Esempio n. 1
0
    def test_variables(self):
        N = 10
        ocp = Ocp(t0=2 * pi, T=10)
        p = ocp.parameter(grid='control')
        v = ocp.variable(grid='control')
        x = ocp.state()
        ocp.set_der(x, 0)
        ocp.subject_to(ocp.at_t0(x) == 0)

        ts = linspace(0, 10, N)

        ocp.add_objective(ocp.integral(sin(v - p)**2, grid='control'))
        ocp.method(MultipleShooting(N=N))
        ocp.solver('ipopt')
        ocp.set_value(p, ts)
        ocp.set_initial(v, ts)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')

        assert_array_almost_equal(xs[:-1], ts)
        ocp.set_initial(v, 0.1 + 2 * pi + ts)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')
        assert_array_almost_equal(xs[:-1], 2 * pi + ts)
        ocp.set_initial(v, 0.1 + ocp.t)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')
        assert_array_almost_equal(xs[:-1], 2 * pi + ts)
        ocp.set_initial(v, 0.1 + 2 * pi)
        sol = ocp.solve()
        _, xs = sol.sample(v, grid='control')
        with self.assertRaises(AssertionError):
            assert_array_almost_equal(xs[:-1], 2 * pi + ts)
Esempio n. 2
0
    def test_der(self):
        T = 1
        M = 1
        b = 1
        t0 = 0
        x0 = 0
        ocp = Ocp(t0=t0, T=T)

        x = ocp.state()
        u = ocp.control()

        ocp.set_der(x, u)

        y = 2 * x

        ocp.subject_to(ocp.der(y) <= 2 * b)
        ocp.subject_to(-2 * b <= ocp.der(y))

        ocp.add_objective(ocp.at_tf(x))
        ocp.subject_to(ocp.at_t0(x) == x0)

        ocp.solver('ipopt')

        ocp.method(MultipleShooting(N=4, M=M, intg='rk'))

        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')

        self.assertAlmostEqual(xs[0], x0, places=6)
        self.assertAlmostEqual(xs[-1], x0 - b * T, places=6)
        self.assertAlmostEqual(ts[0], t0)
        self.assertAlmostEqual(ts[-1], t0 + T)
Esempio n. 3
0
    def test_integral(self):
        t0 = 1.2
        T = 5.7
        ocp = Ocp(t0=t0, T=T)

        x = ocp.state()
        u = ocp.control()
        ocp.set_der(x, u)

        ocp.subject_to(ocp.at_t0(x) == 0)
        ocp.subject_to(u <= 1)
        f = ocp.integral(x * ocp.t)
        ocp.add_objective(-f)  # (t-t0)*t -> t^3/3-t^2/2*t0
        ocp.solver('ipopt')
        opts = {"abstol": 1e-8, "reltol": 1e-8, "quad_err_con": True}
        for method in [
                MultipleShooting(intg='rk'),
                MultipleShooting(intg='cvodes', intg_options=opts),
                #MultipleShooting(intg='idas',intg_options=opts),
                DirectCollocation()
        ]:
            ocp.method(method)
            sol = ocp.solve()
            ts, xs = sol.sample(f, grid='control')
            I = lambda t: t**3 / 3 - t**2 / 2 * t0
            x_ref = I(t0 + T) - I(t0)

            assert_array_almost_equal(xs[-1], x_ref)
Esempio n. 4
0
    def test_param(self):
        ocp = Ocp(T=1)

        x = ocp.state()
        u = ocp.control()

        p = ocp.parameter()

        ocp.set_der(x, u)

        ocp.subject_to(u <= 1)
        ocp.subject_to(-1 <= u)

        ocp.add_objective(ocp.at_tf(x))
        ocp.subject_to(ocp.at_t0(x) == p)

        ocp.solver('ipopt')

        ocp.method(MultipleShooting())

        ocp.set_value(p, 0)
        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')
        self.assertAlmostEqual(xs[0], 0)

        ocp.set_value(p, 1)
        sol = ocp.solve()

        ts, xs = sol.sample(x, grid='control')
        self.assertAlmostEqual(xs[0], 1)
Esempio n. 5
0
    def test_time_dep_ode(self):
        t0 = 1.2
        T = 5.7
        ocp = Ocp(t0=t0, T=5.7)

        x = ocp.state()
        ocp.set_der(x, ocp.t**2)

        ocp.subject_to(ocp.at_t0(x) == 0)

        tf = t0 + T
        x_ref = tf**3 / 3 - t0**3 / 3

        ocp.solver('ipopt')
        opts = {"abstol": 1e-9, "reltol": 1e-9}
        for method in [
                MultipleShooting(intg='rk'),
                MultipleShooting(intg='cvodes', intg_options=opts),
                MultipleShooting(intg='idas', intg_options=opts),
                DirectCollocation()
        ]:
            ocp.method(method)
            sol = ocp.solve()
            ts, xs = sol.sample(x, grid='control')
            x_ref = ts**3 / 3 - t0**3 / 3
            assert_array_almost_equal(xs, x_ref)
Esempio n. 6
0
def vdp(method,grid='control'):
  ocp = Ocp(T=10)

  # Define 2 states
  x1 = ocp.state()
  x2 = ocp.state()

  # Define 1 control
  u = ocp.control(order=0)

  # Specify ODE
  ocp.set_der(x1, (1 - x2**2) * x1 - x2 + u)
  ocp.set_der(x2, x1)

  # Lagrange objective
  ocp.add_objective(ocp.integral(x1**2 + x2**2 + u**2))

  # Path constraints
  ocp.subject_to(-1 <= (u <= 1))
  ocp.subject_to(x1 >= -0.25, grid=grid)

  # Initial constraints
  ocp.subject_to(ocp.at_t0(x1) == 0)
  ocp.subject_to(ocp.at_t0(x2) == 1)

  # Pick an NLP solver backend
  ocp.solver('ipopt')

  # Pick a solution method
  ocp.method(method)
  return (ocp, x1, x2, u)
Esempio n. 7
0
def integrator_control_problem(T=1, u_max=1, x0=0, stage_method=None, t0=0):
    if stage_method is None:
      stage_method = MultipleShooting()
    ocp = Ocp(t0=t0, T=T)

    x = ocp.state()
    u = ocp.control()

    ocp.set_der(x, u)

    ocp.subject_to(u <= u_max)
    ocp.subject_to(-u_max <= u)

    ocp.add_objective(ocp.at_tf(x))
    if x0 is not None:
        ocp.subject_to(ocp.at_t0(x) == x0)

    ocp.solver('ipopt')

    ocp.method(stage_method)

    return (ocp, x, u)
Esempio n. 8
0
    def test_basic_t0_free(self):
        xf = 2
        t0 = 0
        for T in [2]:
            for x0 in [0, 1]:
                for b in [1, 2]:
                    for method in [
                            MultipleShooting(N=4, intg='rk'),
                            MultipleShooting(N=4, intg='cvodes'),
                            MultipleShooting(N=4, intg='idas'),
                            DirectCollocation(N=4)
                    ]:
                        ocp = Ocp(t0=FreeTime(2), T=T)

                        x = ocp.state()
                        u = ocp.control()

                        ocp.set_der(x, u)
                        ocp.subject_to(u <= b)
                        ocp.subject_to(-b <= u)

                        ocp.add_objective(ocp.tf)
                        ocp.subject_to(ocp.at_t0(x) == x0)
                        ocp.subject_to(ocp.at_tf(x) == xf)
                        ocp.subject_to(ocp.t0 >= 0)

                        ocp.solver('ipopt')

                        ocp.method(method)

                        sol = ocp.solve()

                        ts, xs = sol.sample(x, grid='control')

                        self.assertAlmostEqual(xs[0], x0, places=6)
                        self.assertAlmostEqual(xs[-1], xf, places=6)
                        self.assertAlmostEqual(ts[0], t0)
                        self.assertAlmostEqual(ts[-1], t0 + T)
Esempio n. 9
0
def bang_bang_problem(stage_method):
    ocp = Ocp(T=FreeTime(1))

    p = ocp.state()
    v = ocp.state()
    u = ocp.control()

    ocp.set_der(p, v)
    ocp.set_der(v, u)

    ocp.subject_to(u <= 1)
    ocp.subject_to(-1 <= u)

    ocp.add_objective(ocp.T)
    ocp.subject_to(ocp.at_t0(p) == 0)
    ocp.subject_to(ocp.at_t0(v) == 0)
    ocp.subject_to(ocp.at_tf(p) == 1)
    ocp.subject_to(ocp.at_tf(v) == 0)

    ocp.solver('ipopt')

    ocp.method(stage_method)

    return (ocp, ocp.solve(), p, v, u)
Esempio n. 10
0
    def test_dae_casadi(self):
        # cross check with dae_colloation

        xref = 0.1  # chariot reference

        l = 1.  #- -> crane, + -> pendulum
        m = 1.
        M = 1.
        g = 9.81

        ocp = Ocp(T=5)

        x = ocp.state()
        y = ocp.state()
        w = ocp.state()
        dx = ocp.state()
        dy = ocp.state()
        dw = ocp.state()

        xa = ocp.algebraic()
        u = ocp.control()

        ocp.set_der(x, dx)
        ocp.set_der(y, dy)
        ocp.set_der(w, dw)
        ddx = (w - x) * xa / m
        ddy = g - y * xa / m
        ddw = ((x - w) * xa - u) / M
        ocp.set_der(dx, ddx)
        ocp.set_der(dy, ddy)
        ocp.set_der(dw, ddw)
        ocp.add_alg((x - w) * (ddx - ddw) + y * ddy + dy * dy + (dx - dw)**2)

        ocp.add_objective(
            ocp.at_tf((x - xref) * (x - xref) + (w - xref) * (w - xref) +
                      dx * dx + dy * dy))
        ocp.add_objective(
            ocp.integral((x - xref) * (x - xref) + (w - xref) * (w - xref)))

        ocp.subject_to(-2 <= (u <= 2))

        ocp.subject_to(ocp.at_t0(x) == 0)
        ocp.subject_to(ocp.at_t0(y) == l)
        ocp.subject_to(ocp.at_t0(w) == 0)
        ocp.subject_to(ocp.at_t0(dx) == 0)
        ocp.subject_to(ocp.at_t0(dy) == 0)
        ocp.subject_to(ocp.at_t0(dw) == 0)
        #ocp.subject_to(xa>=0,grid='integrator_roots')

        ocp.set_initial(y, l)
        ocp.set_initial(xa, 9.81)

        # Pick an NLP solver backend
        # NOTE: default scaling strategy of MUMPS leads to a singular matrix error
        ocp.solver(
            'ipopt', {
                "ipopt.linear_solver": "mumps",
                "ipopt.mumps_scaling": 0,
                "ipopt.tol": 1e-12
            })

        # Pick a solution method
        method = DirectCollocation(N=50)
        ocp.method(method)

        # Solve
        sol = ocp.solve()

        assert_array_almost_equal(
            sol.sample(xa, grid='integrator', refine=1)[1][0],
            9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator', refine=1)[1][1],
            9.865726317147214)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator')[1][0], 9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='integrator')[1][1], 9.865726317147214)
        assert_array_almost_equal(
            sol.sample(xa, grid='control')[1][0], 9.81011622448889)
        assert_array_almost_equal(
            sol.sample(xa, grid='control')[1][1], 9.865726317147214)
Esempio n. 11
0
# Define output correction
beta = ocp.parameter(grid='control')

# Define previous control
u_prev = ocp.parameter(grid='control')

# Set ILC objective
ocp.add_objective(
    ocp.integral((y_ref - beta - x[0])**2, grid='control') +
    1e-3 * ocp.integral((u - u_prev)**2, grid='control'))

# Pick a solution method
ocp.solver('ipopt')

# Pick a solution method
ocp.method(MultipleShooting(N=N, M=4, intg='rk'))

# Define simulator for plant and model
plant_rhs = pendulum_ode(x, u, plant_param)

opts = {'tf': T / N}

data = {'x': x, 'p': u, 'ode': plant_rhs}
plant_sim = integrator('xkp1', 'cvodes', data, opts).mapaccum('simulator', N)

data = {'x': x, 'p': u, 'ode': model_rhs}
model_sim = integrator('xkp1', 'cvodes', data, opts).mapaccum('simulator', N)

# Run ILC algorithm
u_prev_val = np.zeros(N)
Esempio n. 12
0
# Pick a solution method
# method = external_method('acados', N=N,qp_solver= 'FULL_CONDENSING_HPIPM', nlp_solver_max_iter= 100, hessian_approx='EXACT', regularize_method = 'MIRROR' ,integrator_type='ERK',nlp_solver_type='SQP',qp_solver_cond_N=N)

method = external_method('acados',
                         N=N,
                         intg='rk',
                         qp_solver='FULL_CONDENSING_HPIPM',
                         expand=False,
                         nlp_solver_max_iter=500,
                         hessian_approx='EXACT',
                         regularize_method='MIRROR',
                         integrator_type='DISCRETE',
                         nlp_solver_type='SQP',
                         qp_solver_cond_N=N)

ocp.method(method)

# print initial guesses
print("x_guess", path_guess_x)
print("y_guess", path_guess_y)
print("theta_guess", theta_guess)
print("s_guess", s_guess)
print("sdot_guess", sdot_guess)
print("v_guess", v_guess)
print("w_guess", w_guess)

#print parameters
print("current_x = ", current_X)  #first 4 parameters
print("end goal  = ", global_end_goal_x, " , ",
      global_end_goal_y)  # parameters 5 and 6
print("bx ", shifted_midpoints_x)
Esempio n. 13
0
u = stage.control()  # Thrust

stage.set_der(p, v)
stage.set_der(v, (u - 0.05 * v * v) / m)
stage.set_der(m, -0.1 * u * u)

# Regularize the control
stage.add_objective(stage.integral(u**2))

# Path constraints
stage.subject_to(u >= 0)
stage.subject_to(u <= 0.5)

# Initial constraints
stage.subject_to(stage.at_t0(p) == 0)
stage.subject_to(stage.at_t0(v) == 0)
stage.subject_to(stage.at_t0(m) == 1)

# Final constraints
stage.subject_to(stage.at_tf(p) == 10)
stage.subject_to(stage.at_tf(v) == 0)

ocp.method(DirectMethod(solver='ipopt'))

stage.method(MultipleShooting(N=50, M=2, intg='rk'))

# Missing: a nonzero initial guess for m

sol = ocp.solve()