, 1)])
                            vis3d.points(Point(vertex, 'world'), scale=.0005, color=color)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)



                        color=np.array([0,0,1])
                        original_pose = state.obj.T_obj_world
                        pose_num = 0
                        for pose, edge_point1, edge_point2 in zip(action['final_poses'], action['bottom_points'], np.roll(action['bottom_points'],-1,axis=0)):
                            print 'Pose:', pose_num
                            pose_num += 1
                            pose = pose.T_obj_table
                            vis3d.figure()
                            state.obj.T_obj_world = original_pose
                            bin_picking_env.render_3d_scene()
                            vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color)
                            vis3d.show(starting_camera_pose=CAMERA_POSE)

                            vis3d.figure()
                            state.obj.T_obj_world = pose
                            bin_picking_env.render_3d_scene()
                            vis3d.points(Point(edge_point1, 'world'), scale=.0005, color=color)
                            vis3d.points(Point(edge_point2, 'world'), scale=.0005, color=color)
                            vis3d.show(starting_camera_pose=CAMERA_POSE)
                         #vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_before.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE)
                    # store datapoint pre-step data
                    j = 0
                    obj_poses = np.zeros(fields_config['obj_poses']['height'])
                    obj_coms = np.zeros(fields_config['obj_coms']['height'])
                    obj_ids_vec = np.iinfo(np.uint32).max * np.ones(fields_config['obj_ids']['height'])
                    for obj_state in state.obj_states:
                        obj_poses[j*POSE_DIM:(j+1)*POSE_DIM] = obj_state.T_obj_world.vec
                        obj_coms[j*POINT_DIM:(j+1)*POINT_DIM] = obj_state.center_of_mass
                        obj_ids_vec[j] = obj_ids[obj_state.key]
                        j += 1
                    action_poses = np.zeros(fields_config['action_poses']['height'])
                    #if isinstance(action, GraspAction):
                    #    action_poses[:7] = action.T_grasp_world.vec
                    #else:
                    #    action_poses[:7] = action.T_begin_world.vec
                    #    action_poses[7:] = action.T_end_world.vec

                    # if isinstance(policy, SingulationMetricsCompositePolicy):
                    #     actual_distance_matrix_length = int(comb(len(state.objs), 2))
                    #     bin_distances = np.append(action.metadata['bin_distances'], 
                    #                               np.zeros(max_obj_per_pile-len(state.objs))
                    #                             )
                    #     distance_matrix = np.append(action.metadata['distance_matrix'], 
                    #                                 np.zeros(max_distance_matrix_length - actual_distance_matrix_length)
                    #                             )
                    #     datapoint['bin_distances'] = bin_distances
                    #     datapoint['distance_matrix'] = distance_matrix
                    #     datapoint['T_begin_world'] = action.T_begin_world.matrix
                    #     datapoint['T_end_world'] = action.T_end_world.matrix
                    #     datapoint['parallel_jaw_best_q_value'] = action.metadata['parallel_jaw_best_q_value']
                    #     # datapoint['parallel_jaw_mean_q_value'] = action.metadata['parallel_jaw_mean_q_value']
                    #     # datapoint['parallel_jaw_num_grasps'] = action.metadata['parallel_jaw_num_grasps']
                    #     datapoint['suction_best_q_value'] = action.metadata['suction_best_q_value']
                    #     # datapoint['suction_mean_q_value'] = action.metadata['suction_mean_q_value']
                    #     # datapoint['suction_num_grasps'] = action.metadata['suction_num_grasps']
                    #     # logging.info('Suction Q: %f, PJ Q: %f' % (action.metadata['suction_q_value'], action.metadata['parallel_jaw_q_value']))
                    #     # datapoint['obj_index'] = action.metadata['obj_index']

                    #     # datapoint['parallel_jaw_best_q_value_single'] = action.metadata['parallel_jaw_best_q_value_single']
                    #     # datapoint['suction_best_q_value_single'] = action.metadata['suction_best_q_value_single']
                    #     datapoint['singulated_obj_index'] = action.metadata['singulated_obj_index']
                    #     datapoint['parallel_jaw_grasped_obj_index'] = obj_ids[action.metadata['parallel_jaw_grasped_obj_key']]
                    #     datapoint['suction_grasped_obj_index'] = obj_ids[action.metadata['suction_grasped_obj_key']]
                    # else:
                    #     datapoint['bin_distances'] = np.zeros(max_obj_per_pile)
                    #     datapoint['distance_matrix'] = np.zeros(max_distance_matrix_length)
                    #     datapoint['T_begin_world'] = np.zeros((4,4))
                    #     datapoint['T_end_world'] = np.zeros((4,4))
                    #     datapoint['parallel_jaw_best_q_value'] = -1
                    #     datapoint['suction_best_q_value'] = -1
                    #     datapoint['singulated_obj_index'] = -1
                    #     datapoint['parallel_jaw_grasped_obj_index'] = -1
                    #     datapoint['suction_grasped_obj_index'] = -1

                    # policy_id = 0
                    # if 'policy_id' in action.metadata.keys():
                    #     policy_id = action.metadata['policy_id']
                    # greedy_q_value = 0
                    # if 'greedy_q_value' in action.metadata.keys():
                    #     greedy_q_value = action.metadata['greedy_q_value']
                        
                    # datapoint['timesteps'] = bin_picking_env.timestep
                    # datapoint['obj_poses'] = obj_poses
                    # datapoint['obj_coms'] = obj_coms
                    # datapoint['obj_ids'] = obj_ids_vec
                    # # if bin_picking_env.render_mode == RenderMode.RGBD:
                    # #     color_data = observation.color.raw_data
                    # #     depth_data = observation.depth.raw_data
                    # # elif bin_picking_env.render_mode == RenderMode.DEPTH:
                    # #     color_data = np.zeros(observation.shape).astype(np.uint8)
                    # #     depth_data = observation.raw_data
                    # # elif bin_picking_env.render_mode == RenderMode.COLOR:
                    # #     color_data = observation.raw_data
                    # #     depth_data = np.zeros(observation.shape)
                    # # datapoint['color_ims'] = color_data
                    # # datapoint['depth_ims'] = depth_data
                    # datapoint['action_ids'] = action_ids[type(action).__name__]
                    # datapoint['action_poses'] = action_poses
                    # datapoint['policy_ids'] = policy_id
                    # datapoint['greedy_q_values'] = greedy_q_value
                    # datapoint['pred_q_values'] = action.q_value
                    
                    # step the policy
                    #observation, reward, done, info = bin_picking_env.step(action)
                    #state = bin_picking_env.state
                    state.objs[0].T_obj_world = action['final_state']

                    # if isinstance(policy, SingulationFullRolloutPolicy):
                    #     policy.grasp_succeeds(info['grasp_succeeds'])
        
                    # debugging info
                    if vis_config['step_stats']:
                        logging.info('Action type: %s' %(type(action).__name__))
                        logging.info('Action Q-value: %.3f' %(action.q_value))
                        logging.info('Reward: %d' %(reward))
                        logging.info('Policy took %.3f sec' %(policy_stop-policy_start))
                        logging.info('Num objects remaining: %d' %(bin_picking_env.num_objects))
                        if info['cleared_pile']:
                            logging.info('Cleared pile!')
                        
                    # # store datapoint post-step data
                    # datapoint['rewards'] = reward
                    # datapoint['grasp_metrics'] = info['grasp_metric']
                    # datapoint['collisions'] = 1 * info['collides']
                    # datapoint['collisions_with_env'] = 1 * info['collides_with_static_obstacles']
                    # datapoint['grasped_obj_ids'] = obj_ids[info['grasped_obj_key']]
                    # datapoint['cleared_pile'] = 1 * info['cleared_pile']

                    # # store datapoint
                    # # dataset.add(datapoint)
                    # data_saved = True    
                    
                    # render observation
                    if vis_config['obs']:
                        vis2d.figure()
                        vis2d.imshow(observation, auto_subplot=True)
                        vis2d.show()
        
                    # render scene after
                    if vis_config['state']:
                        vis3d.figure()
                        bin_picking_env.render_3d_scene(render_camera=False)
                        vis3d.show(starting_camera_pose=CAMERA_POSE)
                        # vis3d.save('/home/mjd3/Pictures/weird_pics/%d_%d_after.png' % (heap_id, bin_picking_env.timestep), starting_camera_pose=CAMERA_POSE)
                    state.objs[0].T_obj_world = action['tmpR']
                    vis3d.figure()
                    bin_picking_env.render_3d_scene(render_camera=False)
                    vis3d.show(starting_camera_pose=CAMERA_POSE)
                    state.objs[0].T_obj_world = action['final_state']
                    # increment the number of steps
                    num_steps += 1
                    if num_steps >= steps_per_test_case:
                        done = True
                        
            except NoActionFoundException as e:
                logging.warning('The policy failed to plan an action!')
                done = True                    
            except Exception as e:
                # log an error
                logging.warning('Rollout failed!')
                logging.warning('%s' %(str(e)))
                logging.warning(traceback.print_exc())
                # if debug:
                #     raise
                
                # reset env
                del bin_picking_env
                gc.collect()
                bin_picking_env = BinPickingEnv(config, vis_config)

                # terminate current rollout
                failed = True
                done = True

            # update test case id
            n += 1
            # dataset.flush()
            # logging.info("\n\nflushing")
            # logging.info("exiting")
            # sys.exit()
                
        # garbage collect
        del bin_picking_env
        gc.collect()

    # return the dataset 
    # dataset.flush()

    # log time
    rollout_stop = time.time()
    logging.info('Rollouts took %.3f sec' %(rollout_stop-rollout_start))

    return dataset
Esempio n. 10
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker,
                     grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
            'obj', T_stp_camera.from_frame)
        if UNALIGNED or STP_ALIGNED:
            aligned_grasps = grasps
        else:
            aligned_grasps = self.align_grasps_with_camera(grasps)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image

        self.tensor_datapoint['camera_poses'] = self.get_camera_pose(sample)

        final_camera_intr = sample.camera.camera_intr.crop(
            self.crop_height, self.crop_width, depth_im_table.center[0],
            depth_im_table.center[1])
        self.tensor_datapoint['camera_intrs'] = np.r_[final_camera_intr.fx,
                                                      final_camera_intr.fy,
                                                      final_camera_intr.cx,
                                                      final_camera_intr.cy]
        if not IM_TENSOR:
            self.save_image(depth_im_table)
        else:
            depth_im_tf = self._crop(depth_im_table, size=None)

        for cnt, aligned_grasp in enumerate(aligned_grasps):
            if UNALIGNED:
                aligned_grasp = aligned_grasp.grasp_y_axis_offset(
                    np.random.uniform(0, 2 * np.pi))
                T_stp_grasp = RigidTransform(
                    stable_pose.r, from_frame='obj',
                    to_frame='stp') * aligned_grasp.T_grasp_obj
                if T_stp_grasp.x_axis[-1] > 0:
                    # Grasp from below table, rotate by 180 degrees
                    aligned_grasp = aligned_grasp.grasp_y_axis_offset(np.pi)
            T_grasp_camera = aligned_grasp.gripper_pose(self.gripper).inverse() * \
                             self.T_obj_camera.inverse()

            # Calculate psi, the angle between the grasp approach axis and the camera principal ray
            z_axis = T_grasp_camera.z_axis
            psi = np.arccos(
                z_axis[2] /
                np.sqrt(z_axis[0]**2 + z_axis[1]**2 + z_axis[2]**2))

            # if np.rad2deg(psi) > 20:
            #     continue

            # Get gamma, the angle between the grasp approach axis and the table normal
            _, gamma, _ = aligned_grasp.grasp_angles_from_stp_z(stable_pose)

            if LIMIT_BETA:
                perpendicular_table = (np.abs(gamma) < np.deg2rad(5))
                if not perpendicular_table:
                    continue

            if VISUALISE_3D:
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world,
                                                   style='surface',
                                                   dim=0.5,
                                                   plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper,
                            aligned_grasp,
                            T_obj_world,
                            color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                # vis.gripper(self.gripper, grasps[cnt], T_obj_world, color=(0.3, 0.3, 0.3))
                # print(psi)
                vis.show()

            collision_free = self.is_grasp_collision_free(
                aligned_grasp, collision_checker)
            # Project grasp coordinates in image
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera,
                                                    final_camera_intr)

            if IM_TENSOR:
                im, new_grasp = self.random_im_crop(depth_im_tf, (32, 32),
                                                    grasp_2d.center.x,
                                                    grasp_2d.center.y)
                self.tensor_datapoint['depth_ims_tf_table'] = im
                hand_pose = self.get_hand_pose(grasp_2d,
                                               T_grasp_camera.quaternion,
                                               psi,
                                               gamma,
                                               new_grasp=new_grasp)
            else:
                hand_pose = self.get_hand_pose(grasp_2d,
                                               T_grasp_camera.quaternion, psi,
                                               gamma)

            self.add_datapoint(hand_pose, collision_free, aligned_grasp,
                               grasp_metrics)
        self.cur_image_label += 1
Esempio n. 11
0
    if config['debug']:
        random.seed(SEED)
        np.random.seed(SEED)

    env = GraspingEnv(config, config['vis'])
    env.reset()
    env.state.material_props._color = np.array([0.86274509803] * 3)
    obj_name = env.state.obj.key
    policy.set_environment(env.environment)
    if args.before:
        env.render_3d_scene()
        vis3d.show(starting_camera_pose=CAMERA_POSE)
    action = policy.action(env.state)

    vis3d.figure()
    env.render_3d_scene()
    num_vertices = len(action.metadata['vertices'])
    for i, vertex, q_increase in zip(np.arange(num_vertices),
                                     action.metadata['vertices'],
                                     action.metadata['quality_increases']):
        topples = action.metadata['final_pose_ind'][i] != 0
        color = np.array(
            [min(1, 2 * (1 - q_increase)),
             min(2 * q_increase, 1), 0]) if topples else np.array([0, 0, 0])
        # color = np.array([min(1, 2*(1-q_increase)), min(2*q_increase, 1), 0])
        scale = .001 if i != action.metadata['best_ind'] else .003
        vis3d.points(Point(vertex, 'world'), scale=scale, color=color)

    gripper = env.gripper(action)
    T_start_world = action.T_begin_world * gripper.T_mesh_grasp
Esempio n. 12
0
    def save_samples(self, sample, grasps, collisions, T_obj_stp,
                     grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
            'obj', T_stp_camera.from_frame)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        camera_pose = self.get_camera_pose(sample)
        shifted_camera_intr = sample.camera.camera_intr

        cx = depth_im_table.center[1]
        cy = depth_im_table.center[0]

        self.tensor_datapoint['camera_intrs'] = np.r_[shifted_camera_intr.fx,
                                                      shifted_camera_intr.fy,
                                                      shifted_camera_intr.cx,
                                                      shifted_camera_intr.cy]

        for aligned_grasp, collision_free in zip(grasps, collisions):
            # Project grasp coordinates in image
            grasp_point = aligned_grasp.close_fingers(self.obj,
                                                      vis=False,
                                                      check_approach=False)

            if not grasp_point[0]:
                raise Warning("Could not find contact points")
                continue

            grasp_width = aligned_grasp.width_from_endpoints(
                grasp_point[1][0].point, grasp_point[1][1].point)

            if VISUALISE_3D:
                c = np.array((1, 0, 0))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world,
                                                   style='surface',
                                                   dim=0.5,
                                                   plot_table=True)
                points = np.array(
                    (np.append(grasp_point[1][0].point,
                               1), np.append(grasp_point[1][1].point, 1)))

                vis.gripper(self.gripper,
                            aligned_grasp,
                            T_obj_world,
                            color=(0.3, 0.3, 0.3),
                            point=points,
                            point_color=c)
                vis.show()
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera,
                                                    shifted_camera_intr)

            depth_im_tf = self.prepare_images(depth_im_table, grasp_2d, cx, cy)
            hand_pose = self.get_hand_pose(grasp_2d, shifted_camera_intr,
                                           grasp_width)

            self.add_datapoint(depth_im_tf, hand_pose, collision_free,
                               camera_pose, aligned_grasp, grasp_metrics)
        self.cur_image_label += 1
Esempio n. 13
0
    def read_grasps(self,
                    object_name,
                    stable_pose_id,
                    max_grasps=10,
                    visualize=False):
        # load gripper
        gripper = RobotGripper.load(
            GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

        # open Dex-Net API
        dexnet_handle = DexNet()
        dexnet_handle.open_database(self.database_path)
        dexnet_handle.open_dataset(self.dataset_name)

        # read the most robust grasp
        sorted_grasps, metrics = dexnet_handle.dataset.sorted_grasps(
            object_name,
            stable_pose_id=('pose_' + str(stable_pose_id)),
            metric='force_closure',
            gripper=gripper.name)

        if (len(sorted_grasps)) == 0:
            print('no grasps for this stable pose')
            if visualize:
                stable_pose = dexnet_handle.dataset.stable_pose(
                    object_name,
                    stable_pose_id=('pose_' + str(stable_pose_id)))
                obj = dexnet_handle.dataset.graspable(object_name)
                vis.figure()
                T_table_world = RigidTransform(from_frame='table',
                                               to_frame='world')
                T_obj_world = Visualizer3D.mesh_stable_pose(
                    obj.mesh.trimesh,
                    stable_pose.T_obj_world,
                    T_table_world=T_table_world,
                    color=(0.5, 0.5, 0.5),
                    style='surface',
                    plot_table=True,
                    dim=0.15)
                vis.show(False)
            return None, None

        contact_points = map(get_contact_points, sorted_grasps)

        # ------------------------ VISUALIZATION CODE ------------------------
        if visualize:
            low = np.min(metrics)
            high = np.max(metrics)
            if low == high:
                q_to_c = lambda quality: CONFIG['quality_scale']
            else:
                q_to_c = lambda quality: CONFIG['quality_scale'] * (
                    quality - low) / (high - low)

            stable_pose = dexnet_handle.dataset.stable_pose(
                object_name, stable_pose_id=('pose_' + str(stable_pose_id)))
            obj = dexnet_handle.dataset.graspable(object_name)
            vis.figure()

            T_table_world = RigidTransform(from_frame='table',
                                           to_frame='world')
            T_obj_world = Visualizer3D.mesh_stable_pose(
                obj.mesh.trimesh,
                stable_pose.T_obj_world,
                T_table_world=T_table_world,
                color=(0.5, 0.5, 0.5),
                style='surface',
                plot_table=True,
                dim=0.15)
            for grasp, metric in zip(sorted_grasps, metrics):
                color = plt.get_cmap('hsv')((q_to_c(metric)))[:-1]
                vis.grasp(grasp,
                          T_obj_world=stable_pose.T_obj_world,
                          grasp_axis_color=color,
                          endpoint_color=color)
            vis.show(False)
        # ------------------------ END VISUALIZATION CODE ---------------------------

        # ------------------------ START COLLISION CHECKING ---------------------------
        #stable_pose = dexnet_handle.dataset.stable_pose(object_name, stable_pose_id=('pose_'+str(stable_pose_id)))
        #graspable = dexnet_handle.dataset.graspable(object_name)
        #cc = GraspCollisionChecker(gripper).set_graspable_object(graspable, stable_pose.T_obj_world)
        stable_pose_matrix = self.get_stable_pose(object_name, stable_pose_id)
        # CLOSE DATABASE
        dexnet_handle.close_database()
        gripper_poses = []

        for grasp in sorted_grasps[:max_grasps]:
            gripper_pose_matrix = np.eye(4, 4)
            center_world = np.matmul(
                stable_pose_matrix,
                [grasp.center[0], grasp.center[1], grasp.center[2], 1])
            axis_world = np.matmul(
                stable_pose_matrix,
                [grasp.axis_[0], grasp.axis_[1], grasp.axis_[2], 1])
            gripper_angle = math.atan2(axis_world[1], axis_world[0])
            gripper_pose_matrix[:3, 3] = center_world[:3]
            gripper_pose_matrix[0, 0] = math.cos(gripper_angle)
            gripper_pose_matrix[0, 1] = -math.sin(gripper_angle)
            gripper_pose_matrix[1, 0] = math.sin(gripper_angle)
            gripper_pose_matrix[1, 1] = math.cos(gripper_angle)
            #if visualize:
            #    vis.figure()
            #    vis.gripper_on_object(gripper, grasp, obj, stable_pose=stable_pose.T_obj_world)
            #    vis.show(False)
            gripper_poses.append(gripper_pose_matrix)

        return contact_points, gripper_poses
Esempio n. 14
0
    def antipodal_grasp_sampler(self):
    	#of = ObjFile(OBJ_FILENAME)
    	#sf = SdfFile(SDF_FILENAME)
    	#mesh = of.read()
    	#sdf = sf.read()
        #obj = GraspableObject3D(sdf, mesh)
        mass = 1.0
        CONFIG['obj_rescaling_type'] = RescalingType.RELATIVE
        mesh_processor = MeshProcessor(OBJ_FILENAME, CONFIG['cache_dir'])
        mesh_processor.generate_graspable(CONFIG)
        mesh = mesh_processor.mesh
        sdf = mesh_processor.sdf
        obj = GraspableObject3D(sdf, mesh)

        gripper = RobotGripper.load(GRIPPER_NAME)

        ags = AntipodalGraspSampler(gripper, CONFIG)
        grasps = ags.sample_grasps(obj, num_grasps=100)
        print(len(grasps))
  
        quality_config = GraspQualityConfigFactory.create_config(CONFIG['metrics']['robust_ferrari_canny'])
        #quality_config = GraspQualityConfigFactory.create_config(CONFIG['metrics']['force_closure'])
        quality_fn = GraspQualityFunctionFactory.create_quality_function(obj, quality_config)
        

        vis.figure()
        #vis.points(PointCloud(nparraypoints), scale=0.001, color=np.array([0.5,0.5,0.5]))
        #vis.plot3d(nparraypoints)

        metrics = []
        vis.mesh(obj.mesh.trimesh, style='surface')
        for grasp in grasps:
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                #fn_fc = quality_fn(grasp).quality
                true_fc = PointGraspMetrics3D.grasp_quality(grasp, obj, quality_config)
                true_fc = true_fc
                metrics.append(true_fc)

    	    #color = quality_fn(grasp).quality
            #if (true_fc > 1.0):
            #    true_fc = 1.0
            #color = (1.0-true_fc, true_fc, 0.0)

        low = np.min(metrics)
        high = np.max(metrics)
        print(low)
        print(high)
        if low == high:
            q_to_c = lambda quality: CONFIG['quality_scale']
        else:
            q_to_c = lambda quality: CONFIG['quality_scale'] * (quality - low) / (high - low)
        print(len(metrics))
        for grasp, metric in zip(grasps, metrics):
            color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
            print(color)
            vis.grasp(grasp, grasp_axis_color=color,endpoint_color=color)


        vis.show(False)
Esempio n. 15
0
def generate_gqcnn_dataset(dataset_path, database, target_object_keys,
                           env_rv_params, gripper_name, config):
    """
    Generates a GQ-CNN TensorDataset for training models with new grippers, quality metrics, objects, and cameras.

    Parameters
    ----------
    dataset_path : str
        path to save the dataset to
    database : :obj:`Hdf5Database`
        Dex-Net database containing the 3D meshes, grasps, and grasp metrics
    target_object_keys : :obj:`OrderedDict`
        dictionary mapping dataset names to target objects (either 'all' or a list of specific object keys)
    env_rv_params : :obj:`OrderedDict`
        parameters of the camera and object random variables used in sampling (see meshpy_berkeley.UniformPlanarWorksurfaceImageRandomVariable for more info)
    gripper_name : str
        name of the gripper to use
    config : :obj:`autolab_core.YamlConfig`
        other parameters for dataset generation

    Notes
    -----
    Required parameters of config are specified in Other Parameters

    Other Parameters
    ----------------    
    images_per_stable_pose : int
        number of object and camera poses to sample for each stable pose
    stable_pose_min_p : float
        minimum probability of occurrence for a stable pose to be used in data generation (used to prune bad stable poses
    
    gqcnn/crop_width : int
        width, in pixels, of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/crop_height : int
        height, in pixels,  of crop region around each grasp center, before resize (changes the size of the region seen by the GQ-CNN)
    gqcnn/final_width : int
        width, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)
    gqcnn/final_height : int
        height, in pixels,  of final transformed grasp image for input to the GQ-CNN (defaults to 32)

    table_alignment/max_approach_table_angle : float
        max angle between the grasp axis and the table normal when the grasp approach is maximally aligned with the table normal
    table_alignment/max_approach_offset : float
        max deviation from perpendicular approach direction to use in grasp collision checking
    table_alignment/num_approach_offset_samples : int
        number of approach samples to use in collision checking

    collision_checking/table_offset : float
        max allowable interpenetration between the gripper and table to be considered collision free
    collision_checking/table_mesh_filename : str
        path to a table mesh for collision checking (default data/meshes/table.obj)
    collision_checking/approach_dist : float
        distance, in meters, between the approach pose and final grasp pose along the grasp axis
    collision_checking/delta_approach : float
        amount, in meters, to discretize the straight-line path from the gripper approach pose to the final grasp pose

    tensors/datapoints_per_file : int
        number of datapoints to store in each unique tensor file on disk
    tensors/fields : :obj:`dict`
        dictionary mapping field names to dictionaries specifying the data type, height, width, and number of channels for each tensor

    debug : bool
        True (or 1) if the random seed should be set to enforce deterministic behavior, False (0) otherwise
    vis/candidate_grasps : bool
        True (or 1) if the collision free candidate grasps should be displayed in 3D (for debugging)
    vis/rendered_images : bool
        True (or 1) if the rendered images for each stable pose should be displayed (for debugging)
    vis/grasp_images : bool
        True (or 1) if the transformed grasp images should be displayed (for debugging)
    """
    # read data gen params
    output_dir = dataset_path
    gripper = RobotGripper.load(gripper_name)
    image_samples_per_stable_pose = config['images_per_stable_pose']
    stable_pose_min_p = config['stable_pose_min_p']

    # read gqcnn params
    gqcnn_params = config['gqcnn']
    im_crop_height = gqcnn_params['crop_height']
    im_crop_width = gqcnn_params['crop_width']
    im_final_height = gqcnn_params['final_height']
    im_final_width = gqcnn_params['final_width']
    cx_crop = float(im_crop_width) / 2
    cy_crop = float(im_crop_height) / 2

    # open database
    dataset_names = target_object_keys.keys()
    datasets = [database.dataset(dn) for dn in dataset_names]

    # set target objects
    for dataset in datasets:
        if target_object_keys[dataset.name] == 'all':
            target_object_keys[dataset.name] = dataset.object_keys

    # setup grasp params
    table_alignment_params = config['table_alignment']
    min_grasp_approach_offset = -np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_offset = np.deg2rad(
        table_alignment_params['max_approach_offset'])
    max_grasp_approach_table_angle = np.deg2rad(
        table_alignment_params['max_approach_table_angle'])
    num_grasp_approach_samples = table_alignment_params[
        'num_approach_offset_samples']

    phi_offsets = []
    if max_grasp_approach_offset == min_grasp_approach_offset:
        phi_inc = 1
    elif num_grasp_approach_samples == 1:
        phi_inc = max_grasp_approach_offset - min_grasp_approach_offset + 1
    else:
        phi_inc = (max_grasp_approach_offset - min_grasp_approach_offset) / (
            num_grasp_approach_samples - 1)

    phi = min_grasp_approach_offset
    while phi <= max_grasp_approach_offset:
        phi_offsets.append(phi)
        phi += phi_inc

    # setup collision checking
    coll_check_params = config['collision_checking']
    approach_dist = coll_check_params['approach_dist']
    delta_approach = coll_check_params['delta_approach']
    table_offset = coll_check_params['table_offset']

    table_mesh_filename = coll_check_params['table_mesh_filename']
    if not os.path.isabs(table_mesh_filename):
        table_mesh_filename = os.path.join(
            os.path.dirname(os.path.realpath(__file__)), '..',
            table_mesh_filename)
    table_mesh = ObjFile(table_mesh_filename).read()

    # set tensor dataset config
    tensor_config = config['tensors']
    tensor_config['fields']['depth_ims_tf_table']['height'] = im_final_height
    tensor_config['fields']['depth_ims_tf_table']['width'] = im_final_width
    tensor_config['fields']['obj_masks']['height'] = im_final_height
    tensor_config['fields']['obj_masks']['width'] = im_final_width

    # add available metrics (assuming same are computed for all objects)
    metric_names = []
    dataset = datasets[0]
    obj_keys = dataset.object_keys
    if len(obj_keys) == 0:
        raise ValueError('No valid objects in dataset %s' % (dataset.name))

    obj = dataset[obj_keys[0]]
    grasps = dataset.grasps(obj.key, gripper=gripper.name)
    grasp_metrics = dataset.grasp_metrics(obj.key,
                                          grasps,
                                          gripper=gripper.name)
    metric_names = grasp_metrics[grasp_metrics.keys()[0]].keys()
    for metric_name in metric_names:
        tensor_config['fields'][metric_name] = {}
        tensor_config['fields'][metric_name]['dtype'] = 'float32'

    # init tensor dataset
    tensor_dataset = TensorDataset(output_dir, tensor_config)
    tensor_datapoint = tensor_dataset.datapoint_template

    # setup log file
    experiment_log_filename = os.path.join(output_dir,
                                           'dataset_generation.log')
    formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s')
    hdlr = logging.FileHandler(experiment_log_filename)
    hdlr.setFormatter(formatter)
    logging.getLogger().addHandler(hdlr)
    root_logger = logging.getLogger()

    # copy config
    out_config_filename = os.path.join(output_dir, 'dataset_generation.json')
    ordered_dict_config = collections.OrderedDict()
    for key in config.keys():
        ordered_dict_config[key] = config[key]
    with open(out_config_filename, 'w') as outfile:
        json.dump(ordered_dict_config, outfile)

    # 1. Precompute the set of valid grasps for each stable pose:
    #    i) Perpendicular to the table
    #   ii) Collision-free along the approach direction

    # load grasps if they already exist
    grasp_cache_filename = os.path.join(output_dir, CACHE_FILENAME)
    if os.path.exists(grasp_cache_filename):
        logging.info('Loading grasp candidates from file')
        candidate_grasps_dict = pkl.load(open(grasp_cache_filename, 'rb'))
    # otherwise re-compute by reading from the database and enforcing constraints
    else:
        # create grasps dict
        candidate_grasps_dict = {}

        # loop through datasets and objects
        for dataset in datasets:
            logging.info('Reading dataset %s' % (dataset.name))
            for obj in dataset:
                if obj.key not in target_object_keys[dataset.name]:
                    continue

                # init candidate grasp storage
                candidate_grasps_dict[obj.key] = {}

                # setup collision checker
                collision_checker = GraspCollisionChecker(gripper)
                collision_checker.set_graspable_object(obj)

                # read in the stable poses of the mesh
                stable_poses = dataset.stable_poses(obj.key)
                for i, stable_pose in enumerate(stable_poses):
                    # render images if stable pose is valid
                    if stable_pose.p > stable_pose_min_p:
                        candidate_grasps_dict[obj.key][stable_pose.id] = []

                        # setup table in collision checker
                        T_obj_stp = stable_pose.T_obj_table.as_frames(
                            'obj', 'stp')
                        T_obj_table = obj.mesh.get_T_surface_obj(
                            T_obj_stp,
                            delta=table_offset).as_frames('obj', 'table')
                        T_table_obj = T_obj_table.inverse()
                        collision_checker.set_table(table_mesh_filename,
                                                    T_table_obj)

                        # read grasp and metrics
                        grasps = dataset.grasps(obj.key, gripper=gripper.name)
                        logging.info(
                            'Aligning %d grasps for object %s in stable %s' %
                            (len(grasps), obj.key, stable_pose.id))

                        # align grasps with the table
                        aligned_grasps = [
                            grasp.perpendicular_table(stable_pose)
                            for grasp in grasps
                        ]

                        # check grasp validity
                        logging.info(
                            'Checking collisions for %d grasps for object %s in stable %s'
                            % (len(grasps), obj.key, stable_pose.id))
                        for aligned_grasp in aligned_grasps:
                            # check angle with table plane and skip unaligned grasps
                            _, grasp_approach_table_angle, _ = aligned_grasp.grasp_angles_from_stp_z(
                                stable_pose)
                            perpendicular_table = (
                                np.abs(grasp_approach_table_angle) <
                                max_grasp_approach_table_angle)
                            if not perpendicular_table:
                                continue

                            # check whether any valid approach directions are collision free
                            collision_free = False
                            for phi_offset in phi_offsets:
                                rotated_grasp = aligned_grasp.grasp_y_axis_offset(
                                    phi_offset)
                                collides = collision_checker.collides_along_approach(
                                    rotated_grasp, approach_dist,
                                    delta_approach)
                                if not collides:
                                    collision_free = True
                                    break

                            # store if aligned to table
                            candidate_grasps_dict[obj.key][
                                stable_pose.id].append(
                                    GraspInfo(aligned_grasp, collision_free))

                            # visualize if specified
                            if collision_free and config['vis'][
                                    'candidate_grasps']:
                                logging.info('Grasp %d' % (aligned_grasp.id))
                                vis.figure()
                                vis.gripper_on_object(gripper, aligned_grasp,
                                                      obj,
                                                      stable_pose.T_obj_world)
                                vis.show()

        # save to file
        logging.info('Saving to file')
        pkl.dump(candidate_grasps_dict, open(grasp_cache_filename, 'wb'))

    # 2. Render a dataset of images and associate the gripper pose with image coordinates for each grasp in the Dex-Net database

    # setup variables
    obj_category_map = {}
    pose_category_map = {}

    cur_pose_label = 0
    cur_obj_label = 0
    cur_image_label = 0

    # render images for each stable pose of each object in the dataset
    render_modes = [RenderMode.SEGMASK, RenderMode.DEPTH_SCENE]
    for dataset in datasets:
        logging.info('Generating data for dataset %s' % (dataset.name))

        # iterate through all object keys
        object_keys = dataset.object_keys
        for obj_key in object_keys:
            obj = dataset[obj_key]
            if obj.key not in target_object_keys[dataset.name]:
                continue

            # read in the stable poses of the mesh
            stable_poses = dataset.stable_poses(obj.key)
            for i, stable_pose in enumerate(stable_poses):

                # render images if stable pose is valid
                if stable_pose.p > stable_pose_min_p:
                    # log progress
                    logging.info('Rendering images for object %s in %s' %
                                 (obj.key, stable_pose.id))

                    # add to category maps
                    if obj.key not in obj_category_map.keys():
                        obj_category_map[obj.key] = cur_obj_label
                    pose_category_map['%s_%s' %
                                      (obj.key,
                                       stable_pose.id)] = cur_pose_label

                    # read in candidate grasps and metrics
                    candidate_grasp_info = candidate_grasps_dict[obj.key][
                        stable_pose.id]
                    candidate_grasps = [g.grasp for g in candidate_grasp_info]
                    grasp_metrics = dataset.grasp_metrics(obj.key,
                                                          candidate_grasps,
                                                          gripper=gripper.name)

                    # compute object pose relative to the table
                    T_obj_stp = stable_pose.T_obj_table.as_frames('obj', 'stp')
                    T_obj_stp = obj.mesh.get_T_surface_obj(T_obj_stp)

                    # sample images from random variable
                    T_table_obj = RigidTransform(from_frame='table',
                                                 to_frame='obj')
                    scene_objs = {
                        'table': SceneObject(table_mesh, T_table_obj)
                    }
                    urv = UniformPlanarWorksurfaceImageRandomVariable(
                        obj.mesh,
                        render_modes,
                        'camera',
                        env_rv_params,
                        stable_pose=stable_pose,
                        scene_objs=scene_objs)

                    render_start = time.time()
                    render_samples = urv.rvs(
                        size=image_samples_per_stable_pose)
                    render_stop = time.time()
                    logging.info('Rendering images took %.3f sec' %
                                 (render_stop - render_start))

                    # visualize
                    if config['vis']['rendered_images']:
                        d = int(np.ceil(
                            np.sqrt(image_samples_per_stable_pose)))

                        # binary
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.SEGMASK].image)

                        # depth table
                        vis2d.figure()
                        for j, render_sample in enumerate(render_samples):
                            vis2d.subplot(d, d, j + 1)
                            vis2d.imshow(render_sample.renders[
                                RenderMode.DEPTH_SCENE].image)
                        vis2d.show()

                    # tally total amount of data
                    num_grasps = len(candidate_grasps)
                    num_images = image_samples_per_stable_pose
                    num_save = num_images * num_grasps
                    logging.info('Saving %d datapoints' % (num_save))

                    # for each candidate grasp on the object compute the projection
                    # of the grasp into image space
                    for render_sample in render_samples:
                        # read images
                        binary_im = render_sample.renders[
                            RenderMode.SEGMASK].image
                        depth_im_table = render_sample.renders[
                            RenderMode.DEPTH_SCENE].image
                        # read camera params
                        T_stp_camera = render_sample.camera.object_to_camera_pose
                        shifted_camera_intr = render_sample.camera.camera_intr

                        # read pixel offsets
                        cx = depth_im_table.center[1]
                        cy = depth_im_table.center[0]

                        # compute intrinsics for virtual camera of the final
                        # cropped and rescaled images
                        camera_intr_scale = float(im_final_height) / float(
                            im_crop_height)
                        cropped_camera_intr = shifted_camera_intr.crop(
                            im_crop_height, im_crop_width, cy, cx)
                        final_camera_intr = cropped_camera_intr.resize(
                            camera_intr_scale)

                        # create a thumbnail for each grasp
                        for grasp_info in candidate_grasp_info:
                            # read info
                            grasp = grasp_info.grasp
                            collision_free = grasp_info.collision_free

                            # get the gripper pose
                            T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
                                'obj', T_stp_camera.from_frame)
                            grasp_2d = grasp.project_camera(
                                T_obj_camera, shifted_camera_intr)

                            # center images on the grasp, rotate to image x axis
                            dx = cx - grasp_2d.center.x
                            dy = cy - grasp_2d.center.y
                            translation = np.array([dy, dx])

                            binary_im_tf = binary_im.transform(
                                translation, grasp_2d.angle)
                            depth_im_tf_table = depth_im_table.transform(
                                translation, grasp_2d.angle)

                            # crop to image size
                            binary_im_tf = binary_im_tf.crop(
                                im_crop_height, im_crop_width)
                            depth_im_tf_table = depth_im_tf_table.crop(
                                im_crop_height, im_crop_width)

                            # resize to image size
                            binary_im_tf = binary_im_tf.resize(
                                (im_final_height, im_final_width),
                                interp='nearest')
                            depth_im_tf_table = depth_im_tf_table.resize(
                                (im_final_height, im_final_width))

                            # visualize the transformed images
                            if config['vis']['grasp_images']:
                                grasp_center = Point(
                                    depth_im_tf_table.center,
                                    frame=final_camera_intr.frame)
                                tf_grasp_2d = Grasp2D(
                                    grasp_center,
                                    0,
                                    grasp_2d.depth,
                                    width=gripper.max_width,
                                    camera_intr=final_camera_intr)

                                # plot 2D grasp image
                                vis2d.figure()
                                vis2d.subplot(2, 2, 1)
                                vis2d.imshow(binary_im)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 2)
                                vis2d.imshow(depth_im_table)
                                vis2d.grasp(grasp_2d)
                                vis2d.subplot(2, 2, 3)
                                vis2d.imshow(binary_im_tf)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.subplot(2, 2, 4)
                                vis2d.imshow(depth_im_tf_table)
                                vis2d.grasp(tf_grasp_2d)
                                vis2d.title('Coll Free? %d' %
                                            (grasp_info.collision_free))
                                vis2d.show()

                                # plot 3D visualization
                                vis.figure()
                                T_obj_world = vis.mesh_stable_pose(
                                    obj.mesh,
                                    stable_pose.T_obj_world,
                                    style='surface',
                                    dim=0.5)
                                vis.gripper(gripper,
                                            grasp,
                                            T_obj_world,
                                            color=(0.3, 0.3, 0.3))
                                vis.show()

                            # form hand pose array
                            hand_pose = np.r_[grasp_2d.center.y,
                                              grasp_2d.center.x,
                                              grasp_2d.depth, grasp_2d.angle,
                                              grasp_2d.center.y -
                                              shifted_camera_intr.cy,
                                              grasp_2d.center.x -
                                              shifted_camera_intr.cx,
                                              grasp_2d.width_px]

                            # store to data buffers
                            tensor_datapoint[
                                'depth_ims_tf_table'] = depth_im_tf_table.raw_data
                            tensor_datapoint[
                                'obj_masks'] = binary_im_tf.raw_data
                            tensor_datapoint['hand_poses'] = hand_pose
                            tensor_datapoint['collision_free'] = collision_free
                            tensor_datapoint['obj_labels'] = cur_obj_label
                            tensor_datapoint['pose_labels'] = cur_pose_label
                            tensor_datapoint['image_labels'] = cur_image_label

                            for metric_name, metric_val in grasp_metrics[
                                    grasp.id].iteritems():
                                coll_free_metric = (
                                    1 * collision_free) * metric_val
                                tensor_datapoint[
                                    metric_name] = coll_free_metric
                            tensor_dataset.add(tensor_datapoint)

                        # update image label
                        cur_image_label += 1

                    # update pose label
                    cur_pose_label += 1

                    # force clean up
                    gc.collect()

            # update object label
            cur_obj_label += 1

            # force clean up
            gc.collect()

    # save last file
    tensor_dataset.flush()

    # save category mappings
    obj_cat_filename = os.path.join(output_dir, 'object_category_map.json')
    json.dump(obj_category_map, open(obj_cat_filename, 'w'))
    pose_cat_filename = os.path.join(output_dir, 'pose_category_map.json')
    json.dump(pose_category_map, open(pose_cat_filename, 'w'))
Esempio n. 16
0
    def save_samples(self, sample, grasps, collisions, T_obj_stp,
                     grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
            'obj', T_stp_camera.from_frame)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        camera_pose = self.get_camera_pose(sample)
        final_camera_intr = sample.camera.camera_intr.crop(
            self.crop_height, self.crop_width, depth_im_table.center[0],
            depth_im_table.center[1])
        self.tensor_datapoint['camera_intrs'] = np.r_[final_camera_intr.fx,
                                                      final_camera_intr.fy,
                                                      final_camera_intr.cx,
                                                      final_camera_intr.cy]

        self.save_image(depth_im_table)

        for aligned_grasp, collision_free in zip(grasps, collisions):
            # Project grasp coordinates in image
            grasp_point = aligned_grasp.close_fingers(self.obj,
                                                      vis=False,
                                                      check_approach=False)

            if not grasp_point[0]:
                Warning("Could not find contact points")
                continue
            # Get grasp width in pixel from endpoints
            p_1 = np.dot(self.T_obj_camera.matrix,
                         np.append(grasp_point[1][0].point, 1).T).T[:3]
            p_2 = np.dot(self.T_obj_camera.matrix,
                         np.append(grasp_point[1][1].point, 1).T).T[:3]
            grasp_width_px = self.width_px(final_camera_intr, p_1, p_2)

            grasp_width = aligned_grasp.width_from_endpoints(
                grasp_point[1][0].point, grasp_point[1][1].point)

            if VISUALISE_3D:
                c = np.array((1, 0, 0))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world,
                                                   style='surface',
                                                   dim=0.5,
                                                   plot_table=True)
                points = np.array(
                    (np.append(grasp_point[1][0].point,
                               1), np.append(grasp_point[1][1].point, 1)))

                vis.gripper(self.gripper,
                            aligned_grasp,
                            T_obj_world,
                            color=(0.3, 0.3, 0.3),
                            point=points,
                            point_color=c)
                vis.show()
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera,
                                                    final_camera_intr)

            grasp_center_x = self.crop_width // 2 - grasp_2d.center.x
            grasp_center_y = self.crop_height // 2 - grasp_2d.center.y

            hand_pose = self.get_hand_pose(grasp_center_x, grasp_center_y,
                                           grasp_2d, final_camera_intr,
                                           grasp_width, grasp_width_px)

            self.add_datapoint(hand_pose, collision_free, camera_pose,
                               aligned_grasp, grasp_metrics)
        self.cur_image_label += 1
Esempio n. 17
0
                    for phi_offset in phi_offsets:
                        aligned_grasp.grasp_y_axis_offset(phi_offset)
                        collides = collision_checker.collides_along_approach(aligned_grasp, approach_dist,
                                                                             delta_approach)
                        if not collides:
                            collision_free = True
                            break

                    # Load grasp metrics
                    grasp_metrics = dataset.grasp_metrics(obj.key, aligned_grasps, gripper=gripper.name)

                    # Project grasp coordinates in image
                    grasp_2d = aligned_grasp.project_camera(T_obj_camera, shifted_camera_intr)

                    if VISUALISE_3D:
                        vis.figure()
                        T_obj_world = vis.mesh_stable_pose(obj.mesh.trimesh,
                                                           stable_pose.T_obj_world, style='surface', dim=0.5)
                        T_camera_world = T_obj_world * T_obj_camera.inverse()
                        vis.gripper(gripper, aligned_grasp, T_obj_world, color=(0.3, 0.3, 0.3),
                                    T_camera_world=T_camera_world)
                        vis.show()

                    # Get translation image distances to grasp
                    dx = cx - grasp_2d.center.x
                    dy = cy - grasp_2d.center.y
                    translation = np.array([dy, dx])

                    # Transform, crop and resize image
                    binary_im_tf = binary_im.transform(translation, grasp_2d.angle)
                    depth_im_tf_table = depth_im_table.transform(translation, grasp_2d.angle)
Esempio n. 18
0
    def showgraspfrompicklewithcandidate(self, object_name,metric_name,onlynagative,onlypositive,openravechecker):    
        object = self.dataset[object_name] 
        labelgrasps,labelmetrics,candidate_labelgrasps,candidate_labelmetrics=self.readdatafrompicklewithcandidate(object_name)


        config=self._get_config(None)
        low =0.0  #np.min(metrics)
        high = np.max([labelmetrics[i][metric_name] for i in range(len(labelmetrics))])
       # print 'high',high,config['quality_scale']
        if low == high:
            q_to_c = lambda quality: config['quality_scale']
        else:
            
            q_to_c = lambda quality: config['quality_scale'] * (quality - low) / (high - low)

        recalculate_grasp=[]    
        vis.figure()
        vis.mesh(object.mesh.trimesh ,style='surface')
        for i in range(len(labelgrasps)): 
         
                        if labelmetrics[i][metric_name]==0 : 
                           if not onlypositive: 
                                    vis.figure()
                                    vis.mesh(object.mesh.trimesh ,style='surface')
                                    color = plt.get_cmap('hsv')(q_to_c(labelmetrics[i][metric_name]))[:-1] 
                                    
                                    vis.graspwithapproachvectorusingcenter_point(labelgrasps[i] ,approaching_color=(1,0,0), grasp_axis_color=(1,0,0) )
                                    for kk in range(len(candidate_labelgrasps[i] )):  
                                        print 'candidate_labelgrasps[i][kk]',candidate_labelgrasps[i][kk]
                                        color = plt.get_cmap('hsv')(q_to_c(candidate_labelmetrics[i][candidate_labelgrasps[i][kk].id][metric_name]))[:-1] 
                                        vis.graspwithapproachvectorusingcenter_point(candidate_labelgrasps[i][kk] ,approaching_color=color, grasp_axis_color=color )
                         
                                    recalculate_grasp.append(labelgrasps[i])
                                    print 'maxtrics',i,labelmetrics[i][metric_name]   # ,high
                                
                                    vis.pose(RigidTransform(), alpha=0.1) 
                    
                                    vis.show(animate=False)             
                        elif  labelmetrics[i][metric_name]==-1   :
                            if not onlypositive:
                                 vis.shownormals(labelgrasps[i][1],labelgrasps[i][0],color=(0,0,1) ) 
                        else:
                                if not onlynagative: 
                                    vis.figure()
                                    vis.mesh(object.mesh.trimesh ,style='surface')
                                    color = plt.get_cmap('hsv')(q_to_c(labelmetrics[i][metric_name]))[:-1]                               
                                    if len(candidate_labelgrasps[i])>0:
                                        A=np.array(labelgrasps[i].rotated_full_axis[:,0] )
                                        B=np.array(candidate_labelgrasps[i][0].rotated_full_axis[:,0] ) 
                                        num = np.dot(A.T, B)
                                        print num
                                        if num<0.99:
                                            labelgrasps[i].approach_angle_= labelgrasps[i]._angle_aligned_with_table( -candidate_labelgrasps[i][0].rotated_full_axis[:,0])
                                                                        
                                    vis.graspwithapproachvectorusingcenter_point(labelgrasps[i] ,approaching_color=color, grasp_axis_color=(0,0,1) )
                                    print 'length',len(candidate_labelgrasps[i] )
                                    for kk in range(len(candidate_labelgrasps[i] )):   
                                        color = plt.get_cmap('hsv')(q_to_c(candidate_labelmetrics[i][candidate_labelgrasps[i][kk].id][metric_name]))[:-1] 
                                        vis.graspwithapproachvectorusingcenter_point(candidate_labelgrasps[i][kk] ,approaching_color=(0,1,1), grasp_axis_color=color )
 
                                    recalculate_grasp.append(labelgrasps[i])
                                    print 'maxtrics',i,labelmetrics[i][metric_name]   # ,high
                                
                                    vis.pose(RigidTransform(), alpha=0.1) 
                                    vis.show(animate=False) 
Esempio n. 19
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker, grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames('obj', T_stp_camera.from_frame)
        aligned_grasps = self.align_grasps_with_camera(grasps)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        cx = depth_im_table.center[1]
        cy = depth_im_table.center[0]
        camera_pose = self.get_camera_pose(sample)
        self.tensor_datapoint['camera_poses'] = camera_pose
        shifted_camera_intr = sample.camera.camera_intr
        self.tensor_datapoint['camera_intrs'] = np.r_[shifted_camera_intr.fx,
                                                      shifted_camera_intr.fy,
                                                      shifted_camera_intr.cx,
                                                      shifted_camera_intr.cy]
        self.save_orig_image(depth_im_table, camera_pose, stable_pose, shifted_camera_intr)

        grid_space = 200
        grids = 3
        centre = np.empty((grids, grids, 2))
        saved = np.ones((grids, grids)) * -1

        depth_images = np.empty((grids, grids, 32, 32, 1))
        # Crop images in a grid around the centre
        for x_grid in range(grids):
            x_pos = grid_space / 4 - x_grid * grid_space / (grids + 1)
            for y_grid in range(grids):
                y_pos = grid_space / 4 - y_grid * grid_space / (grids + 1)
                depth_im = self.prepare_images(depth_im_table, x_pos, y_pos)
                self._show_image(depth_im)
                depth_images[x_grid, y_grid, :, :, :] = depth_im
                centre[x_grid, y_grid, 0] = x_pos
                centre[x_grid, y_grid, 1] = y_pos

        for cnt, aligned_grasp in enumerate(aligned_grasps):
            collision_free = self.is_grasp_collision_free(aligned_grasp, collision_checker)
            # Project grasp coordinates in image
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera, shifted_camera_intr)

            grasp_point = aligned_grasp.close_fingers(self.obj, vis=False, check_approach=False)

            if not grasp_point[0]:
                Warning("Could not find contact points")
                continue
            # Get grasp width in pixel from endpoints
            p_1 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][0].point, 1).T).T[:3]
            p_2 = np.dot(self.T_obj_camera.matrix, np.append(grasp_point[1][1].point, 1).T).T[:3]
            grasp_width_px = self.width_px(shifted_camera_intr, p_1, p_2)

            grasp_width = aligned_grasp.width_from_endpoints(grasp_point[1][0].point, grasp_point[1][1].point)

            pos_x = cx - grasp_2d.center.x
            pos_y = cy - grasp_2d.center.y

            distance = np.abs((centre[:, :, 0] - pos_x)**2 + (centre[:, :, 1] - pos_y)**2)

            idx = np.where(distance == np.amin(distance))
            idx_x = idx[0][0]
            idx_y = idx[1][0]

            grasp_center_x = (300 - grasp_2d.center.x - centre[idx_x, idx_y, 0])//3
            grasp_center_y = (300 - grasp_2d.center.y - centre[idx_x, idx_y, 1])//3

            if saved[idx_x, idx_y] == -1:
                np.save(self.image_dir + "/depth_im_{:07d}.npy".format(self.cur_image_file),
                        depth_images[idx_x, idx_y, :, :, :])
                saved[idx_x, idx_y] = self.cur_image_file
                self.tensor_datapoint['image_files'] = self.cur_image_file
                self.cur_image_file += 1
            else:
                self.tensor_datapoint['image_files'] = saved[idx_x, idx_y]

            T_grasp_camera = aligned_grasp.gripper_pose(self.gripper).inverse() * self.T_obj_camera.inverse()

            if VISUALISE_3D:
                z_axis = T_grasp_camera.z_axis
                theta = np.rad2deg(np.arccos((z_axis[2]) /
                                             (np.sqrt((z_axis[0] ** 2 + z_axis[1] ** 2 + z_axis[2] ** 2)))))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world, style='surface', dim=0.5, plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper, aligned_grasp, T_obj_world, color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                print(theta)
                vis.show()

            hand_pose = self.get_hand_pose(grasp_center_x, grasp_center_y, grasp_2d, T_grasp_camera,
                                           grasp_width, grasp_width_px)

            self.add_datapoint(hand_pose,
                               collision_free, aligned_grasp, grasp_metrics)
        self.cur_image_label += 1
Esempio n. 20
0
    def save_samples(self, sample, grasps, T_obj_stp, collision_checker,
                     grasp_metrics, stable_pose):
        self.tensor_datapoint['image_labels'] = self.cur_image_label
        T_stp_camera = sample.camera.object_to_camera_pose
        self.T_obj_camera = T_stp_camera * T_obj_stp.as_frames(
            'obj', T_stp_camera.from_frame)

        depth_im_table = sample.renders[RenderMode.DEPTH_SCENE].image
        camera_pose = self.get_camera_pose(sample)
        shifted_camera_intr = sample.camera.camera_intr
        aligned_grasps = self.align_grasps_with_camera(grasps)

        cx = depth_im_table.center[1]
        cy = depth_im_table.center[0]

        self.tensor_datapoint['camera_intrs'] = np.r_[shifted_camera_intr.fx,
                                                      shifted_camera_intr.fy,
                                                      shifted_camera_intr.cx,
                                                      shifted_camera_intr.cy]

        for aligned_grasp in aligned_grasps:
            if not self.is_grasp_aligned(aligned_grasp):
                continue
            collision_free = self.is_grasp_collision_free(
                aligned_grasp, collision_checker)
            grasp_2d = aligned_grasp.project_camera(self.T_obj_camera,
                                                    shifted_camera_intr)

            depth_im_tf = self.prepare_images(depth_im_table, grasp_2d, cx, cy)
            T_grasp_camera = aligned_grasp.gripper_pose(
                self.gripper).inverse() * self.T_obj_camera.inverse()

            if VISUALISE_3D:
                z_axis = T_grasp_camera.z_axis
                theta = np.rad2deg(
                    np.arccos((z_axis[2]) / (np.sqrt(
                        (z_axis[0]**2 + z_axis[1]**2 + z_axis[2]**2)))))
                vis.figure()
                T_obj_world = vis.mesh_stable_pose(self.obj.mesh.trimesh,
                                                   stable_pose.T_obj_world,
                                                   style='surface',
                                                   dim=0.5,
                                                   plot_table=True)
                T_camera_world = T_obj_world * self.T_obj_camera.inverse()
                vis.gripper(self.gripper,
                            aligned_grasp,
                            T_obj_world,
                            color=(0.3, 0.3, 0.3),
                            T_camera_world=T_camera_world)
                vis.show()

            theta = grasp_2d.angle
            R = np.array([[np.cos(theta), -np.sin(theta), 0],
                          [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
            rot = RigidTransform(rotation=R,
                                 to_frame='camera',
                                 from_frame='camera')

            new_quaternion = T_grasp_camera * rot

            hand_pose = self.get_hand_pose(grasp_2d, new_quaternion.quaternion)
            self.add_datapoint(depth_im_tf, hand_pose, collision_free,
                               camera_pose, aligned_grasp, grasp_metrics)
        self.cur_image_label += 1
Esempio n. 21
0
    def display_grasps(self,
                       object_name,
                       gripper_name,
                       metric_name,
                       config=None):
        """ Display grasps for an object 
        
        Parameters
        ----------
        object_name : :obj:`str`
            Object to display
        gripper_name : :obj:`str`
            Gripper for which to display grasps
        metric_name : :obj:`str`
            Metric to color/rank grasps with
        config : :obj:`dict`
            Configuration dict for visualization. 
            Parameters are in Other parameters. Values from self.default_config are used for keys not provided.
        
        Other Parameters
        ----------------
        gripper_dir
            Directory where the grippers models and parameters are.
        quality_scale
            Range to scale quality metric values to
        show_gripper
            Whether or not to show the gripper in the visualization
        min_metric
            lowest value of metric to show grasps for
        max_plot_gripper
            Number of grasps to plot
        animate
            Whether or not to animate the displayed object
        """
        self._check_opens()
        config = self._get_config(config)

        grippers = os.listdir(config['gripper_dir'])
        if gripper_name not in grippers:
            raise ValueError(
                "{} is not a valid gripper name".format(gripper_name))
        gripper = gr.RobotGripper.load(gripper_name,
                                       gripper_dir=config['gripper_dir'])

        objects = self.dataset.object_keys
        if object_name not in objects:
            raise ValueError(
                "{} is not a valid object name".format(object_name))

        metrics = self.dataset.available_metrics(object_name,
                                                 gripper=gripper.name)
        if metric_name not in metrics:
            raise ValueError(
                "{} is not computed for gripper {}, object {}".format(
                    metric_name, gripper.name, object_name))

        logger.info('Displaying grasps for gripper %s on object %s' %
                    (gripper.name, object_name))
        object = self.dataset[object_name]
        grasps, metrics = self.dataset.sorted_grasps(object_name,
                                                     metric_name,
                                                     gripper=gripper.name)

        if len(grasps) == 0:
            raise RuntimeError('No grasps for gripper %s on object %s' %
                               (gripper.name, object_name))
            return

        low = np.min(metrics)
        high = np.max(metrics)
        if low == high:
            q_to_c = lambda quality: config['quality_scale']
        else:
            q_to_c = lambda quality: config['quality_scale'] * (
                quality - low) / (high - low)

        if config['show_gripper']:
            i = 0
            stable_pose = self.dataset.stable_pose(object.key, 'pose_1')
            for grasp, metric in zip(grasps, metrics):
                if metric <= config['min_metric']:
                    continue

                print 'Grasp %d %s=%.5f' % (grasp.id, metric_name, metric)
                T_obj_world = RigidTransform(from_frame='obj',
                                             to_frame='world')
                color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
                T_obj_gripper = grasp.gripper_pose(gripper)
                grasp = grasp.perpendicular_table(stable_pose)
                vis.figure()
                vis.gripper_on_object(gripper,
                                      grasp,
                                      object,
                                      gripper_color=(0.25, 0.25, 0.25),
                                      stable_pose=stable_pose,
                                      plot_table=False)
                vis.show(animate=config['animate'])
                i += 1
                if i >= config['max_plot_gripper']:
                    break
        else:
            i = 0
            vis.figure()
            vis.mesh(object.mesh, style='surface')
            for grasp, metric in zip(grasps, metrics):
                if metric <= config['min_metric']:
                    continue

                print 'Grasp %d %s=%.5f' % (grasp.id, metric_name, metric)
                T_obj_world = RigidTransform(from_frame='obj',
                                             to_frame='world')
                color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
                T_obj_gripper = grasp.gripper_pose(gripper)
                vis.grasp(grasp, grasp_axis_color=color, endpoint_color=color)
                i += 1
                if i >= config['max_plot_gripper']:
                    break

            vis.show(animate=config['animate'])
Esempio n. 22
0
def antipodal_grasp_sampler(visual=False, debug=False):
    mass = 1.0
    CONFIG['obj_rescaling_type'] = RescalingType.RELATIVE
    mesh_processor = MeshProcessor(OBJ_FILENAME, CONFIG['cache_dir'])
    mesh_processor.generate_graspable(CONFIG)
    mesh = mesh_processor.mesh
    sdf = mesh_processor.sdf
    stable_poses = mesh_processor.stable_poses
    obj = GraspableObject3D(sdf, mesh)
    stable_pose = stable_poses[0]
    if visual:
        vis.figure()

    T_table_world = RigidTransform(from_frame='table', to_frame='world')
    T_obj_world = Visualizer3D.mesh_stable_pose(obj.mesh.trimesh,
                                                stable_pose.T_obj_world,
                                                T_table_world=T_table_world,
                                                color=(0.5, 0.5, 0.5),
                                                style='surface',
                                                plot_table=True,
                                                dim=0.15)
    if debug:
        print(len(stable_poses))
    #for stable_pose in stable_poses:
    #    print(stable_pose.p)
    #    print(stable_pose.r)
    #    print(stable_pose.x0)
    #    print(stable_pose.face)
    #    print(stable_pose.id)
    # glass = 22 is standing straight
    if debug:
        print(stable_pose.r)
        print(stable_pose.T_obj_world)
    gripper = RobotGripper.load(
        GRIPPER_NAME, gripper_dir='/home/silvia/dex-net/data/grippers')

    ags = AntipodalGraspSampler(gripper, CONFIG)
    stable_pose.id = 0
    grasps = ags.generate_grasps(obj,
                                 target_num_grasps=20,
                                 max_iter=5,
                                 stable_pose=stable_pose.r)

    quality_config = GraspQualityConfigFactory.create_config(
        CONFIG['metrics']['robust_ferrari_canny'])

    metrics = []
    result = []

    #grasps = map(lambda g : g.perpendicular_table(stable_pose), grasps)

    for grasp in grasps:
        c1, c2 = grasp.endpoints
        true_fc = PointGraspMetrics3D.grasp_quality(grasp, obj, quality_config)
        metrics.append(true_fc)
        result.append((c1, c2))

        if debug:
            success, c = grasp.close_fingers(obj)
            if success:
                c1, c2 = c
                print("Grasp:")
                print(c1.point)
                print(c2.point)
                print(true_fc)

    low = np.min(metrics)
    high = np.max(metrics)
    if low == high:
        q_to_c = lambda quality: CONFIG['quality_scale']
    else:
        q_to_c = lambda quality: CONFIG['quality_scale'] * (quality - low) / (
            high - low)

    if visual:
        for grasp, metric in zip(grasps, metrics):
            #grasp2 = grasp.perpendicular_table(stable_pose)
            #c1, c2 = grasp.endpoints
            #axis = ParallelJawPtGrasp3D.axis_from_endpoints(c1, c2)
            #angle = np.dot(np.matmul(stable_pose.r, axis), [1,0,0])
            #angle = math.tan(axis[1]/axis[0])
            #angle = math.degrees(angle)%360
            #print(angle)
            #print(angle/360.0)
            color = plt.get_cmap('hsv')(q_to_c(metric))[:-1]
            vis.grasp(grasp,
                      T_obj_world=T_obj_world,
                      grasp_axis_color=color,
                      endpoint_color=color)

        #axis = np.array([[0,0,0], point])
        #points = [(x[0], x[1], x[2]) for x in axis]
        #Visualizer3D.plot3d(points, color=(0,0,1), tube_radius=0.002)
        vis.show(False)

    pose_matrix = np.eye(4, 4)
    pose_matrix[:3, :3] = T_obj_world.rotation
    pose_matrix[:3, 3] = T_obj_world.translation
    return pose_matrix, result