コード例 #1
0
def mySolve(xf,boltz_eqs,rtol,atol,verbosity=50):
    """Sets the main options for the ODE solver and solve the equations. Returns the
    array of x,y points for all components.
    If numerical instabilities are found, re-do the problematic part of the evolution with smaller steps"""
        
    boltz_solver = CVode(boltz_eqs)  #Define solver method
    boltz_solver.rtol = rtol
    boltz_solver.atol = atol
    boltz_solver.verbosity = verbosity
    boltz_solver.linear_solver = 'SPGMR'
    boltz_solver.maxh = xf/300.
    xfinal = xf
    xres = []
    yres = []
    sw = boltz_solver.sw[:]
    while xfinal <= xf:
        try:
            boltz_solver.re_init(boltz_eqs.t0,boltz_eqs.y0)
            boltz_solver.sw = sw[:]
            x,y = boltz_solver.simulate(xfinal)
            xres += x
            for ypt in y: yres.append(ypt)
            if xfinal == xf: break   #Evolution has been performed until xf -> exit            
        except Exception,e:
            print e
            if not e.t or 'first call' in e.msg[e.value]:
                logger.error("Error solving equations:\n "+str(e))
                return False
            xfinal = max(e.t*random.uniform(0.85,0.95),boltz_eqs.t0+boltz_solver.maxh)  #Try again, but now only until the error
            logger.warning("Numerical instability found. Restarting evolution from x = "
                           +str(boltz_eqs.t0)+" to x = "+str(xfinal))
            continue
        xfinal = xf  #In the next step try to evolve from xfinal -> xf
        sw = boltz_solver.sw[:]
        x0 = float(x[-1])
        y0 = [float(yval) for yval in y[-1]]
        boltz_eqs.updateValues(x0,y0,sw)
コード例 #2
0
def run_simulation(filename, save_output, start_time, temp, RH, RO2_indices,
                   H2O, PInit, y_cond, input_dict, simulation_time, batch_step,
                   plot_mass):

    from assimulo.solvers import RodasODE, CVode, RungeKutta4, LSODAR  #Choose solver accoring to your need.
    from assimulo.problem import Explicit_Problem

    # In this function, we import functions that have been pre-compiled for use in the ODE solver
    # The function that calculates the RHS of the ODE is also defined within this function, such
    # that it can be used by the Assimulo solvers

    # The variables passed to this function are defined as follows:

    #-------------------------------------------------------------------------------------
    #-------------------------------------------------------------------------------------
    # define the ODE function to be called
    def dydt_func(t, y):
        """
        This function defines the right-hand side [RHS] of the ordinary differential equations [ODEs] to be solved
        input:
        • t - time variable [internal to solver]
        • y - array holding concentrations of all compounds in both gas and particulate [molecules/cc]
        output:
        dydt - the dy_dt of each compound in both gas and particulate phase [molecules/cc.sec]
        """

        dy_dt = numpy.zeros((total_length_y, 1), )

        #pdb.set_trace()
        # Calculate time of day
        time_of_day_seconds = start_time + t

        #pdb.set_trace()
        # make sure the y array is not a list. Assimulo uses lists
        y_asnumpy = numpy.array(y)
        Model_temp = temp
        #pdb.set_trace()
        #Calculate the concentration of RO2 species, using an index file created during parsing
        RO2 = numpy.sum(y[RO2_indices])

        #Calculate reaction rate for each equation.
        # Note that H2O will change in parcel mode
        # The time_of_day_seconds is used for photolysis rates - need to change this if want constant values
        rates = evaluate_rates_fortran(RO2, H2O, Model_temp,
                                       time_of_day_seconds)
        #pdb.set_trace()
        # Calculate product of all reactants and stochiometry for each reaction [A^a*B^b etc]
        reactants = reactants_fortran(y_asnumpy[0:num_species - 1])
        #pdb.set_trace()
        #Multiply product of reactants with rate coefficient to get reaction rate
        reactants = numpy.multiply(reactants, rates)
        #pdb.set_trace()
        # Now use reaction rates with the loss_gain matri to calculate the final dydt for each compound
        # With the assimulo solvers we need to output numpy arrays
        dydt_gas = loss_gain_fortran(reactants)
        #pdb.set_trace()

        dy_dt[0:num_species - 1, 0] = dydt_gas

        # Change the saturation vapour pressure of water
        # Need to re-think the change of organic vapour pressures with temperature.
        # At the moment this is kept constant as re-calulation using UManSysProp very slow
        sat_vap_water = numpy.exp((-0.58002206E4 / Model_temp) + 0.13914993E1 - \
        (0.48640239E-1 * Model_temp) + (0.41764768E-4 * (Model_temp**2.0E0))- \
        (0.14452093E-7 * (Model_temp**3.0E0)) + (0.65459673E1 * numpy.log(Model_temp)))
        sat_vp[-1] = (numpy.log10(sat_vap_water * 9.86923E-6))
        Psat = numpy.power(10.0, sat_vp)

        # Convert the concentration of each component in the gas phase into a partial pressure using the ideal gas law
        # Units are Pascals
        Pressure_gas = (y_asnumpy[0:num_species, ] /
                        NA) * 8.314E+6 * Model_temp  #[using R]

        core_mass_array = numpy.multiply(ycore_asnumpy / NA, core_molw_asnumpy)

        ####### Calculate the thermal conductivity of gases according to the new temperature ########
        K_water_vapour = (
            5.69 + 0.017 *
            (Model_temp - 273.15)) * 1e-3 * 4.187  #[W/mK []has to be in W/m.K]
        # Use this value for all organics, for now. If you start using a non-zero enthalpy of
        # vapourisation, this needs to change.
        therm_cond_air = K_water_vapour

        #----------------------------------------------------------------------------
        #F2c) Extract the current gas phase concentrations to be used in pressure difference calculations
        C_g_i_t = y_asnumpy[0:num_species, ]
        #Set the values for oxidants etc to 0 as will force no mass transfer
        #C_g_i_t[ignore_index]=0.0
        C_g_i_t = C_g_i_t[include_index]

        #pdb.set_trace()

        total_SOA_mass,aw_array,size_array,dy_dt_calc = dydt_partition_fortran(y_asnumpy,ycore_asnumpy,core_dissociation, \
        core_mass_array,y_density_array_asnumpy,core_density_array_asnumpy,ignore_index_fortran,y_mw,Psat, \
        DStar_org_asnumpy,alpha_d_org_asnumpy,C_g_i_t,N_perbin,gamma_gas_asnumpy,Latent_heat_asnumpy,GRAV, \
        Updraft,sigma,NA,kb,Rv,R_gas,Model_temp,cp,Ra,Lv_water_vapour)

        #pdb.set_trace()

        # Add the calculated gains/losses to the complete dy_dt array
        dy_dt[0:num_species + (num_species_condensed * num_bins),
              0] += dy_dt_calc[:]

        #pdb.set_trace()

        #----------------------------------------------------------------------------
        #F4) Now calculate the change in water vapour mixing ratio.
        #To do this we need to know what the index key for the very last element is
        #pdb.set_trace()
        #pdb.set_trace()
        #print "elapsed time=", elapsedTime
        dydt_func.total_SOA_mass = total_SOA_mass
        dydt_func.size_array = size_array
        dydt_func.temp = Model_temp
        dydt_func.RH = Pressure_gas[-1] / (Psat[-1] * 101325.0)
        dydt_func.water_activity = aw_array

        #----------------------------------------------------------------------------
        return dy_dt

    #-------------------------------------------------------------------------------------
    #-------------------------------------------------------------------------------------

    #import static compilation of Fortran functions for use in ODE solver
    print("Importing pre-compiled Fortran modules")
    from rate_coeff_f2py import evaluate_rates as evaluate_rates_fortran
    from reactants_conc_f2py import reactants as reactants_fortran
    from loss_gain_f2py import loss_gain as loss_gain_fortran
    from partition_f2py import dydt_partition as dydt_partition_fortran

    # 'Unpack' variables from input_dict
    species_dict = input_dict['species_dict']
    species_dict2array = input_dict['species_dict2array']
    species_initial_conc = input_dict['species_initial_conc']
    equations = input_dict['equations']
    num_species = input_dict['num_species']
    num_species_condensed = input_dict['num_species_condensed']
    y_density_array_asnumpy = input_dict['y_density_array_asnumpy']
    y_mw = input_dict['y_mw']
    sat_vp = input_dict['sat_vp']
    Delta_H = input_dict['Delta_H']
    Latent_heat_asnumpy = input_dict['Latent_heat_asnumpy']
    DStar_org_asnumpy = input_dict['DStar_org_asnumpy']
    alpha_d_org_asnumpy = input_dict['alpha_d_org_asnumpy']
    gamma_gas_asnumpy = input_dict['gamma_gas_asnumpy']
    Updraft = input_dict['Updraft']
    GRAV = input_dict['GRAV']
    Rv = input_dict['Rv']
    Ra = input_dict['Ra']
    R_gas = input_dict['R_gas']
    R_gas_other = input_dict['R_gas_other']
    cp = input_dict['cp']
    sigma = input_dict['sigma']
    NA = input_dict['NA']
    kb = input_dict['kb']
    Lv_water_vapour = input_dict['Lv_water_vapour']
    ignore_index = input_dict['ignore_index']
    ignore_index_fortran = input_dict['ignore_index_fortran']
    ycore_asnumpy = input_dict['ycore_asnumpy']
    core_density_array_asnumpy = input_dict['core_density_array_asnumpy']
    y_cond = input_dict['y_cond_initial']
    num_bins = input_dict['num_bins']
    core_molw_asnumpy = input_dict['core_molw_asnumpy']
    core_dissociation = input_dict['core_dissociation']
    N_perbin = input_dict['N_perbin']
    include_index = input_dict['include_index']

    # pdb.set_trace()

    #Specify some starting concentrations [ppt]
    Cfactor = 2.55e+10  #ppb-to-molecules/cc

    # Create variables required to initialise ODE
    y0 = [0] * (num_species + num_species_condensed * num_bins
                )  #Initial concentrations, set to 0
    t0 = 0.0  #T0

    # Define species concentrations in ppb fr the gas phase
    # You have already set this in the front end script, and now we populate the y array with those concentrations
    for specie in species_initial_conc.keys():
        if specie is not 'H2O':
            y0[species_dict2array[specie]] = species_initial_conc[
                specie] * Cfactor  #convert from pbb to molcules/cc
        elif specie is 'H2O':
            y0[species_dict2array[specie]] = species_initial_conc[specie]

    # Now add the initial condensed phase [including water]
    #pdb.set_trace()
    y0[num_species:num_species +
       ((num_bins) * num_species_condensed)] = y_cond[:]
    #pdb.set_trace()

    #Set the total_time of the simulation to 0 [havent done anything yet]
    total_time = 0.0

    # Define a 'key' that represents the end of the composition variables to track
    total_length_y = len(y0)
    key = num_species + ((num_bins) * num_species) - 1

    #pdb.set_trace()

    # Now run through the simulation in batches.
    # I do this to enable testing of coupling processes. Some initial investigations with non-ideality in
    # the condensed phase indicated that even defining a maximum step was not enough for ODE solvers to
    # overshoot a stable region. It also helps with in-simulation debugging. Its up to you if you want to keep this.
    # To not run in batches, just define one batch as your total simulation time. This will reduce any overhead with
    # initialising the solvers
    # Set total simulation time and batch steps in seconds

    # Note also that the current module outputs solver information after each batch step. This can be turned off and the
    # the batch step change for increased speed
    # simulation_time= 3600.0
    # batch_step=300.0
    t_array = []
    time_step = 0
    number_steps = int(
        simulation_time /
        batch_step)  # Just cycling through 3 steps to get to a solution

    # Define a matrix that stores values as outputs from the end of each batch step. Again, you can remove
    # the need to run in batches. You can tell the Assimulo solvers the frequency of outputs.
    y_matrix = numpy.zeros((int(number_steps), len(y0)))
    # Also define arrays and matrices that hold information such as total SOA mass
    SOA_matrix = numpy.zeros((int(number_steps), 1))
    size_matrix = numpy.zeros((int(number_steps), num_bins))

    print("Starting simulation")

    # In the following, we can
    while total_time < simulation_time:

        if total_time == 0.0:
            #Define an Assimulo problem
            #Define an explicit solver
            exp_mod = Explicit_Problem(dydt_func, y0, t0, name=filename)

        else:
            y0 = y_output[
                -1, :]  # Take the output from the last batch as the start of this
            exp_mod = Explicit_Problem(dydt_func, y0, t0, name=filename)

        # Define ODE parameters.
        # Initial steps might be slower than mid-simulation. It varies.
        #exp_mod.jac = dydt_jac
        # Define which ODE solver you want to use
        exp_sim = CVode(exp_mod)
        tol_list = [1.0e-2] * len(y0)
        exp_sim.atol = tol_list  #Default 1e-6
        exp_sim.rtol = 1.0e-4  #Default 1e-6
        exp_sim.inith = 1.0e-6  #Initial step-size
        #exp_sim.discr = 'Adams'
        exp_sim.maxh = 100.0
        # Use of a jacobian makes a big differece in simulation time. This is relatively
        # easy to define for a gas phase - not sure for an aerosol phase with composition
        # dependent processes.
        exp_sim.usejac = False  # To be provided as an option in future update.
        #exp_sim.fac1 = 0.05
        #exp_sim.fac2 = 50.0
        exp_sim.report_continuously = True
        exp_sim.maxncf = 1000
        #Sets the parameters
        t_output, y_output = exp_sim.simulate(
            batch_step)  #Simulate 'batch' seconds
        total_time += batch_step
        t_array.append(
            total_time
        )  # Save the output from the end step, of the current batch, to a matrix
        y_matrix[time_step, :] = y_output[-1, :]
        SOA_matrix[time_step, 0] = dydt_func.total_SOA_mass
        size_matrix[time_step, :] = dydt_func.size_array
        print("SOA [micrograms/m3] = ", dydt_func.total_SOA_mass)

        #now save this information into a matrix for later plotting.
        time_step += 1

    if save_output is True:

        print(
            "Saving the model output as a pickled object for later retrieval")
        # save the dictionary to a file for later retrieval - have to do each seperately.
        with open(filename + '_y_output.pickle', 'wb') as handle:
            pickle.dump(y_matrix, handle, protocol=pickle.HIGHEST_PROTOCOL)
        with open(filename + '_t_output.pickle', 'wb') as handle:
            pickle.dump(t_array, handle, protocol=pickle.HIGHEST_PROTOCOL)
        with open(filename + '_SOA_output.pickle', 'wb') as handle:
            pickle.dump(SOA_matrix, handle, protocol=pickle.HIGHEST_PROTOCOL)
        with open(filename + '_size_output.pickle', 'wb') as handle:
            pickle.dump(size_matrix, handle, protocol=pickle.HIGHEST_PROTOCOL)
        with open(filename + 'include_index.pickle', 'wb') as handle:
            pickle.dump(include_index,
                        handle,
                        protocol=pickle.HIGHEST_PROTOCOL)

    #pdb.set_trace()
    #Plot the change in concentration over time for a given specie. For the user to change / remove
    #In a future release I will add this as a seperate module
    if plot_mass is True:
        try:
            P.plot(t_array, SOA_matrix[:, 0], marker='o')
            P.title(exp_mod.name)
            P.ylabel("SOA mass [micrograms/m3]")
            P.xlabel("Time [seconds] since start of simulation")
            P.show()
        except:
            print(
                "There is a problem using Matplotlib in your environment. If using this within a docker container, you will need to transfer the data to the host or configure your container to enable graphical displays. More information can be found at http://wiki.ros.org/docker/Tutorials/GUI "
            )
コード例 #3
0
def run_simulation(filename, start_time, save_output, temp, RH, RO2_indices,
                   H2O, input_dict, simulation_time, batch_step):

    from assimulo.solvers import RodasODE, CVode  #Choose solver accoring to your need.
    from assimulo.problem import Explicit_Problem

    # In this function, we import functions that have been pre-compiled for use in the ODE solver
    # The function that calculates the RHS of the ODE is also defined within this function, such
    # that it can be used by the Assimulo solvers

    # The variables passed to this function are defined as follows:

    #-------------------------------------------------------------------------------------
    # define the ODE function to be called
    def dydt_func(t, y):
        """
        This function defines the right-hand side [RHS] of the ordinary differential equations [ODEs] to be solved
        input:
        • t - time variable [internal to solver]
        • y - array holding concentrations of all compounds in both gas and particulate [molecules/cc]
        output:
        dydt - the dy_dt of each compound in both gas and particulate phase [molecules/cc.sec]
        """

        #pdb.set_trace()
        # Calculate time of day
        time_of_day_seconds = start_time + t

        # make sure the y array is not a list. Assimulo uses lists
        y_asnumpy = numpy.array(y)

        #Calculate the concentration of RO2 species, using an index file created during parsing
        RO2 = numpy.sum(y[RO2_indices])

        #Calculate reaction rate for each equation.
        # Note that H2O will change in parcel mode
        # The time_of_day_seconds is used for photolysis rates - need to change this if want constant values
        rates = evaluate_rates_fortran(RO2, H2O, temp, time_of_day_seconds)
        #pdb.set_trace()
        # Calculate product of all reactants and stochiometry for each reaction [A^a*B^b etc]
        reactants = reactants_fortran(y_asnumpy)
        #pdb.set_trace()
        #Multiply product of reactants with rate coefficient to get reaction rate
        reactants = numpy.multiply(reactants, rates)
        #pdb.set_trace()
        # Now use reaction rates with the loss_gain matri to calculate the final dydt for each compound
        # With the assimulo solvers we need to output numpy arrays
        dydt = loss_gain_fortran(reactants)
        #pdb.set_trace()

        return dydt

    #-------------------------------------------------------------------------------------
    #-------------------------------------------------------------------------------------
    # define jacobian function to be called
    def jacobian(t, y):
        """
        This function defines Jacobian of the ordinary differential equations [ODEs] to be solved
        input:
        • t - time variable [internal to solver]
        • y - array holding concentrations of all compounds in both gas and particulate [molecules/cc]
        output:
        dydt_dydt - the N_compounds x N_compounds matrix of Jacobian values
        """

        # Different solvers might call jacobian at different stages, so we have to redo some calculations here
        # Calculate time of day
        time_of_day_seconds = start_time + t

        # make sure the y array is not a list. Assimulo uses lists
        y_asnumpy = numpy.array(y)

        #Calculate the concentration of RO2 species, using an index file created during parsing
        RO2 = numpy.sum(y[RO2_indices])

        #Calculate reaction rate for each equation.
        # Note that H2O will change in parcel mode
        rates = evaluate_rates_fortran(RO2, H2O, temp, time_of_day_seconds)
        #pdb.set_trace()
        # Now use reaction rates with the loss_gain matrix to calculate the final dydt for each compound
        # With the assimulo solvers we need to output numpy arrays
        dydt_dydt = jacobian_fortran(rates, y_asnumpy)
        #pdb.set_trace()
        return dydt_dydt

    #-------------------------------------------------------------------------------------

    #import static compilation of Fortran functions for use in ODE solver
    print("Importing pre-compiled Fortran modules")
    from rate_coeff_f2py import evaluate_rates as evaluate_rates_fortran
    from reactants_conc_f2py import reactants as reactants_fortran
    from loss_gain_f2py import loss_gain as loss_gain_fortran
    from jacobian_f2py import jacobian as jacobian_fortran

    # 'Unpack' variables from input_dict
    species_dict = input_dict['species_dict']
    species_dict2array = input_dict['species_dict2array']
    species_initial_conc = input_dict['species_initial_conc']
    equations = input_dict['equations']

    #Specify some starting concentrations [ppt]
    Cfactor = 2.55e+10  #ppb-to-molecules/cc

    # Create variables required to initialise ODE
    num_species = len(species_dict.keys())
    y0 = [0] * num_species  #Initial concentrations, set to 0
    t0 = 0.0  #T0

    # Define species concentrations in ppb
    # You have already set this in the front end script, and now we populate the y array with those concentrations
    for specie in species_initial_conc.keys():
        y0[species_dict2array[specie]] = species_initial_conc[
            specie] * Cfactor  #convert from pbb to molcules/cc

    #Set the total_time of the simulation to 0 [havent done anything yet]
    total_time = 0.0

    # Now run through the simulation in batches.
    # I do this to enable testing of coupling processes. Some initial investigations with non-ideality in
    # the condensed phase indicated that even defining a maximum step was not enough for ODE solvers to
    # overshoot a stable region. It also helps with in-simulation debugging. Its up to you if you want to keep this.
    # To not run in batches, just define one batch as your total simulation time. This will reduce any overhead with
    # initialising the solvers
    # Set total simulation time and batch steps in seconds

    # Note also that the current module outputs solver information after each batch step. This can be turned off and the
    # the batch step change for increased speed
    #simulation_time= 3600.0
    #batch_step=100.0
    t_array = []
    time_step = 0
    number_steps = int(
        simulation_time /
        batch_step)  # Just cycling through 3 steps to get to a solution

    # Define a matrix that stores values as outputs from the end of each batch step. Again, you can remove
    # the need to run in batches. You can tell the Assimulo solvers the frequency of outputs.
    y_matrix = numpy.zeros((int(number_steps), len(y0)))

    print("Starting simulation")

    # In the following, we can
    while total_time < simulation_time:

        if total_time == 0.0:
            #Define an Assimulo problem
            #Define an explicit solver
            exp_mod = Explicit_Problem(dydt_func, y0, t0, name=filename)

        else:
            y0 = y_output[
                -1, :]  # Take the output from the last batch as the start of this
            exp_mod = Explicit_Problem(dydt_func, y0, t0, name=filename)

        # Define ODE parameters.
        # Initial steps might be slower than mid-simulation. It varies.
        #exp_mod.jac = dydt_jac
        # Define which ODE solver you want to use
        exp_sim = CVode(exp_mod)
        tol_list = [1.0e-3] * num_species
        exp_sim.atol = tol_list  #Default 1e-6
        exp_sim.rtol = 0.03  #Default 1e-6
        exp_sim.inith = 1.0e-6  #Initial step-size
        #exp_sim.discr = 'Adams'
        exp_sim.maxh = 100.0
        # Use of a jacobian makes a big differece in simulation time. This is relatively
        # easy to define for a gas phase - not sure for an aerosol phase with composition
        # dependent processes.
        exp_sim.usejac = True  # To be provided as an option in future update.
        #exp_sim.fac1 = 0.05
        #exp_sim.fac2 = 50.0
        exp_sim.report_continuously = True
        exp_sim.maxncf = 1000
        #Sets the parameters
        t_output, y_output = exp_sim.simulate(
            batch_step)  #Simulate 'batch' seconds
        total_time += batch_step
        t_array.append(
            total_time
        )  # Save the output from the end step, of the current batch, to a matrix
        y_matrix[time_step, :] = y_output[-1, :]

        #now save this information into a matrix for later plotting.
        time_step += 1

    # Do you want to save the generated matrix of outputs?
    if save_output:
        numpy.save(filename + '_output', y_matrix)
        df = pd.DataFrame(y_matrix)
        df.to_csv(filename + "_output_matrix.csv")
        w = csv.writer(open(filename + "_output_names.csv", "w"))
        for specie, number in species_dict2array.items():
            w.writerow([specie, number])

    with_plots = True

    #pdb.set_trace()
    #Plot the change in concentration over time for a given specie. For the user to change / remove
    #In a future release I will add this as a seperate module
    if with_plots:

        try:
            P.plot(t_array,
                   numpy.log10(y_matrix[:, species_dict2array['APINENE']]),
                   marker='o',
                   label="APINENE")
            P.plot(t_array,
                   numpy.log10(y_matrix[:, species_dict2array['PINONIC']]),
                   marker='o',
                   label="PINONIC")
            P.title(exp_mod.name)
            P.legend(loc='upper left')
            P.ylabel("Concetration log10[molecules/cc]")
            P.xlabel("Time [seconds] since start of simulation")
            P.show()
        except:
            print(
                "There is a problem using Matplotlib in your environment. If using this within a docker container, you will need to transfer the data to the host or configure your container to enable graphical displays. More information can be found at http://wiki.ros.org/docker/Tutorials/GUI "
            )
コード例 #4
0
def func_set_system():
    ##############################################
    #% initial conditions
    P_0           = depth*9.8*2500.           #;      % initial chamber pressure (Pa)
    T_0           = 1200            #;       % initial chamber temperature (K)
    eps_g0        = 0.04            #;       % initial gas volume fraction
    rho_m0        = 2600            #;       % initial melt density (kg/m^3)
    rho_x0        = 3065            #;       % initial crystal density (kg/m^3)
    a             = 1000            #;       % initial radius of the chamber (m)
    V_0           = (4.*pi/3.)*a**3.  #; % initial volume of the chamber (m^3)

    ##############################################
    ##############################################
    IC = numpy.array([P_0,T_0,eps_g0,V_0,rho_m0,rho_x0]) #   % store initial conditions
    ## Gas (eps_g = zero), eps_x is zero, too many crystals, 50 % crystallinity,eruption (yes/no)

    sw0 = [False,False,False,False,False]

    ##############################################
    #% error tolerances used in ode method
    dt = 30e7
    N  = int(round((end_time-begin_time)/dt))
    ##############################################

    #Define an Assimulo problem
    exp_mod = Chamber_Problem(depth=depth,t0=begin_time,y0=IC,sw0=sw0)
    exp_mod.param['T_in'] = 1200.
    exp_mod.param['eps_g_in'] = 0.0    # Gas fraction of incoming melt - gas phase ..
    exp_mod.param['m_eq_in'] = 0.05    # Volatile fraction of incoming melt
    exp_mod.param['Mdot_in']    = mdot
    exp_mod.param['eta_x_max'] = 0.64                                     # Locking fraction
    exp_mod.param['delta_Pc']   = 20e6
    exp_mod.tcurrent = begin_time
    exp_mod.radius = a
    exp_mod.permeability = perm_val
    exp_mod.R_steps = 1500
    exp_mod.dt_init = dt
    #################
    exp_mod.R_outside = numpy.linspace(a,3.*a,exp_mod.R_steps);
    exp_mod.T_out_all =numpy.array([exp_mod.R_outside*0.])
    exp_mod.P_out_all =numpy.array([exp_mod.R_outside*0.])
    exp_mod.sigma_rr_all    = numpy.array([exp_mod.R_outside*0.])
    exp_mod.sigma_theta_all = numpy.array([exp_mod.R_outside*0.])
    exp_mod.sigma_eff_rr_all = numpy.array([exp_mod.R_outside*0.])
    exp_mod.sigma_eff_theta_all = numpy.array([exp_mod.R_outside*0.])
    exp_mod.max_count = 1 # counting for the append me arrays ..

    exp_mod.P_list = append_me()
    exp_mod.P_list.update(P_0-exp_mod.plith)
    exp_mod.T_list = append_me()
    exp_mod.T_list.update(T_0-exp_mod.param['T_S'])
    exp_mod.P_flux_list = append_me()
    exp_mod.P_flux_list.update(0)
    exp_mod.T_flux_list = append_me()
    exp_mod.T_flux_list.update(0)
    exp_mod.times_list = append_me()
    exp_mod.times_list.update(1e-7)
    exp_mod.T_out,exp_mod.P_out,exp_mod.sigma_rr,exp_mod.sigma_theta,exp_mod.T_der= Analytical_sol_cavity_T_Use(exp_mod.T_list.data[:exp_mod.max_count],exp_mod.P_list.data[:exp_mod.max_count],exp_mod.radius,exp_mod.times_list.data[:exp_mod.max_count],exp_mod.R_outside,exp_mod.permeability,exp_mod.param['material'])
    exp_mod.param['heat_cond'] = 1                                             # Turn on/off heat conduction
    exp_mod.param['visc_relax'] = 1                                            # Turn on/off viscous relaxation
    exp_mod.param['press_relax'] = 1                                          ## Turn on/off pressure diffusion
    exp_mod.param['frac_rad_Temp'] =0.75
    exp_mod.param['vol_degass'] = 1.
    #exp_mod.state_events = stopChamber #Sets the state events to the problem
    #exp_mod.handle_event = handle_event #Sets the event handling to the problem
    #Sets the options to the problem
    #exp_mod.p0   = [beta_r, beta_m]#, beta_x, alpha_r, alpha_m, alpha_x, L_e, L_m, c_m, c_g, c_x, eruption, heat_cond, visc_relax]  #Initial conditions for parameters
    #exp_mod.pbar  = [beta_r, beta_m]#, beta_x, alpha_r, alpha_m, alpha_x, L_e, L_m, c_m, c_g, c_x, eruption, heat_cond, visc_relax]
    #Define an explicit solver
    exp_sim = CVode(exp_mod) #Create a CVode solver

    #Sets the parameters
    #exp_sim.iter = 'Newton'
    #exp_sim.discr = 'BDF'
    #exp_sim.inith = 1e-7

    exp_sim.rtol = 1.e-7
    exp_sim.maxh = 3e7
    exp_sim.atol = 1e-7
    exp_sim.sensmethod = 'SIMULTANEOUS' #Defines the sensitvity method used
    exp_sim.suppress_sens = False       #Dont suppress the sensitivity variables in the error test.
    #exp_sim.usesens = True
    #exp_sim.report_continuously = True
    return exp_mod,exp_sim,N
コード例 #5
0
ファイル: task4.py プロジェクト: TuongL94/SimulationTools
#Create Assimulo problem model
mod_pen = Explicit_Problem(rhs, y0, t0)
mod_pen.name = 'Elastic Pendulum with CVode'
"""
Run simulation
"""
#Create solver object
sim_pen = CVode(mod_pen)

#Simulation parameters
#atol = 1.e-6*ones(shape(y0))
atol = rtol * N.array([1, 1, 1, 1])  #default 1e-06
sim_pen.atol = atol
sim_pen.rtol = rtol
sim_pen.maxh = hmax
sim_pen.maxord = maxord
sim_pen.inith = h0

#Simulate
t, y = sim_pen.simulate(tf)
"""
Plot results
"""
#Plot
#P.plot(t,y)
#P.legend(['$x$','$y$','$\dot{x}$','$\dot{y}$'])
#P.title('Elastic pendulum with k = ' + str(k) + ', stretch = ' + str(stretch))
#P.xlabel('time')
#P.ylabel('state')
#show()
コード例 #6
0
ファイル: ODE_solver.py プロジェクト: Mbex/PyBox
def run_simulation(filename, save_output, start_time, temp, RH, RO2_indices,
                   H2O, input_dict, simulation_time, batch_step):

    from assimulo.solvers import RodasODE, CVode  #Choose solver accoring to your need.
    from assimulo.problem import Explicit_Problem

    # In this function, we import functions that have been pre-compiled for use in the ODE solver
    # The function that calculates the RHS of the ODE is also defined within this function, such
    # that it can be used by the Assimulo solvers

    # In the standard Python version [not using Numba] I use Sparse matrix operations in calculating loss/gain of each compound.
    # This function loads the matrix created at the beginning of the module.
    def load_sparse_csr(filename):
        loader = numpy.load('loss_gain_' + filename + '.npz')
        return csr_matrix(
            (loader['data'], loader['indices'], loader['indptr']),
            shape=loader['shape'])

    def load_sparse_csr_reactants(filename):
        loader = numpy.load('reactants_indices_sparse_' + filename + '.npz')
        return csr_matrix(
            (loader['data'], loader['indices'], loader['indptr']),
            shape=loader['shape'])

    #-------------------------------------------------------------------------------------
    # define the ODE function to be called
    def dydt_func(t, y):
        """
        This function defines the right-hand side [RHS] of the ordinary differential equations [ODEs] to be solved
        input:
        • t - time variable [internal to solver]
        • y - array holding concentrations of all compounds in both gas and particulate [molecules/cc]
        output:
        dydt - the dy_dt of each compound in both gas and particulate phase [molecules/cc.sec]
        """

        #pdb.set_trace()
        #Here we use the pre-created Numba based functions to arrive at our value for dydt
        # Calculate time of day
        time_of_day_seconds = start_time + t

        # make sure the y array is not a list. Assimulo uses lists
        y_asnumpy = numpy.array(y)

        #pdb.set_trace()
        # reactants=numpy.zeros((equations),)

        #pdb.set_trace()
        #Calculate the concentration of RO2 species, using an index file created during parsing
        RO2 = numpy.sum(y[RO2_indices])

        #Calculate reaction rate for each equation.
        # Note that H2O will change in parcel mode [to be changed in the full aerosol mode]
        # The time_of_day_seconds is used for photolysis rates - need to change this if want constant values
        #pdb.set_trace()
        rates = evaluate_rates(time_of_day_seconds, RO2, H2O, temp,
                               numpy.zeros((equations)), numpy.zeros((63)))

        # Calculate product of all reactants and stochiometry for each reaction [A^a*B^b etc]
        reactants = reactant_product(y_asnumpy, equations,
                                     numpy.zeros((equations)))

        #Multiply product of reactants with rate coefficient to get reaction rate
        #pdb.set_trace()
        reactants = numpy.multiply(reactants, rates)

        # Now use reaction rates with the loss_gain information in a pre-created Numba file to calculate the final dydt for each compound
        dydt = dydt_eval(numpy.zeros((len(y_asnumpy))), reactants)

        #pdb.set_trace()

        ############ Development place-holder ##############
        # ----------------------------------------------------------------------------------
        # The following demonstrates the same procedure but using only Numpy and pure python
        # For the full MCM this is too slow, but is useful for demonstrations and testing

        #Calculate reaction rate for each equation.
        ## rates=test(time_of_day_seconds,RO2,H2O,temp)

        # Calculate product of all reactants and stochiometry for each reaction [A^a*B^b etc]
        # Take the approach of using sparse matrix operations from a python perspective
        # This approach uses the rule of logarithms and sparse matrix multiplication

        ##temp_array=reactants_indices_sparse @ numpy.log(y_asnumpy)
        ##indices=numpy.where(temp_array > 0.0)
        ##reactants[indices]=numpy.exp(temp_array[indices])

        #Multiply product of reactants with rate coefficient to get reaction rate
        ## reactants = numpy.multiply(reactants,rates)

        # Now use reaction rates with the loss_gain matri to calculate the final dydt for each compound
        # With the assimulo solvers we need to output numpy arrays

        ##dydt=numpy.array(loss_gain @ reactants)
        # ----------------------------------------------------------------------------------

        return dydt

    #-------------------------------------------------------------------------------------

    print(
        "Importing Numba modules [compiling if first import or clean build...please be patient]"
    )
    #import Numba functions for use in ODE solver
    from Rate_coefficients_numba import evaluate_rates
    from Reactants_conc_numba import reactants as reactant_product
    from Loss_Gain_numba import dydt as dydt_eval

    # 'Unpack' variables from input_dict
    species_dict = input_dict['species_dict']
    species_dict2array = input_dict['species_dict2array']
    species_initial_conc = input_dict['species_initial_conc']
    equations = input_dict['equations']

    # Set dive by zero to ignore for use of any sparse matrix multiplication
    numpy.errstate(divide='ignore')

    # --- For Numpy and pure Python runs ----
    # Load the sparse matrix used in calculating the reactant products and dydt function
    ## reactants_indices_sparse = load_sparse_csr_reactants(filename)
    ## loss_gain = load_sparse_csr(filename)

    #Specify some starting concentrations [ppt]
    Cfactor = 2.55e+10  #ppb-to-molecules/cc

    # Create variables required to initialise ODE
    num_species = len(species_dict.keys())
    y0 = [0] * num_species  #Initial concentrations, set to 0
    t0 = 0.0  #T0

    # Define species concentrations in ppb
    # You have already set this in the front end script, and now we populate the y array with those concentrations
    for specie in species_initial_conc.keys():
        y0[species_dict2array[specie]] = species_initial_conc[
            specie] * Cfactor  #convert from pbb to molcules/cc

    #Set the total_time of the simulation to 0 [havent done anything yet]
    total_time = 0.0

    # Now run through the simulation in batches.
    # I do this to enable testing of coupling processes. Some initial investigations with non-ideality in
    # the condensed phase indicated that even defining a maximum step was not enough for ODE solvers to
    # overshoot a stable region. It also helps with in-simulation debugging. Its up to you if you want to keep this.
    # To not run in batches, just define one batch as your total simulation time. This will reduce any overhead with
    # initialising the solvers
    # Set total simulation time and batch steps in seconds

    # Note also that the current module outputs solver information after each batch step. This can be turned off and the
    # the batch step change for increased speed
    # simulation_time= 3600.0 # seconds
    # batch_step=100.0 # seconds
    t_array = []
    time_step = 0
    number_steps = int(
        simulation_time /
        batch_step)  # Just cycling through 3 steps to get to a solution

    # Define a matrix that stores values as outputs from the end of each batch step. Again, you can remove
    # the need to run in batches. You can tell the Assimulo solvers the frequency of outputs.
    y_matrix = numpy.zeros((int(number_steps), len(y0)))

    print("Starting simulation")

    #pdb.set_trace()

    while total_time < simulation_time:

        if total_time == 0.0:
            #Define an Assimulo problem
            #Define an explicit solver
            #pdb.set_trace()
            exp_mod = Explicit_Problem(dydt_func, y0, t0, name=filename)

        else:
            y0 = y_output[
                -1, :]  # Take the output from the last batch as the start of this
            exp_mod = Explicit_Problem(dydt_func, y0, t0, name=filename)

        # Define ODE parameters.
        # Initial steps might be slower than mid-simulation. It varies.
        #exp_mod.jac = dydt_jac
        # Define which ODE solver you want to use
        exp_sim = CVode(exp_mod)
        tol_list = [1.0e-3] * num_species
        exp_sim.atol = tol_list  #Default 1e-6
        exp_sim.rtol = 1e-6  #Default 1e-6
        exp_sim.inith = 1.0e-6  #Initial step-size
        #exp_sim.discr = 'Adams'
        exp_sim.maxh = 100.0
        # Use of a jacobian makes a big differece in simulation time. This is relatively
        # easy to define for a gas phase - not sure for an aerosol phase with composition
        # dependent processes.
        exp_sim.usejac = False  # To be provided as an option in future update. See Fortran variant for use of Jacobian
        #exp_sim.fac1 = 0.05
        #exp_sim.fac2 = 50.0
        exp_sim.report_continuously = True
        exp_sim.maxncf = 1000
        #Sets the parameters
        t_output, y_output = exp_sim.simulate(
            batch_step)  #Simulate 'batch' seconds
        total_time += batch_step
        t_array.append(
            total_time
        )  # Save the output from the end step, of the current batch, to a matrix
        y_matrix[time_step, :] = y_output[-1, :]

        #pdb.set_trace()

        #now save this information into a matrix for later plotting.
        time_step += 1

    # Do you want to save the generated matrix of outputs?
    if save_output:
        numpy.save(filename + '_output', y_matrix)
        df = pd.DataFrame(y_matrix)
        df.to_csv(filename + "_output_matrix.csv")
        w = csv.writer(open(filename + "_output_names.csv", "w"))
        for specie, number in species_dict2array.items():
            w.writerow([specie, number])

    with_plots = True

    #pdb.set_trace()
    #Plot the change in concentration over time for a given specie. For the user to change / remove
    #In a future release I will add this as a seperate module
    if with_plots:
        try:
            P.plot(t_array,
                   numpy.log10(y_matrix[:, species_dict2array['APINENE']]),
                   marker='o',
                   label="APINENE")
            P.plot(t_array,
                   numpy.log10(y_matrix[:, species_dict2array['PINONIC']]),
                   marker='o',
                   label="PINONIC")
            P.title(exp_mod.name)
            P.legend(loc='upper left')
            P.ylabel("Concetration log10[molecules/cc]")
            P.xlabel("Time [seconds] since start of simulation")
            P.show()
        except:
            print(
                "There is a problem using Matplotlib in your environment. If using this within a docker container, you will need to transfer the data to the host or configure your container to enable graphical displays. More information can be found at http://wiki.ros.org/docker/Tutorials/GUI "
            )
コード例 #7
0
def stiff_ode_solver(matrix,
                     y_initial,
                     forward_rate,
                     rev_rate,
                     third_body=None,
                     iteration='Newton',
                     discr='BDF',
                     atol=1e-10,
                     rtol=1e-6,
                     sim_time=0.001,
                     num_data_points=500):
    """
    Sets up the initial condition for solving the odes
    Parameters
    ----------
    matrix          : ndarray
                    stoichiometric matrix
    y_initial       : list
                    A list of initial concentrations
    forward_rate   : list
                    A list of forward reaction rates
                    for all the reactions in the mechanism
    rev_rate        : list
                    A list of reverse reaction rates
                    for all the reactions in the mechanism
    sim_time        : float
                    total time to simulate in seconds
    third_body      : ndarray
                    third body matrix, default = None
    iteration       : str
                    determines the iteration method that is be
                    used by the solver, default='Newton'
    discr           : determines the discretization method,
                    default='BDF'
    atol            : float
                    absolute tolerance(s) that is to be used
                    by the solver, default=1e-10
    rtol            : float
                    relative tolerance that is to be
                    used by the solver, default= 1e-7
    num_data_points : integer
                    number of even space data points in output
                    arrays, default = 500
    Returns
    ----------
    t1             : list
                    A list of time-points at which
                    the system of ODEs is solved
                    [t1, t2, t3,...]
    y1              : list of lists
                    A list of concentrations of all the species
                    at t1 time-points
                    [[y1(t1), y2(t1),...], [y1(t2), y2(t2),...],...]

    """

    # y0[0] = 0
    # y0[0] = 0
    # dydt = np.zeros((len(species_list)), dtype=float)
    # Define the rhs
    kf = forward_rate
    kr = rev_rate
    mat_reac = np.abs(np.asarray(np.where(matrix < 0, matrix, 0)))
    mat_prod = np.asarray(np.where(matrix > 0, matrix, 0))

    #  d = kf * np.prod(y0**np.abs(mat_reac), axis = 1) - kr * np.prod(y0**mat_prod, axis = 1)

    def rhs(t, concentration):
        #        print(t)

        y = concentration
        if third_body is not None:
            third_body_eff = np.dot(third_body, y)
            third_body_eff = np.where(third_body_eff > 0, third_body_eff, 1)
        #            print(third_body_eff)
        else:
            third_body_eff = np.ones(len(forward_rate))
        #            print(len(third_body_matrix))
        rate_concentration = (kf * np.prod(np.power(y, mat_reac), axis=1) -
                              kr * np.prod(np.power(y, mat_prod), axis=1))

        dydt = np.dot(
            third_body_eff,
            np.multiply(matrix, rate_concentration.reshape(matrix.shape[0],
                                                           1)))
        # dydt = [np.sum(third_body_eff * (matrix[:, i] * rate_concentration)) for i in
        #         range(len(species_list))]
        del t
        del y
        return dydt

    t0 = 0
    # Define an Assimulo problem
    exp_mod = Explicit_Problem(rhs, y_initial, t0)

    # Define an explicit solver
    exp_sim = CVode(exp_mod)  # Create a CVode solver

    # Sets the parameters
    exp_sim.iter = iteration  # Default 'FixedPoint'
    exp_sim.discr = discr  # Default 'Adams'
    exp_sim.atol = [atol]  # Default 1e-6
    exp_sim.rtol = rtol  # Default 1e-6
    exp_sim.maxh = 0.1
    exp_sim.minh = 1e-18
    exp_sim.num_threads = 1

    while True:
        try:
            t1, y1 = exp_sim.simulate(sim_time, num_data_points)
            break
        except CVodeError:
            # reduce absolute error by two orders of magnitude
            # and try to solve again.
            print("next process started")
            atol = atol * 1e-2
            exp_sim.atol = atol
            # if atol < 1e-15:
            #     t1 = 0
            #     y1 = 0
            #     break
            # print(exp_sim.atol)

    return t1, y1