コード例 #1
0
    def simulate(self, Tend, nIntervals, gridWidth):

        problem = Explicit_Problem(self.rhs, self.y0)
        problem.name = 'CVode'
        # solver.rhs = self.right_hand_side
        problem.handle_result = self.handle_result
        problem.state_events = self.state_events
        problem.handle_event = self.handle_event
        problem.time_events = self.time_events
        problem.finalize = self.finalize

        simulation = CVode(problem)

        # Change multistep method: 'adams' or 'VDF'
        if self.discr == 'Adams':
            simulation.discr = 'Adams'
            simulation.maxord = 12
        else:
            simulation.discr = 'BDF'
            simulation.maxord = 5
        # Change iteration algorithm: functional(FixedPoint) or newton
        if self.iter == 'FixedPoint':
            simulation.iter = 'FixedPoint'
        else:
            simulation.iter = 'Newton'

        # Sets additional parameters
        simulation.atol = self.atol
        simulation.rtol = self.rtol
        simulation.verbosity = self.verbosity
        if hasattr(simulation, 'continuous_output'):
            simulation.continuous_output = False  # default 0, if one step approach should be used
        elif hasattr(simulation, 'report_continuously'):
            simulation.report_continuously = False  # default 0, if one step approach should be used

        # '''Initialize problem '''
        # self.t_cur = self.t0
        # self.y_cur = self.y0

        # Calculate nOutputIntervals:
        if gridWidth <> None:
            nOutputIntervals = int((Tend - self.t0) / gridWidth)
        else:
            nOutputIntervals = nIntervals
        # Check for feasible input parameters
        if nOutputIntervals == 0:
            print 'Error: gridWidth too high or nIntervals set to 0! Continue with nIntervals=1'
            nOutputIntervals = 1
        # Perform simulation
        simulation.simulate(
            Tend, nOutputIntervals
        )  # to get the values: t_new, y_new = simulation.simulate
コード例 #2
0
    def simulate(self, Tend, nIntervals, gridWidth):

        problem = Explicit_Problem(self.rhs, self.y0)
        problem.name = 'CVode'
        # solver.rhs = self.right_hand_side
        problem.handle_result = self.handle_result
        problem.state_events = self.state_events
        problem.handle_event = self.handle_event
        problem.time_events = self.time_events
        problem.finalize = self.finalize

        simulation = CVode(problem)

        # Change multistep method: 'adams' or 'VDF'
        if self.discr == 'Adams':
            simulation.discr = 'Adams'
            simulation.maxord = 12
        else:
            simulation.discr = 'BDF'
            simulation.maxord = 5
        # Change iteration algorithm: functional(FixedPoint) or newton
        if self.iter == 'FixedPoint':
            simulation.iter = 'FixedPoint'
        else:
            simulation.iter = 'Newton'

        # Sets additional parameters
        simulation.atol = self.atol
        simulation.rtol = self.rtol
        simulation.verbosity = self.verbosity
        if hasattr(simulation, 'continuous_output'):
            simulation.continuous_output = False  # default 0, if one step approach should be used
        elif hasattr(simulation, 'report_continuously'):
            simulation.report_continuously = False  # default 0, if one step approach should be used

        # '''Initialize problem '''
        # self.t_cur = self.t0
        # self.y_cur = self.y0

        # Calculate nOutputIntervals:
        if gridWidth <> None:
            nOutputIntervals = int((Tend - self.t0) / gridWidth)
        else:
            nOutputIntervals = nIntervals
        # Check for feasible input parameters
        if nOutputIntervals == 0:
            print 'Error: gridWidth too high or nIntervals set to 0! Continue with nIntervals=1'
            nOutputIntervals = 1
        # Perform simulation
        simulation.simulate(Tend, nOutputIntervals)  # to get the values: t_new, y_new = simulation.simulate
コード例 #3
0
ファイル: test1.py プロジェクト: lNsufficient/fmnn05
import matplotlib.pyplot as plt

def rhs(t,y):
    k = 1000 
    L = k*(math.sqrt(y[0]**2+y[1]**2)-1)/math.sqrt(y[0]**2+y[1]**2)
    result = numpy.array([y[2],y[3],-y[0]*L,-y[1]*L-1])
    return result
t0 = 0
y0 = numpy.array([0.8,-0.8,0,0])

model = Explicit_Problem(rhs,y0,t0)
model.name = 'task1'

sim = CVode(model)
sim.atol=numpy.array([1,1,1,1])*1e-5
sim.rtol=1e-6
sim.maxord=3
#sim.discr='BDF'
#sim.iter='Newton'


tfinal = 70

(t,y) = sim.simulate(tfinal)

#sim.plot()

plt.plot(y[:,0],y[:,1])
plt.axis('equal')
plt.show()
コード例 #4
0
    def simulate(self, Tend, nIntervals, gridWidth):

        # define assimulo problem:(has to be done here because of the starting value in Explicit_Problem
        solver = Explicit_Problem(self.rhs, self.y0)
        ''' *******DELETE LATER '''''''''
#        problem.handle_event = handle_event
#        problem.state_events = state_events
#        problem.init_mode = init_mode

        solver.handle_result = self.handle_result


        solver.name = 'Simple Explicit Example'
        simulation = CVode(solver)  # Create a RungeKutta34 solver
        # simulation.inith = 0.1 #Sets the initial step, default = 0.01

        # Change multistep method: 'adams' or 'VDF'
        if self.discr == 'Adams':
            simulation.discr = 'Adams'
            simulation.maxord = 12
        else:
            simulation.discr = 'BDF'
            simulation.maxord = 5

        # Change iteration algorithm: functional(FixedPoint) or newton
        if self.iter == 'FixedPoint':
            simulation.iter = 'FixedPoint'
        else:
            simulation.iter = 'Newton'

        # Sets additional parameters
        simulation.atol = self.atol
        simulation.rtol = self.rtol
        simulation.verbosity = 0
        if hasattr(simulation, 'continuous_output'):
            simulation.continuous_output = False  # default 0, if one step approach should be used
        elif hasattr(simulation, 'report_continuously'):
            simulation.report_continuously = False  # default 0, if one step approach should be used

        # Create Solver and set settings
#        noRootFunctions = np.size(self.state_events(self.t0, np.array(self.y0)))

#        solver = sundials.CVodeSolver(RHS = self.f, ROOT = self.rootf, SW = [False]*noRootFunctions,
#                       abstol = self.atol, reltol = self.rtol)
        # solver.settings.JAC = None   #Add user-dependent jacobian here

        '''Initialize problem '''
#        solver.init(self.t0, self.y0)
        self.handle_result(self.t0, self.y0)
        nextTimeEvent = self.time_events(self.t0, self.y0)
        self.t_cur = self.t0
        self.y_cur = self.y0
        state_event = False
#
#
        if gridWidth <> None:
            nOutputIntervals = int((Tend - self.t0) / gridWidth)
        else:
            nOutputIntervals = nIntervals
        # Define step length depending on if gridWidth or nIntervals has been chosen
        if nOutputIntervals > 0:
            # Last point on grid (does not have to be Tend:)
            if(gridWidth <> None):
                dOutput = gridWidth
            else:
                dOutput = (Tend - self.t0) / nIntervals
        else:
            dOutput = Tend

        outputStepCounter = long(1)
        nextOutputPoint = min(self.t0 + dOutput, Tend)

        while self.t_cur < Tend:

            # Time-Event detection and step time adjustment
            if nextTimeEvent is None or nextOutputPoint < nextTimeEvent:
                time_event = False
                self.t_cur = nextOutputPoint
            else:
                time_event = True
                self.t_cur = nextTimeEvent



            try:
#                #Integrator step
#                self.y_cur = solver.step(self.t_cur)
#                self.y_cur = np.array(self.y_cur)
#                state_event = False
                # Simulate




                # take a step to next output point:
                t_new, y_new = simulation.simulate(self.t_cur)  # 5, 10) #5, 10  self.t_cur self.t_cur  2. argument nsteps Simulate 5 seconds
                # t_new, y_new are both vectors of the time and states at t_cur and all intermediate
                # points before it! So take last values:
                self.t_cur = t_new[-1]
                self.y_cur = y_new[-1]
                state_event = False

            except:
                import sys
                print "Unexpected error:", sys.exc_info()[0]
#            except CVodeRootException, info:
#                self.t_cur = info.t
#                self.y_cur = info.y
#                self.y_cur = np.array(self.y_cur)
#                time_event = False
#                state_event = True
#
#
            # Depending on events have been detected do different tasks
            if time_event or state_event:
                event_info = [state_event, time_event]
                if not self.handle_event(self, event_info):
                    break
                solver.init(self.t_cur, self.y_cur)

                nextTimeEvent = self.time_events(self.t_cur, self.y_cur)
                # If no timeEvent happens:
                if nextTimeEvent <= self.t_cur:
                    nextTimeEvent = None

            if self.t_cur == nextOutputPoint:
                # Write output if not happened before:
                if not time_event and not state_event:
                    self.handle_result(nextOutputPoint, self.y_cur)
                outputStepCounter += 1
                nextOutputPoint = min(self.t0 + outputStepCounter * dOutput, Tend)

        self.finalize()
コード例 #5
0
def run_example(with_plots=True):
    """
    Simulations for the Gyro (Heavy Top) example in Celledoni/Safstrom: 
        Journal of Physics A, Vol 39, 5463-5478, 2006
        
    on return:
    
       - :dfn:`exp_mod`    problem instance
    
       - :dfn:`exp_sim`    solver instance
    
    """
    def curl(v):
        return array([[0, v[2], -v[1]], [-v[2], 0, v[0]], [v[1], -v[0], 0]])

    #Defines the rhs
    def f(t, u):
        """
        Simulations for the Gyro (Heavy Top) example in Celledoni/Safstrom: 
        Journal of Physics A, Vol 39, 5463-5478, 2006
        """
        I1 = 1000.
        I2 = 5000.
        I3 = 6000.
        u0 = [0, 0, 1.]
        pi = u[0:3]
        Q = (u[3:12]).reshape((3, 3))
        Qu0 = dot(Q, u0)
        f = array([Qu0[1], -Qu0[0], 0.])
        f = 0
        omega = array([pi[0] / I1, pi[1] / I2, pi[2] / I3])
        pid = dot(curl(omega), pi) + f
        Qd = dot(curl(omega), Q)
        return hstack([pid, Qd.reshape((9, ))])

    def energi(state):
        energi = []
        for st in state:
            Q = (st[3:12]).reshape((3, 3))
            pi = st[0:3]
            u0 = [0, 0, 1.]
            Qu0 = dot(Q, u0)
            V = Qu0[2]  # potential energy
            T = 0.5 * (pi[0]**2 / 1000. + pi[1]**2 / 5000. + pi[2]**2 / 6000.)
            energi.append([T])
        return energi

    #Initial conditions
    y0 = hstack([[1000. * 10, 5000. * 10, 6000 * 10], eye(3).reshape((9, ))])

    #Create an Assimulo explicit problem
    exp_mod = Explicit_Problem(f, y0, name="Gyroscope Example")

    #Create an Assimulo explicit solver (CVode)
    exp_sim = CVode(exp_mod)

    #Sets the parameters
    exp_sim.discr = 'BDF'
    exp_sim.iter = 'Newton'
    exp_sim.maxord = 2  #Sets the maxorder
    exp_sim.atol = 1.e-10
    exp_sim.rtol = 1.e-10

    #Simulate
    t, y = exp_sim.simulate(0.1)

    #Plot
    if with_plots:
        import pylab as P
        P.plot(t, y / 10000.)
        P.xlabel('Time')
        P.ylabel('States, scaled by $10^4$')
        P.title(exp_mod.name)
        P.show()

    #Basic tests
    nose.tools.assert_almost_equal(y[-1][0], 692.800241862)
    nose.tools.assert_almost_equal(y[-1][8], 7.08468221e-1)

    return exp_mod, exp_sim
コード例 #6
0
    def simulate(self, Tend, nIntervals, gridWidth):

        # define assimulo problem:(has to be done here because of the starting value in Explicit_Problem
        solver = Explicit_Problem(self.rhs, self.y0)
        ''' *******DELETE LATER '''''''''
#        problem.handle_event = handle_event
#        problem.state_events = state_events
#        problem.init_mode = init_mode

        solver.handle_result = self.handle_result


        solver.name = 'Simple Explicit Example'
        simulation = CVode(solver)  # Create a RungeKutta34 solver
        # simulation.inith = 0.1 #Sets the initial step, default = 0.01

        # Change multistep method: 'adams' or 'VDF'
        if self.discr == 'Adams':
            simulation.discr = 'Adams'
            simulation.maxord = 12
        else:
            simulation.discr = 'BDF'
            simulation.maxord = 5

        # Change iteration algorithm: functional(FixedPoint) or newton
        if self.iter == 'FixedPoint':
            simulation.iter = 'FixedPoint'
        else:
            simulation.iter = 'Newton'

        # Sets additional parameters
        simulation.atol = self.atol
        simulation.rtol = self.rtol
        simulation.verbosity = 0
        if hasattr(simulation, 'continuous_output'):
            simulation.continuous_output = False  # default 0, if one step approach should be used
        elif hasattr(simulation, 'report_continuously'):
            simulation.report_continuously = False  # default 0, if one step approach should be used

        # Create Solver and set settings
#        noRootFunctions = np.size(self.state_events(self.t0, np.array(self.y0)))

#        solver = sundials.CVodeSolver(RHS = self.f, ROOT = self.rootf, SW = [False]*noRootFunctions,
#                       abstol = self.atol, reltol = self.rtol)
        # solver.settings.JAC = None   #Add user-dependent jacobian here

        '''Initialize problem '''
#        solver.init(self.t0, self.y0)
        self.handle_result(self.t0, self.y0)
        nextTimeEvent = self.time_events(self.t0, self.y0)
        self.t_cur = self.t0
        self.y_cur = self.y0
        state_event = False
#
#
        if gridWidth <> None:
            nOutputIntervals = int((Tend - self.t0) / gridWidth)
        else:
            nOutputIntervals = nIntervals
        # Define step length depending on if gridWidth or nIntervals has been chosen
        if nOutputIntervals > 0:
            # Last point on grid (does not have to be Tend:)
            if(gridWidth <> None):
                dOutput = gridWidth
            else:
                dOutput = (Tend - self.t0) / nIntervals
        else:
            dOutput = Tend

        outputStepCounter = long(1)
        nextOutputPoint = min(self.t0 + dOutput, Tend)

        while self.t_cur < Tend:

            # Time-Event detection and step time adjustment
            if nextTimeEvent is None or nextOutputPoint < nextTimeEvent:
                time_event = False
                self.t_cur = nextOutputPoint
            else:
                time_event = True
                self.t_cur = nextTimeEvent



            try:
#                #Integrator step
#                self.y_cur = solver.step(self.t_cur)
#                self.y_cur = np.array(self.y_cur)
#                state_event = False
                # Simulate




                # take a step to next output point:
                t_new, y_new = simulation.simulate(self.t_cur)  # 5, 10) #5, 10  self.t_cur self.t_cur  2. argument nsteps Simulate 5 seconds
                # t_new, y_new are both vectors of the time and states at t_cur and all intermediate
                # points before it! So take last values:
                self.t_cur = t_new[-1]
                self.y_cur = y_new[-1]
                state_event = False

            except:
                import sys
                print "Unexpected error:", sys.exc_info()[0]
#            except CVodeRootException, info:
#                self.t_cur = info.t
#                self.y_cur = info.y
#                self.y_cur = np.array(self.y_cur)
#                time_event = False
#                state_event = True
#
#
            # Depending on events have been detected do different tasks
            if time_event or state_event:
                event_info = [state_event, time_event]
                if not self.handle_event(self, event_info):
                    break
                solver.init(self.t_cur, self.y_cur)

                nextTimeEvent = self.time_events(self.t_cur, self.y_cur)
                # If no timeEvent happens:
                if nextTimeEvent <= self.t_cur:
                    nextTimeEvent = None

            if self.t_cur == nextOutputPoint:
                # Write output if not happened before:
                if not time_event and not state_event:
                    self.handle_result(nextOutputPoint, self.y_cur)
                outputStepCounter += 1
                nextOutputPoint = min(self.t0 + outputStepCounter * dOutput, Tend)

        self.finalize()
コード例 #7
0
ファイル: task4.py プロジェクト: TuongL94/SimulationTools
#Create Assimulo problem model
mod_pen = Explicit_Problem(rhs, y0, t0)
mod_pen.name = 'Elastic Pendulum with CVode'
"""
Run simulation
"""
#Create solver object
sim_pen = CVode(mod_pen)

#Simulation parameters
#atol = 1.e-6*ones(shape(y0))
atol = rtol * N.array([1, 1, 1, 1])  #default 1e-06
sim_pen.atol = atol
sim_pen.rtol = rtol
sim_pen.maxh = hmax
sim_pen.maxord = maxord
sim_pen.inith = h0

#Simulate
t, y = sim_pen.simulate(tf)
"""
Plot results
"""
#Plot
#P.plot(t,y)
#P.legend(['$x$','$y$','$\dot{x}$','$\dot{y}$'])
#P.title('Elastic pendulum with k = ' + str(k) + ', stretch = ' + str(stretch))
#P.xlabel('time')
#P.ylabel('state')
#show()
P.plot(y[:, 0], y[:, 1])
コード例 #8
0
ファイル: task2.py プロジェクト: Canneberge/Simulation-tools
# Define the rhs
def rhs(t, y):
    k = 10
    A = np.array([[0, 0, 1, 0],
                  [0, 0, 0, 1],
                  [-L(y, k), 0, 0, 0],
                  [0, -L(y, k), 0, 0]])
    b = np.array([0, 0, 0, -1])
    yd = np.dot(A, y) + b
    return yd

def L(y, k):
    norm = ln.norm(y[0:2])
    return k * (norm - 1) / norm

pend_mod = Explicit_Problem(rhs, y0 = np.array([1.0, 1.0, 1.0, 1.0]))
pend_mod.name = 'Nonlinear Pendulum'

# Define an explicit solver
exp_sim = BDF_3(pend_mod)  # Create a BDF solver
t, y = exp_sim.simulate(4)
exp_sim.plot()
mpl.show()

toltmp=0.1
cvod= CVode(pend_mod)
cvod.atol=toltmp
cvod.rtol=toltmp
cvod.maxord=19
cvod.simulate(5) 
cvod.plot()