コード例 #1
0
    def _container_default(self):
        # Create the data and the PlotData object
        x = linspace(-14, 14, 100)
        y = sin(x) * x ** 3
        plotdata = ArrayPlotData(x=x, y=y)

        # Create the scatter plot
        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")

        # Create the line plot
        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")

        # Add pan/zoom so we can see they are connected
        scatter.tools.append(PanTool(scatter))
        scatter.tools.append(ZoomTool(scatter))
        line.tools.append(PanTool(line))
        line.tools.append(ZoomTool(line))

        # Set the two plots' ranges to be the same
        scatter.index_range = line.index_range

        # Create a horizontal container and put the two plots inside it
        return HPlotContainer(scatter, line)
コード例 #2
0
ファイル: nans_plot.py プロジェクト: 5n1p/chaco
def _create_plot_component():

    # Create some x-y data series (with NaNs) to plot
    x = linspace(-5.0, 15.0, 500)
    x[75:125] = nan
    x[200:250] = nan
    x[300:330] = nan
    pd = ArrayPlotData(index = x)
    pd.set_data("value1", jn(0, x))
    pd.set_data("value2", jn(1, x))

    # Create some line and scatter plots of the data
    plot = Plot(pd)
    plot.plot(("index", "value1"), name="j_0(x)", color="red", width=2.0)
    plot.plot(("index", "value2"), type="scatter", marker_size=1,
              name="j_1(x)", color="green")

    # Tweak some of the plot properties
    plot.title = "Plots with NaNs"
    plot.padding = 50
    plot.legend.visible = True

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    return plot
コード例 #3
0
ファイル: scatter.py プロジェクト: BenChristenson/chaco
def _create_plot_component():

    # Create some data
    numpts = 5000
    x = sort(random(numpts))
    y = random(numpts)

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value"),
              type="scatter",
              marker="circle",
              index_sort="ascending",
              color="orange",
              marker_size=3,
              bgcolor="white")

    # Tweak some of the plot properties
    plot.title = "Scatter Plot"
    plot.line_width = 0.5
    plot.padding = 50

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    return plot
コード例 #4
0
ファイル: plot.py プロジェクト: 333ccc/GnuRadar
   def createPlot(self, showDataTag ):
      
      # picks the desired channel out of the interleaved data
      stride = self.header.getChannels()

      # the first sample contains the data tag - the user has the 
      # option to not display with the offset enabled
      offset = 0 if showDataTag else stride

      # we first grab the entire table and then select 1st ipp
      # along with the associated channel we're interested in. 
      # I'm assuming this slice is a reference of the original.
      self.dataView = self.header.getBuffer()[ 0, offset::stride ]

      i = self.dataView['real']
      q = self.dataView['imag']
      xAxis = range( offset, i.size )

      plotData = ArrayPlotData( xAxis=xAxis, i=i , q=q ) 
      plot = Plot( plotData )
      plot.plot( ("xAxis", "i"), type="line", color="blue")
      plot.plot( ("xAxis", "q"), type="line", color="red")
      plot.title = 'IQ Plot'
      
      return plot
コード例 #5
0
ファイル: status_overlay.py プロジェクト: 5n1p/chaco
class MyPlot(HasTraits):
    """ Displays a plot with a few buttons to control which overlay
        to display
    """
    plot = Instance(Plot)
    status_overlay = Instance(StatusLayer)

    error_button = Button('Error')
    warn_button = Button('Warning')
    no_problem_button = Button('No problem')

    traits_view = View( HGroup(UItem('error_button'),
                               UItem('warn_button'),
                               UItem('no_problem_button')),
                        UItem('plot', editor=ComponentEditor()),
                        width=700, height=600, resizable=True,        
                        )

    def __init__(self, index, data_series, **kw):
        super(MyPlot, self).__init__(**kw)

        plot_data = ArrayPlotData(index=index)
        plot_data.set_data('data_series', data_series)
        self.plot = Plot(plot_data)
        self.plot.plot(('index', 'data_series'))

    def _error_button_fired(self, event):
        """ removes the old overlay and replaces it with
            an error overlay
        """
        self.clear_status()

        self.status_overlay = ErrorLayer(component=self.plot,
                                            align='ul', scale_factor=0.25)
        self.plot.overlays.append(self.status_overlay)

        self.plot.request_redraw()

    def _warn_button_fired(self, event):
        """ removes the old overlay and replaces it with
            an warning overlay
        """
        self.clear_status()

        self.status_overlay = WarningLayer(component=self.plot,
                                            align='ur', scale_factor=0.25)
        self.plot.overlays.append(self.status_overlay)

        self.plot.request_redraw()

    def _no_problem_button_fired(self, event):
        """ removes the old overlay
        """
        self.clear_status()
        self.plot.request_redraw()

    def clear_status(self):
        if self.status_overlay in self.plot.overlays:
            # fade_out will remove the overlay when its done
            self.status_overlay.fade_out()
コード例 #6
0
ファイル: scrollbar.py プロジェクト: BenChristenson/chaco
def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index = x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, padding=50)
    plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
    plot1.plot(("index", "y3"), name="j_3", color="blue")

    # Attach some tools to the plot
    plot1.tools.append(PanTool(plot1))
    zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False)
    plot1.overlays.append(zoom)

    # Add the scrollbar
    hscrollbar = PlotScrollBar(component=plot1, axis="index", resizable="h",
                               height=15)
    plot1.padding_top = 0
    hscrollbar.force_data_update()

    # Create a container and add our plots
    container = VPlotContainer()
    container.add(plot1)
    container.add(hscrollbar)

    return container
コード例 #7
0
def _fuel_cycle_plot_component(x, y, x_name, y_name):
    # Create some data

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)
    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value"),
              type="line",
              marker="circle",
              index_sort="ascending",
              color="red",
              marker_size=3,
              bgcolor="white")
    # Tweak some of the plot properties
    plot.title = "Fuel Cycle Plot"
    plot.line_width = 0.5
    plot.padding = 100

    plot.x_axis.title = x_name
    plot.x_axis.title_font = "Roman 16"
    plot.x_axis.tick_label_font = "Roman 12"
        
    plot.y_axis.title = y_name
    plot.y_axis.title_font = "Roman 16"
    plot.y_axis.tick_label_font = "Roman 12"

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)
   
    return plot
コード例 #8
0
ファイル: e_density_hu_curve.py プロジェクト: zoulianmp/mftm
 def update_show_curve(self):
     plotdata = ArrayPlotData(x=self.ct_hu, y=self.re_electronic_density)
     plot = Plot(plotdata)
     plot.plot(("x", "y"), type="line", color="blue")              
    
     plot.title = self.name
     self.plot = plot
コード例 #9
0
ファイル: yasso.py プロジェクト: siagosheva/yasso07ui
 def _create_plot(self, max, min, dataobj, title):
     x = dataobj[:, 0]
     y = dataobj[:, 1]
     if y.max() > max:
         max = y.max()
     if y.min() < min:
         min = y.min()
     if self.sample_size > 1:
         y2 = dataobj[:, 6]
         y3 = dataobj[:, 7]
         if y3.max() > max:
             max = y3.max()
         if y2.min() < min:
             min = y2.min()
         plotdata = ArrayPlotData(x=x, y=y, y2=y2, y3=y3)
     else:
         plotdata = ArrayPlotData(x=x, y=y)
     plot = Plot(plotdata)
     plot.plot(("x", "y"), type="line", color="blue")
     if self.sample_size > 1:
         plot.plot(("x", "y2"), type="line", color="red")
         plot.plot(("x", "y3"), type="line", color="red")
     # plot.padding_right = 45
     # plot.padding_left = 25
     # plot.padding_top = 25
     # plot.padding_bottom = 25
     plot.title = title
     plot.title_font = "Arial 10"
     return plot, max, min
コード例 #10
0
 def _plot_default(self):
     data = ArrayPlotData(x=self.model.x, y=self.model.y)
     plot = Plot(data)
     plot.plot(('x', 'y'), style='line', color='green')
     plot.value_range.set_bounds(-self.model.a, self.model.a)
     plot.title = "a * exp(-b*x) * cos(omega*x + phase)"
     return plot
コード例 #11
0
ファイル: base.py プロジェクト: bburan/cochlear
 def _sig_phase_plot_default(self):
     plot = Plot(self.plot_data, padding=[75, 25, 25, 50],
                 title='Signal Spectrum')
     plot.plot(('frequency', 'sig_phase'), index_scale='log', color='black')
     plot.index_axis.title = 'Frequency (Hz)'
     plot.value_axis.title = 'Power (dB)'
     return plot
コード例 #12
0
ファイル: MinMax.py プロジェクト: CforED/PySimulator
def createWindow(widget):
    ''' Example on creating a new plot window in the
        main window MDI-Area
    '''
    import plotWidget
    from PySide import QtGui
    from numpy import linspace
    from scipy.special import jn
    from chaco.api import ArrayPlotData, Plot

    window = widget.createNewWindow()
    container = plotWidget.plotContainer(window)
    plotWidget = plotWidget.PlotWidget(container)
    container.setPlotWidget(plotWidget)

    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index=x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i, x))
    plot = Plot(pd, title=None, padding_left=60, padding_right=5, padding_top=5, padding_bottom=30, border_visible=True)
    plot.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
    plotWidget.setPlot(plot)

    layout = QtGui.QBoxLayout(QtGui.QBoxLayout.TopToBottom)
    layout.addWidget(container)
    window.setLayout(layout)
    window.show()
コード例 #13
0
ファイル: grid_plot_container.py プロジェクト: B-Rich/chaco
    def _plot_default(self):
        # Create a GridContainer to hold all of our plots: 2 rows, 3 columns
        container = GridPlotContainer(shape=(2,3),
                                      spacing=(10,5),
                                      valign='top',
                                      bgcolor='lightgray')

        # Create x data
        x = linspace(-5, 15.0, 100)
        pd = ArrayPlotData(index = x)

        # Plot some Bessel functions and add the plots to our container
        for i in range(6):
            data_name = 'y{}'.format(i)
            pd.set_data(data_name, jn(i,x))

            plot = Plot(pd)
            plot.plot(('index', data_name),
                      color=COLOR_PALETTE[i],
                      line_width=3.0)

            # Set each plot's aspect based on its position in the grid
            plot.set(height=((i % 3) + 1)*50,
                     resizable='h')

            # Add to the grid container
            container.add(plot)

        return container
コード例 #14
0
ファイル: part3.py プロジェクト: quasiben/AMS93
    def __init__(self):
        # Create the data and the PlotData object
        price1 = random_walk(100)
        price2 = random_walk(100, start=50)
        times = np.arange(100)
        plotdata = ArrayPlotData(times=times, price1=price1, price2=price2)
        
        # Create the scatter plot
        plot1 = Plot(plotdata)
        plot1.plot(("times", "price1"), type="line", color="blue")
        plot1.plot(("times", "price1"), type="scatter", color="blue")
        
        plot2 = Plot(plotdata)
        plot2.plot(("times", "price2"), type="line", color="green")
        plot2.plot(("times", "price2"), type="scatter", color="green")

        scatterplot = Plot(plotdata)
        scatterplot.plot(("price2", "price1"), type="scatter", color="green")

        plot1.tools.append(PanTool(plot1))
        plot1.tools.append(ZoomTool(plot1))
        plot2.tools.append(PanTool(plot2))
        plot2.tools.append(ZoomTool(plot2))
        scatterplot.tools.append(PanTool(scatterplot))
        scatterplot.tools.append(ZoomTool(scatterplot))        
        plot2.tools.append(ZoomTool(plot2))
        
        
        lineplots = VPlotContainer(plot1, plot2)
        container = HPlotContainer(lineplots, scatterplot)
        self.plot = container
        self.plotdata = plotdata
コード例 #15
0
ファイル: bar_plot_stacked.py プロジェクト: enthought/chaco
class PlotExample(HasTraits):
    plot = Instance(Plot)
    traits_view = View(UItem('plot', editor=ComponentEditor()),
                       width=400, height=400, resizable=True, 
                      )

    def __init__(self, index, series_a, series_b, series_c, **kw):
        super(PlotExample, self).__init__(**kw)

        plot_data = ArrayPlotData(index=index)
        plot_data.set_data('series_a', series_a)
        plot_data.set_data('series_b', series_b)
        plot_data.set_data('series_c', series_c)
        self.plot = Plot(plot_data)
        self.plot.plot(('index', 'series_a'), type='bar', bar_width=0.8, color='auto')
        self.plot.plot(('index', 'series_b'), type='bar', bar_width=0.8, color='auto')
        self.plot.plot(('index', 'series_c'), type='bar', bar_width=0.8, color='auto')

        # set the plot's value range to 0, otherwise it may pad too much
        self.plot.value_range.low = 0

        # replace the index values with some nicer labels
        label_axis = LabelAxis(self.plot, orientation='bottom',
                               title='Months',
                               positions = list(range(1, 10)),
                               labels = ['jan', 'feb', 'march', 'april', 'may'],
                               small_haxis_style=True)

        self.plot.underlays.remove(self.plot.index_axis)
        self.plot.index_axis = label_axis
        self.plot.underlays.append(label_axis)
コード例 #16
0
ファイル: qt_table.py プロジェクト: punchagan/talks
def create_chaco_plot(parent, data, args, type=''):
    #x = linspace(-2.0, 10.0, 100)
    #pd = ArrayPlotData(index = x)
    #for i in range(5):
    #    pd.set_data("y" + str(i), jn(i,x))
    #if not type:
    #    type = ['plot']
    #else:
    #    type = [type, 'plot']
    # Create some line plots of some of the data
    plot = Plot(data, title="Line Plot", padding=50, border_visible=True)
    plot.legend.visible = True
    #plot_fn = getattr(plot, '_'.join(type))
    if type:
        renderers = plot.plot(args, plot=type)
    else:
        renderers = plot.plot(args)
    #plot.plot(("index", "y3"), name="j_3", color="blue")

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)
    plot.tools.append(TraitsTool(component=plot))

    # This Window object bridges the Enable and Qt4 worlds, and handles events
    # and drawing.  We can create whatever hierarchy of nested containers we
    # want, as long as the top-level item gets set as the .component attribute
    # of a Window.
    return Window(parent, -1, component = plot)
コード例 #17
0
    def __init__(self):
        # Create some data
        x = np.random.random(N_POINTS)
        y = np.random.random(N_POINTS)
        color = np.exp(-(x**2 + y**2))

        # Create a plot data object and give it this data
        data = ArrayPlotData(index=x, value=y, color=color)

        # Create the plot
        plot = Plot(data)
        plot.plot(("index", "value", "color"), type="cmap_scatter",
                  color_mapper=jet)

        # Create the colorbar, handing in the appropriate range and colormap
        colormap = plot.color_mapper
        colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                            color_mapper=colormap,
                            orientation='v',
                            resizable='v',
                            width=30,
                            padding=20)

        colorbar.padding_top = plot.padding_top
        colorbar.padding_bottom = plot.padding_bottom

        # Create a container to position the plot and the colorbar side-by-side
        container = HPlotContainer(plot, colorbar)
        self.plot = container
コード例 #18
0
    def __init__(self):
        super(ConnectedRange, self).__init__()
        x = linspace(-14, 14, 100)
        y = sin(x) * x ** 3
        plotdata = ArrayPlotData(x=x, y=y)

        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")

        line = Plot(plotdata)
        #line = Plot(plotdata, orientation="v", default_origin="top left")
        line.plot(("x", "y"), type="line", color="red")

        self.container = HPlotContainer(scatter, line)

        scatter.tools.append(PanTool(scatter))
        scatter.tools.append(ZoomTool(scatter))

        line.tools.append(PanTool(line))
        line.tools.append(ZoomTool(line))

        #Axis link options, try them out
        #scatter.value_range = line.value_range  # Link y-axis only
        #scatter.index_range = line.index_range  # Link x-axis only
        scatter.range2d = line.range2d  # Link both axes
コード例 #19
0
ファイル: base.py プロジェクト: bburan/cochlear
 def _sig_waveform_plot_default(self):
     plot = Plot(self.plot_data, padding=[75, 25, 25, 50],
                 title='Signal Waveform')
     plot.plot(('time', 'sig_waveform'), color='black')
     plot.index_axis.title = 'Time (sec)'
     plot.value_axis.title = 'Signal (V)'
     return plot
コード例 #20
0
ファイル: viewer1D.py プロジェクト: amared/lulu
class Viewer1D(Viewer):
    image = Array
    result = Array

    def _reconstruction_default(self):
        rows, cols = self.image.shape[:2]
        self.plot_data = ArrayPlotData(original=self.image[0],
                                       reconstruction=self.result[0])

        aspect = cols/float(rows)

        old = Plot(self.plot_data)
        old.plot('original', )
        old.title = 'Old'

        self.new = Plot(self.plot_data)
        self.new.plot('reconstruction')
        self.new.title = 'New'

        container = HPlotContainer(bgcolor='none')
        container.add(old)
        container.add(self.new)

        return container

    def update_plot(self):
        self.plot_data.set_data('reconstruction', self.result[0])
        self.new.request_redraw()
コード例 #21
0
ファイル: plot_handlers.py プロジェクト: jilott/enaml-csv
    def draw_histogram(self):
        """
        Default function called when drawing the histogram.
        """
        for component in self.container.components:
            self.container.remove(component)

        self.selection_handler.create_selection()

        if len(self.selection_handler.selected_indices) == 1:
            tuple_list = self.selection_handler.selected_indices[0]
            if self.AS_PANDAS_DATAFRAME:
                column_name = self.data.columns[tuple_list[1]]
                y = self.data[column_name]
                self.index = np.arange(self.nbins)
                hist = np.histogram(y, self.nbins)[0]
                plotdata = ArrayPlotData(x=self.index, y=hist)
                plot = Plot(plotdata)
                plot.plot(("x", "y"), type="bar", bar_width=0.5)
                self.container.add(plot)
            else:
                column = tuple_list[1]
                y = self.data[:, column]
                self.index = np.arange(self.nbins)
                hist = np.histogram(y, self.nbins)[0]
                plotdata = ArrayPlotData(x=self.index, y=hist)
                plot = Plot(plotdata)
                plot.plot(("x", "y"), type="bar", bar_width=0.5)
                self.container.add(plot)

            self.container.request_redraw()

        self.selection_handler.flush()
コード例 #22
0
    def _plot_default(self):

        plot = Plot(self.datasource)

        plot.plot( ('dates', 'values'), type='scatter')

        return plot
コード例 #23
0
ファイル: eg1.py プロジェクト: ANDDYYYY/dmitri-plot
    def _plot_default(self):
        plotter = Plot(data=self.data)
        main_plot = plotter.plot(['x','y'])[0]
        self.configure_plot(main_plot, xlabel='')

        plotter2 = Plot(data=self.data)
        zoom_plot = plotter2.plot(['x','y'])[0]
        self.configure_plot(zoom_plot)

        plotter3 = Plot(data = self.data)
        events_plot = plotter3.plot(['x','y'])[0]
        self.configure_plot(events_plot)
        
        outer_container = VPlotContainer(padding=20,
                                         fill_padding=True,
                                         spacing=0,
                                         stack_order='top_to_bottom',
                                         bgcolor='lightgray',
                                         use_backbuffer=True)

        outer_container.add(main_plot)
        outer_container.add(zoom_plot)
        outer_container.add(events_plot)
        # FIXME: This is set to the windows bg color.  Should get from the system.
        #outer_container.bgcolor = (236/255., 233/255., 216/255., 1.0)

        main_plot.controller = RangeSelection(main_plot)
        
        zoom_overlay = ZoomOverlay(source=main_plot, destination=zoom_plot)
        outer_container.overlays.append(zoom_overlay)

        return outer_container
コード例 #24
0
    def _time_plot_default(self):
        time_plot = Plot(self.time_plot_data)

        time_plot.plot(('t', 'y'))

        time_plot.index_axis.title = "Time"

        time_plot.tools.append(PanTool(time_plot))

        zoomtool = ZoomTool(time_plot, drag_button='right',
                                                    always_on=True)
        time_plot.overlays.append(zoomtool)

        lines1 = CoordinateLineOverlay(component=time_plot,
                    index_data=self.x1,
                    value_data=self.y1,
                    color=(0.75, 0.25, 0.25, 0.75),
                    line_style='dash', line_width=1)
        time_plot.underlays.append(lines1)
        self.line_overlay1 = lines1

        lines2 = CoordinateLineOverlay(component=time_plot,
                    index_data=self.x2,
                    value_data=self.y2,
                    color=(0.2, 0.5, 1.0, 0.75),
                    line_width=3)
        time_plot.underlays.append(lines2)
        self.line_overlay2 = lines2

        return time_plot
コード例 #25
0
ファイル: qdsearch.py プロジェクト: ottodietz/qdsearch
    def plot_spectrum(self,x,y,field):
        for i in range(len(self.x_koords)):
            x_gap=abs(x-self.x_koords[i])
            y_gap=abs(y-self.y_koords[i])
            if x_gap <self.toleranz and y_gap<self.toleranz:
                spectrum=self.spectra[i]
                wavelength=self.ivCamera.create_wavelength_for_plotting()
                xm = [self.plotrangemarker,self.plotrangemarker] #for red line in plot
                ym = [0,16000] #self.plotrangey
                plotdata = ArrayPlotData(x=wavelength, y=spectrum,xm=xm,ym=ym)
                plot = Plot(plotdata)
                plot.plot(("x", "y"), type="line", color="blue")
                plot.x_axis.title="Wavelength [nm]"
                plot.y_axis.title="Counts"

                #catch error if apd counts not loaded
                try:
                    apd_counts = str(self.apd_counts[i])
                except:
                    apd_counts = str("0")

                plot.title = 'spectrum of QD ' +str(self.x_koords[i])+' '+str(self.y_koords[i])+' with APD at '+str(apd_counts)
                plot.overlays.append(ZoomTool(component=plot,tool_mode="box", always_on=False)) # damit man im Plot zoomen kann
                plot.tools.append(PanTool(plot, constrain_key="shift")) # damit man mit der Maus den Plot verschieben kann
                if field=='current':
                    self.plot_current=plot
                    if self.plotsetalways:
                        self._plotrangeset_fired()
                if field=='compare':
                    self.plot_compare=plot
                    if self.plotsetalways:
                        self._plotrangeset_fired()
コード例 #26
0
ファイル: dpoae_experiment.py プロジェクト: bburan/cochlear
 def _dp_plot_default(self, parameter):
     plot = Plot(self.dp_data)
     for pt in ('scatter', 'line'):
         plot.plot(('f2_level', 'f1_spl'), type=pt, color='red')
         plot.plot(('f2_level', 'f2_spl'), type=pt, color='crimson')
         plot.plot(('f2_level', 'dpoae_spl'), type=pt, color='black')
         plot.plot(('f2_level', 'dp_spl'), type=pt, color='darkblue')
         plot.plot(('f2_level', 'dpoae_nf'), type=pt, color='gray')
         plot.plot(('f2_level', 'dp_nf'), type=pt, color='lightblue')
     plot.underlays = []
     axis = PlotAxis(orientation='bottom', component=plot,
                     title='f2 level (dB SPL)')
     plot.underlays.append(axis)
     axis = PlotAxis(orientation='left', component=plot,
                     title='DPOAE level (dB SPL)')
     plot.underlays.append(axis)
     grid = PlotGrid(mapper=plot.index_mapper, component=plot,
                     orientation='vertical', line_style='dot',
                     line_color='lightgray')
     plot.underlays.append(grid)
     grid = PlotGrid(mapper=plot.value_mapper, component=plot,
                     orientation='horizontal', line_style='dot',
                     line_color='lightgray')
     plot.underlays.append(grid)
     return _DPPlot(plot=plot, parameter=parameter)
コード例 #27
0
ファイル: line_plot_hold.py プロジェクト: 5n1p/chaco
def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 40)
    pd = ArrayPlotData(index = x, y0=jn(0,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, title="render_style = hold", padding=50, border_visible=True,
                 overlay_border = True)
    plot1.legend.visible = True
    lineplot = plot1.plot(("index", "y0"), name="j_0", color="red", render_style="hold")

    # Attach some tools to the plot
    attach_tools(plot1)

    # Create a second scatter plot of one of the datasets, linking its
    # range to the first plot
    plot2 = Plot(pd, range2d=plot1.range2d, title="render_style = connectedhold",
                 padding=50, border_visible=True, overlay_border=True)
    plot2.plot(('index', 'y0'), color="blue", render_style="connectedhold")
    attach_tools(plot2)

    # Create a container and add our plots
    container = HPlotContainer()
    container.add(plot1)
    container.add(plot2)
    return container
コード例 #28
0
ファイル: mandel_view.py プロジェクト: timdiller/mandel
    def _ch_plot_default(self):
        x = 0.26
        y = 0.
        h_cross_x = np.array([self.x_low, self.x_high])
        h_cross_y = np.array([y, y])
        v_cross_x = np.array([x, x])
        v_cross_y = np.array([self.y_low, self.y_high])

        cross_hair_data = ArrayPlotData(h_cross_x=h_cross_x,
                                        h_cross_y=h_cross_y,
                                        v_cross_x=v_cross_x,
                                        v_cross_y=v_cross_y)
        ch_plot = Plot(cross_hair_data)
        ch_plot.plot(("h_cross_x", "h_cross_y"), type="line", color="green",)
        ch_plot.plot(("v_cross_x", "v_cross_y"), type="line", color="green",)
        while len(ch_plot.underlays) > 0:
            ch_plot.underlays.pop(0)
        ch_plot.range2d = self.img_plot.range2d
        cross_hair_tool = CrossHairs(ch_plot)
        ch_plot.tools.append(cross_hair_tool)
        self.crosshair = cross_hair_tool
        self.on_trait_change(self.draw_cross_hairs,
                             "crosshair.selected_x, crosshair.selected_y")
        self.on_trait_change(self.render_julia,
                             "crosshair.selected_x, crosshair.selected_y")
        return ch_plot
コード例 #29
0
    def _interp_data_button_fired(self):
        x = [row.x for row in self.rows]
        y = [row.y for row in self.rows]

        f = interp1d(asarray(x), asarray(y))
        y2 = Array
        print x, sorted(x)
        y2 = [f(i) for i in sorted(x)]

        print y2

        plotdata = ArrayPlotData(x=x, y=y)
        plotdata2 = ArrayPlotData(y=y2)

        test_plot = Plot(plotdata)
        test_plot.plot(("x", "y"), type="scatter")
        test_plot.plot(("x", "y"), type="line")
        test_plot_2 = Plot(plotdata2)
        # test_plot_2.plot("y2", type="line")
        # changing type to line w)ill make the
        # plot a line plot! not recommended!
        """
        test_plot = plot(x,y,"b-", bgcolor="white")
        test_plot.hold()
        test_plot = plot(x,y2,"g-")
        """
        container = HPlotContainer(test_plot)  # ,test_plot_2)
        self.aplot = container
コード例 #30
0
ファイル: connected_orientation.py プロジェクト: B-Rich/chaco
    def __init__(self):
        # Create the data and the PlotData object
        x = linspace(-14, 14, 100)
        y = sin(x) * x ** 3
        plotdata = ArrayPlotData(x=x, y=y)

        # Create the scatter plot
        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")

        # Create the line plot, rotated and vertically oriented
        line = Plot(plotdata, orientation="v", default_origin="top left")
        line.plot(("x", "y"), type="line", color="blue")

        # Create a horizontal container and put the two plots inside it
        self.container = HPlotContainer(scatter, line)

        # Add pan/zoom so we can see they are connected
        scatter.tools.append(PanTool(scatter))
        scatter.tools.append(ZoomTool(scatter))
        line.tools.append(PanTool(line))
        line.tools.append(ZoomTool(line))

        # Set the two plots' ranges to be the same
        scatter.range2d = line.range2d
コード例 #31
0
ファイル: plotstate.py プロジェクト: enali/AndTest
 def plotdata(self):
     self.y = []
     self.x = []
     self.fname.seek(0)
     for line in self.fname:
         self.y.append(int(line.split()[self.col + 1]))
     self.y = np.array(self.y)
     self.x = np.linspace(0, len(self.y) - 1, len(self.y))
     print(self.x, self.y, type(self.x), type(self.y))
     data = ArrayPlotData(x=self.x, y=self.y)
     plot = Plot(data)
     plot.plot(("x", "y"), type="line", color="blue")
     plot.title = "%s . %s" % (self.testItems, self.mem)
     self.plot = plot
     self.data = data
コード例 #32
0
ファイル: data_box.py プロジェクト: skailasa/chaco-playground
    def intensity_histogram_plot_component(self):

        data = ArrayPlotData(x=self.bin_edges, y=self.hist)

        plot = Plot(data)
        plot.plot(
            ('x', "y"),
            type='bar',
            color='auto',
            bar_width=1,
        )
        # without padding plot just doesn't seem to show up?
        plot.padding = 0

        return plot
コード例 #33
0
ファイル: logplot.py プロジェクト: crosslore/cuauv_software
    def _plot_default(self):
        plot = Plot(self.data)
        plot.plot(('t', 'y0'), color=colors[0])
        plot.padding = 20
        plot.padding_left = 40

        plot.tools.append(
            PanTool(plot))  #, constrain=True, constrain_direction="y"))
        #TODO: zoomtool works on both axes, should only affect y
        plot.tools.append(
            ZoomTool(plot,
                     tool_mode="range",
                     constrain=True,
                     constrain_direction="y"))
        return plot
コード例 #34
0
    def test_segment_plot_color_width(self):
        x = arange(10)
        y = arange(1, 11)
        c = arange(2, 7)
        w = arange(3, 8)
        data = ArrayPlotData(x=x, y=y, c=c, w=w)
        plot = Plot(data)
        plot.plot(('x', 'y', 'c', 'w'), "cmap_segment",
                  color_mapper=viridis)[0]

        plot.do_layout((250, 250))
        gc = PlotGraphicsContext((250, 250))
        gc.render_component(plot)
        actual = gc.bmp_array[:, :, :]
        self.assertFalse(alltrue(actual == 255))
コード例 #35
0
    def __init__(self):
        super(ContainerExample, self).__init__()

        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y)

        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")

        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")

        container = VPlotContainer(scatter, line)
        self.plot = container
コード例 #36
0
    def _plot_default(self):
        # Create the plot
        plot = Plot(self.dataset)

        plot.plot(("index", "value"),
                  type="scatter",
                  marker='circle',
                  color='blue')

        # Tweak some of the plot properties
        plot.title = "Scatter Plot"
        plot.line_width = 0.5
        plot.padding = 50

        return plot
コード例 #37
0
    def plotRU(self, rangeX=None, rangeY=None, save=False, filename=""):
        if save and filename == "":
            self.add_line("ERROR: I need a valid file name")
            return

        if save and filename.split('.')[-1] != "png":
            self.add_line("ERROR: File must end in .png")
            return

        if len(self.morseList) > 0:
            plotData = ArrayPlotData(x=self.Rlist,
                                     y=self.Ulist,
                                     morse=self.morseList,
                                     eigX=[self.Rlist[0], self.Rlist[-1]])
        else:
            plotData = ArrayPlotData(x=self.Rlist, y=self.Ulist)

        for val in self.levelsToFind:
            if val < len(self.convergedValues):
                plotData.set_data(
                    "eig" + str(val),
                    [self.convergedValues[val], self.convergedValues[val]])

        plot = Plot(plotData)

        if len(self.morseList) > 0:
            plot.plot(("x", "morse"), type="line", color="red")

        for val in self.levelsToFind:
            if val < len(self.convergedValues):

                plot.plot(("eigX", "eig" + str(val)),
                          type="line",
                          color="green")

        plot.plot(("x", "y"), type="line", color="blue")
        plot.plot(("x", "y"), type="scatter", marker_size=1.0, color="blue")
        #
        plot.index_axis.title = "Separation (r0)"
        if (self.scaled):
            plot.value_axis.title = "Potential (Eh * 2 * mu)"
        else:
            plot.value_axis.title = "Potential (Eh)"

        if len(self.plotRangeX) != 0:
            plot.x_axis.mapper.range.low = self.plotRangeX[0]
            plot.x_axis.mapper.range.high = self.plotRangeX[1]
        if len(self.plotRangeY) != 0:
            plot.y_axis.mapper.range.low = self.plotRangeY[0]
            plot.y_axis.mapper.range.high = self.plotRangeY[1]
        if not save:
            self.plot = plot
        else:
            plot.outer_bounds = [800, 600]
            plot.do_layout(force=True)
            gc = PlotGraphicsContext((800, 600), dpi=72)
            gc.render_component(plot)
            gc.save(filename)
コード例 #38
0
ファイル: spectrum_ds.py プロジェクト: jvkersch/snippets
    def _plot_default(self):
        # Set up the spectrum plot
        spectrum_plot = Plot(self.spectrum_data)
        spectrum_plot.plot(("frequency", "amplitude"),
                           name="Spectrum",
                           color="red")
        spectrum_plot.padding = 50
        spectrum_plot.title = "Spectrum"
        spec_range = list(
            spectrum_plot.plots.values())[0][0].value_mapper.range  # noqa
        spec_range.low = 0.0
        spec_range.high = 5.0
        spectrum_plot.index_axis.title = 'Frequency (Hz)'
        spectrum_plot.value_axis.title = 'Amplitude'

        # Time series plot
        time_plot = Plot(self.time_data)
        time_plot.plot(("time", "amplitude"), name="Time", color="blue")
        time_plot.padding = 50
        time_plot.title = "Time"
        time_plot.index_axis.title = 'Time (seconds)'
        time_plot.value_axis.title = 'Amplitude'
        time_range = list(time_plot.plots.values())[0][0].value_mapper.range
        time_range.low = -0.2
        time_range.high = 0.2

        # Spectrogram plot
        spectrogram_plot = Plot(self.spectrogram_plotdata)
        max_time = SPECTROGRAM_LENGTH * NUM_SAMPLES / SAMPLING_RATE
        max_freq = SAMPLING_RATE / 2
        spectrogram_plot.img_plot(
            'imagedata',
            name='Spectrogram',
            xbounds=(0, max_time),
            ybounds=(0, max_freq),
            colormap=hot,
        )
        range_obj = spectrogram_plot.plots['Spectrogram'][0].value_mapper.range
        range_obj.high = 5
        range_obj.low = 0.0
        spectrogram_plot.title = 'Spectrogram'

        container = HPlotContainer()
        container.add(spectrum_plot)
        container.add(time_plot)
        container.add(spectrogram_plot)

        return container
コード例 #39
0
    def _container_default(self):
        plot = Plot(self.dataset)
        plot.plot(('dates', self.data_provider.code), type='line')

        # Add tools
        plot.tools.append(ZoomTool(plot))
        plot.tools.append(PanTool(plot))

        # Set the plot's bottom axis to use the Scales ticking system
        ticker = ScalesTickGenerator(scale=CalendarScaleSystem())
        plot.x_axis.tick_generator = ticker

        container = VPlotContainer()
        container.add(plot)

        return container
コード例 #40
0
 def draw_pc_plot(self):
     '''
     Called to draw the PCA plot.
     '''
     self.selection_handler.create_selection()
     if len(self.selection_handler.selected_indices) == 1:
         top_left = self.selection_handler.selected_indices[0][0:2]
         bot_right = self.selection_handler.selected_indices[0][2:4]
         data = self.table[top_left[0]:bot_right[0],
                           top_left[1]:bot_right[1]]
         pc_red = self.pca.fit_transform(data)
         plotdata = ArrayPlotData(x=pc_red[:, 0], y=pc_red[:, 1])
         plot = Plot(plotdata)
         plot.plot(("x", "y"), type='scatter')
         self.container.add(plot)
         self.container.request_redraw()
コード例 #41
0
    def _add_line_plots(self, plot):
        """Adds curve line plots to the ChacoPlot"""

        line_plots = []
        for plot_config in self.line_plot_configs:
            line_plot = ChacoPlot(self._plot_data)

            # Customize text
            line_plot.trait_set(title=plot_config.title,
                                padding=75,
                                line_width=1)
            line_plot.x_axis.title = plot_config.x_label
            line_plot.y_axis.title = plot_config.y_label

            # Add pan and zoom tools
            line_plot.tools.append(PanTool(line_plot))
            line_plot.overlays.append(ZoomTool(line_plot))

            for name, kwargs in plot_config.line_config.items():
                line = line_plot.plot((f"x_line_{name}", f"y_line_{name}"),
                                      type="line",
                                      **kwargs)[0]
                self._sub_axes[f'{name}_line_plot'] = line

            line_plots.append(line_plot)

        container = GridPlotContainer(*line_plots,
                                      shape=self._grid_shape,
                                      spacing=(0, 0),
                                      valign='top',
                                      bgcolor="none")
        self._component = HPlotContainer(plot, container, bgcolor="none")
        self._line_plots = line_plots
コード例 #42
0
 def _plot_default(self):
     self.plot_data = ArrayPlotData(x=self.continuous_data.x_data,
                                    y=self.continuous_data.y_data)
     plot = Plot(self.plot_data)
     plot.plot(("x", "y"))
     x_units = self.continuous_data.x_metadata["units"]
     y_units = self.continuous_data.y_metadata["units"]
     plot.index_axis.title = "Time ({})".format(x_units)
     plot.value_axis.title = "UV Absorption ({})".format(y_units)
     # Add zoom and pan tools to the plot
     zoom = BetterSelectingZoom(component=plot,
                                tool_mode="box",
                                always_on=False)
     plot.overlays.append(zoom)
     plot.tools.append(PanTool(component=plot))
     return plot
コード例 #43
0
def _create_plot_component():

    # Create a random scattering of XY pairs
    x = random.uniform(0.0, 10.0, 50)
    y = random.uniform(0.0, 5.0, 50)
    pd = ArrayPlotData(x=x, y=y)
    plot = Plot(pd, border_visible=True, overlay_border=True)

    scatter = plot.plot(("x", "y"), type="scatter", color="lightblue")[0]

    # Tweak some of the plot properties
    plot.set(title="Scatter Inspector Demo", padding=50)

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    plot.overlays.append(ZoomTool(plot))

    # Attach the inspector and its overlay
    scatter.tools.append(ScatterInspector(scatter))
    overlay = ScatterInspectorOverlay(scatter,
                                      hover_color="red",
                                      hover_marker_size=6,
                                      selection_marker_size=6,
                                      selection_color="yellow",
                                      selection_outline_color="purple",
                                      selection_line_width=3)
    scatter.overlays.append(overlay)

    return plot
コード例 #44
0
    def _create_plot_component():
        # Create a fake dataset from which 2 dimensions will be displayed in a
        # scatter plot:
        x = np.random.uniform(0.0, 10.0, 50)
        y = np.random.uniform(0.0, 5.0, 50)
        data = pd.DataFrame({
            "x": x,
            "y": y,
            "dataset": np.random.choice(list("abcdefg"), 50)
        })
        plot_data = ArrayPlotData(x=x, y=y)
        plot = Plot(plot_data)
        scatter = plot.plot(("x", "y"), type="scatter")[0]

        # Attach the inspector and its overlays
        inspector = DataframeScatterInspector(component=scatter, data=data)
        scatter.tools.append(inspector)

        text_overlay = DataframeScatterOverlay(component=plot,
                                               inspector=inspector,
                                               bgcolor="black",
                                               alpha=0.6,
                                               text_color="white",
                                               border_color='none')
        plot.overlays.append(text_overlay)

        # Optional: add an overlay on the point to confirm what is hovered over
        # Note that this overlay magically knows about hovered points by
        # listening to renderer events rather than inspector events:
        point_overlay = ScatterInspectorOverlay(component=scatter,
                                                hover_color="red",
                                                hover_marker_size=6)
        scatter.overlays.append(point_overlay)
        return plot
コード例 #45
0
ファイル: main.py プロジェクト: xiaowenlong100/enaml
def make_sin_plot():
    """ Returns a chaco plot which plots a simple sin curve.

    """
    idx = np.linspace(0, np.pi * 2, 100)
    val = np.sin(idx)
    plt = Plot(ArrayPlotData(x=idx, y=val),
               padding_top=30,
               padding_bottom=30,
               padding_left=35,
               padding_right=10,
               title='Sin Plot',
               fill_padding=False,
               background='transparent')
    plt.plot(('x', 'y'), color='red')
    return plt
コード例 #46
0
def _create_plot_component():
    pd = ArrayPlotData(x=random(100), y=random(100))

    # Create some line plots of some of the data
    plot = Plot(pd)

    # Create a scatter plot and get a reference to it (separate from the
    # Plot object) because we'll need it for the regression tool below.
    scatterplot = plot.plot(("x", "y"), color="blue", type="scatter")[0]

    # Tweak some of the plot properties
    plot.padding = 50

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot, drag_button="right"))
    plot.overlays.append(ZoomTool(plot))

    # Add the regression tool and overlay.  These need to be added
    # directly to the scatterplot instance (and not the Plot instance).
    regression = RegressionLasso(scatterplot,
                                 selection_datasource=scatterplot.index)
    scatterplot.tools.append(regression)
    scatterplot.overlays.append(
        RegressionOverlay(scatterplot, lasso_selection=regression))
    return plot
コード例 #47
0
def _create_plot_component():

    # Create a random scattering of XY pairs
    x = random.uniform(0.0, 10.0, 50)
    y = random.uniform(0.0, 5.0, 50)
    pd = ArrayPlotData(x = x, y = y)
    plot = Plot(pd, border_visible=True, overlay_border=True)

    scatter = plot.plot(("x", "y"), type="scatter", color="lightblue")[0]

    # Tweak some of the plot properties
    plot.set(title="Scatter Inspector Demo", padding=50)

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    plot.overlays.append(ZoomTool(plot))

    # Attach the inspector and its overlay
    inspector = ScatterInspector(scatter)
    scatter.tools.append(inspector)
    overlay = ScatterInspectorOverlay(scatter,
                    hover_color="red",
                    hover_marker_size=6,
                    selection_marker_size=6,
                    selection_color="yellow",
                    selection_outline_color="purple",
                    selection_line_width=3)
    scatter.overlays.append(overlay)

    # Optional: add a listener on inspector events:
    def echo(new):
        print("{} event on element {}".format(new.event_type, new.event_index))
    inspector.on_trait_change(echo, "inspector_event")

    return plot
コード例 #48
0
    def make_plot(self, orientation):
        # make some data points
        x = arange(3)
        x = ArrayDataSource(x, sort_order="ascending")
        y = array([2, 0, 1])

        # Plot the data
        pd = ArrayPlotData(x=x, y=y)

        plot = Plot(pd, orientation=orientation)
        line_plot = plot.plot(("x", "y"))[0]

        # Construct a fake screen space for the plots
        # otherwise would need to actually display the plots to get this
        index_mapper = LinearMapper(data_range=DataRange1D(low=0, high=2),
                                    high_pos=380,
                                    low_pos=20)
        value_mapper = LinearMapper(data_range=DataRange1D(low=0, high=2),
                                    high_pos=380,
                                    low_pos=20)
        plot.index_mapper = index_mapper
        plot.value_mapper = value_mapper
        line_plot.index_mapper = index_mapper
        line_plot.value_mapper = value_mapper

        return plot, line_plot
コード例 #49
0
ファイル: chaco_map.py プロジェクト: fagan2888/enable-mapping
def _create_plot_component():
    # Load state data
    states = pandas.read_csv('states.csv')
    lon = (states['longitude'] + 180.) / 360.
    lat = numpy.radians(states['latitude'])
    lat = (1 - (1. - numpy.log(numpy.tan(lat) +
                               (1. / numpy.cos(lat))) / numpy.pi) / 2.0)

    populations = pandas.read_csv('state_populations.csv')
    data = populations['2010']
    lon = lon.view(numpy.ndarray)
    lat = lat.view(numpy.ndarray)
    data = data.view(numpy.ndarray)

    plot = Plot(ArrayPlotData(index=lon, value=lat, color=data))
    renderers = plot.plot(
        ("index", "value", "color"),
        type="cmap_scatter",
        name="unfunded",
        color_mapper=OrRd,
        marker="circle",
        outline_color='lightgray',
        line_width=1.,
        marker_size=10,
    )

    tile_cache = MBTileManager(filename='./map.mbtiles',
                               min_level=2,
                               max_level=4)
    # Need a better way add the overlays
    cmap = renderers[0]

    map = Map(cmap, tile_cache=tile_cache, zoom_level=3)
    cmap.underlays.append(map)

    plot.title = "2010 Population"
    plot.tools.append(PanTool(plot))
    plot.tools.append(ZoomTool(plot))

    plot.index_axis.title = "Longitude"
    plot.index_axis.tick_label_formatter = convert_lon
    plot.value_axis.title = "Latitude"
    plot.value_axis.tick_label_formatter = convert_lat

    cmap.overlays.append(
        ColormappedSelectionOverlay(cmap,
                                    fade_alpha=0.35,
                                    selection_type="mask"))

    colorbar = create_colorbar(plot.color_mapper)
    colorbar.plot = cmap
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    container = HPlotContainer(use_backbuffer=True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "lightgray"

    return container
コード例 #50
0
ファイル: scatter_select.py プロジェクト: niamul070/chaco
def _create_plot_component():

    # Create some data
    npts = 2000
    x = sort(random(npts))
    y = random(npts)

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value"),
              type="scatter",
              name="my_plot",
              marker="circle",
              index_sort="ascending",
              color="red",
              marker_size=4,
              bgcolor="white")

    # Tweak some of the plot properties
    plot.title = "Scatter Plot With Lasso Selection"
    plot.line_width = 1
    plot.padding = 50

    # Right now, some of the tools are a little invasive, and we need the
    # actual ScatterPlot object to give to them
    my_plot = plot.plots["my_plot"][0]

    # Attach some tools to the plot
    lasso_selection = LassoSelection(component=my_plot,
                                     selection_datasource=my_plot.index,
                                     drag_button="left")
    #drag_button="right")
    my_plot.active_tool = lasso_selection
    my_plot.tools.append(ScatterInspector(my_plot))
    lasso_overlay = LassoOverlay(lasso_selection=lasso_selection,
                                 component=my_plot)
    my_plot.overlays.append(lasso_overlay)

    # Uncomment this if you would like to see incremental updates:
    #lasso_selection.incremental_select = True

    return plot
コード例 #51
0
    def __init__(self):
        # Create the data and the PlotData object
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x=x, y=y)

        # Create a scatter plot
        scatter_plot = Plot(plotdata)
        scatter_plot.plot(("x", "y"), type="scatter", color="blue")

        # Create a line plot
        line_plot = Plot(plotdata)
        line_plot.plot(("x", "y"), type="line", color="blue")

        # Create a horizontal container and put the two plots inside it
        container = HPlotContainer(line_plot, scatter_plot, spacing=100)
        self.plot = container
コード例 #52
0
 def _bar_default(self):
     index = np.arange(0, len(self.current_weight))
     bar_data = ArrayPlotData(index=index, value=self.current_weight)
     self.bar_data = bar_data
     bar = Plot(data=bar_data)
     bar.plot(('index', 'value'), type='bar', bar_width=0.8, color='auto')
     label_axis = LabelAxis(bar,
                            orientation='bottom',
                            title='components',
                            tick_interval=1,
                            positions=index,
                            labels=self.header,
                            small_haxis_style=True)
     bar.underlays.remove(bar.index_axis)
     bar.index_axis = label_axis
     bar.range2d.y_range.high = 1.0
     return bar
コード例 #53
0
 def _plot_default(self):
     # Create the data and the PlotData object
     x = linspace(-14, 14, 100)
     y = sin(x) * x**3
     plotdata = ArrayPlotData(x=x, y=y)
     # Create a Plot and associate it with the PlotData
     plot = Plot(plotdata)
     # Create a scatter plot in the Plot
     plot.plot(("x", "y"), type="scatter", color="blue")
     plot.tools.append(PanTool(plot))
     # Add our custom overlay to the plot
     overlay = CustomOverlay(plot)
     # Add the MoveTool to the overlay so it can be dragged around usin gthe
     # right mouse button.
     overlay.tools.append(MoveTool(overlay, drag_button="right"))
     plot.overlays.append(overlay)
     return plot
コード例 #54
0
    def _create_temperature_plot(self):
        plot_data = ArrayPlotData(time=np.array((0., 1.)),
                                  temperature=np.array((0., 40.)),
                                  fit=np.array((0., 0.)))
        plot = Plot(plot_data,
                    width=50,
                    height=40,
                    padding=8,
                    padding_left=64,
                    padding_bottom=32)
        plot.plot(('time', 'temperature'), color='green')
        plot.index_axis.title = 'time [h]'
        plot.value_axis.title = 'temperature [C]'

        self.plot_data = plot_data
        self.temperature_plot = plot
        return self.temperature_plot
コード例 #55
0
ファイル: equation18.py プロジェクト: Faridelnik/Pi3Diamond
 def _create_xy8_plot(self):
     plot_data_xy8_line = ArrayPlotData(counts2=np.array((0., 1.)),
                                        time=np.array((0., 0.)),
                                        fit=np.array((0., 0.)))
     plot = Plot(plot_data_xy8_line,
                 width=50,
                 height=40,
                 padding=8,
                 padding_left=64,
                 padding_bottom=32)
     plot.plot(('time', 'counts2'), color='green', line_width=2)
     plot.index_axis.title = 'time [ns]'
     plot.value_axis.title = 'counts'
     #plot.title='counts'
     self.plot_data_xy8_line = plot_data_xy8_line
     self.xy8_plot = plot
     return self.xy8_plot
コード例 #56
0
ファイル: cairo.py プロジェクト: xinshuwei/enable
 def create_plot():
     numpoints = 100
     low = -5
     high = 15.0
     x = linspace(low, high, numpoints)
     pd = ArrayPlotData(index=x)
     p = Plot(pd, bgcolor="lightgray", padding=50, border_visible=True)
     for t,i in sm.zip(cycle(['line','scatter']),sm.range(10)):
         pd.set_data("y" + str(i), jn(i,x))
         p.plot(("index", "y" + str(i)), color=tuple(COLOR_PALETTE[i]),
                width = 2.0 * dpi_scale, type=t)
     p.x_grid.visible = True
     p.x_grid.line_width *= dpi_scale
     p.y_grid.visible = True
     p.y_grid.line_width *= dpi_scale
     p.legend.visible = True
     return p
コード例 #57
0
def create_plot():
    numpoints = 100
    low = -5
    high = 15.0
    x = linspace(low, high, numpoints)
    pd = ArrayPlotData(index=x)
    p = Plot(pd, bgcolor="oldlace", padding=50, border_visible=True)
    for i in range(10):
        pd.set_data("y" + str(i), jn(i, x))
        p.plot(("index", "y" + str(i)), color=tuple(COLOR_PALETTE[i]),
               width=2.0 * dpi_scale)
    p.x_grid.visible = True
    p.x_grid.line_width *= dpi_scale
    p.y_grid.visible = True
    p.y_grid.line_width *= dpi_scale
    p.legend.visible = True
    return p
コード例 #58
0
    def plot_clusters(self):
        '''
        Plots the clusters after calling the .fit method of the sklearn kmeans 
        estimator.
        '''

        self.kmeans.n_clusters = self.n_clusters
        self.kmeans.fit(self.dataset)

        # Reducing dimensions of the dataset and the cluster centers for
        # plottting
        pca = PCA(n_components=2, whiten=True)
        cluster_centers = pca.fit_transform(self.kmeans.cluster_centers_)
        dataset_red = pca.fit_transform(self.dataset)

        removed_components = []
        for component in self.container.components:
            removed_components.append(component)

        for component in removed_components:
            self.container.remove(component)

        for i in range(self.n_clusters):

            current_indices = find(self.kmeans.labels_ == i)
            current_data = dataset_red[current_indices, :]

            plotdata = ArrayPlotData(x=current_data[:, 0],
                                     y=current_data[:, 1])
            plot = Plot(plotdata)
            plot.plot(("x", "y"),
                      type='scatter',
                      color=tuple(COLOR_PALETTE[i]))
            self.container.add(plot)

        plotdata_cent = ArrayPlotData(x=cluster_centers[:, 0],
                                      y=cluster_centers[:, 1])
        plot_cent = Plot(plotdata_cent)
        plot_cent.plot(("x", "y"),
                       type='scatter',
                       marker='cross',
                       marker_size=8)
        self.container.add(plot_cent)

        self.container.request_redraw()
コード例 #59
0
class Viewer(HasTraits):
    container = None

    index = Array

    data = Array

    plot = Instance(Plot)

    plot_type = Enum("line", "scatter")

    #num_ticks = Int(0)
    num_ticks = 0

    traits_view = View(Item("plot", editor=ComponentEditor(), show_label=False),
        width=300, height=300, resizable=False,)

    def __init__(self, max_points=200, advance_time=False, *args, **kwargs):
        super(Viewer, self).__init__(*args, **kwargs)
        self.advance_time = advance_time
        self.max_points = Int(max_points)

        self.plotdata = ArrayPlotData(index=self.index)
        self.plotdata.set_data('y', self.data)
        self.plot = Plot(self.plotdata)
        self.plot.plot(('index', 'y'), type='line', color='blue')

    def update(self, value):
        current_data = deque(self.data, self.max_points.default_value)
        num_ticks = self.num_ticks

        current_data.append(value)
        new_data = numpy.array(current_data)
        new_index = numpy.arange(num_ticks - len(new_data) + 1,
                                 num_ticks + 0.01)

        self.index = new_index
        self.data = new_data

        if self.advance_time:
            self.num_ticks += 1

    def _data_changed(self):
        self.plotdata.set_data('y', self.data)
        self.plotdata.set_data('index', self.index)
コード例 #60
0
ファイル: er_gui_plots.py プロジェクト: rotzinger/evaporate
class ER_plot_component(HasTraits):
    close = Event
    closing = False
    title = ""
    #view = View( Group(Item(name='container',editor=ComponentEditor(),show_label=False)))
    view = View(
        Group(
            Item(name='plot_ren',
                 editor=ComponentEditor(size=(100, 100)),
                 show_label=False)),
        handler=PlotHandler(),
        resizable=True,
    )

    def __init__(self, p_obj, **traits):
        HasTraits.__init__(self, **traits)
        self.x = 0.2
        self.p_obj = p_obj

    def make_plot(self):
        # ==============================
        #self.pd = ArrayPlotData(P_data=self.data.m_Pressures_array)

        # we store the array plotdata in the data object and update it there
        self.p_obj.values_array_pd = ArrayPlotData(
            P_data=self.p_obj.values_array)
        self.plot_ren = Plot(self.p_obj.values_array_pd)

        self.plot_ren.padding_left = 70  #80
        self.plot_ren.padding_right = 5
        self.plot_ren.padding_top = 5
        self.plot_ren.padding_bottom = 40
        self.plot_ren.x_axis.title = self.p_obj.x_axis
        self.plot_ren.y_axis.visible = False
        self.plot_ren.plot(("P_data"),
                           type="line",
                           color="blue",
                           render_style='connectedhold')
        tick_gen = ScalesTickGenerator(scale=DefaultScale())
        y_axis = PlotAxis(orientation='left',
                          title=self.p_obj.y_axis,
                          mapper=self.plot_ren.value_mapper,
                          component=self.plot_ren,
                          tick_generator=tick_gen)
        self.plot_ren.underlays.append(y_axis)