def depthmatrix(leftimage, rightimage, precision=4, mask=0): """Returns a 3-channel 32bit floating-point distance matrix. Channels 1,2,3 = x,y,z coordinates of that point. Precision is the number of times to downsample mask. Downsample is the number of loops to go through with successively smaller match areas. If mask is set, only pixels in the mask are set.""" info = cv.cvGetSize(leftimage) width = info.width height = info.height precision_pixels = (2**precision) downsampled_size = cv.cvSize(width/precision_pixels, height/precision_pixels) print "Precision of", downsampled_size.width, downsampled_size.height, "px" if mask: downsampled_mask = cv.cvCreateImage(downsampled_size, 8, 1) cv.cvResize(mask, downsampled_mask) matx = cv.cvCreateImage(downsampled_size, 8, 1) maty = cv.cvCreateImage(downsampled_size, 8, 1) matz = cv.cvCreateImage(downsampled_size, 8, 1) for i in xrange(width/precision_pixels): for j in xrange(height/precision_pixels): if mask: if (not cv.cvGetReal2D(downsampled_mask, j, i)): continue x = i*precision y = j*precision depth = depthmatch(x+precision_pixels/2, y+precision_pixels/2, leftimage, rightimage, roi=precision_pixels, buf=precision_pixels*2) #print i, j # fill in result matrix if mask wasn't 0 at this point (X,Y,Z) cv.cvSetReal2D(matx, j, i, int(depth[0][0])) cv.cvSetReal2D(maty, j, i, int(depth[0][1])) cv.cvSetReal2D(matz, j, i, int(depth[0][2])) return matz
(0, scaleheight * val_cutoff / sample_pixels), (v_bins * scalewidth, scaleheight * val_cutoff / sample_pixels), (255, 0, 0), 1, ) highgui.cvShowImage("Histogram - Value", hist_val_img) # classify objects cv.cvZero(output_mask) for x in xrange(size.width): for y in xrange(size.height): hue = cv.cvGetReal2D(img_h, y, x) hue_bin = math.ceil(hue * h_bins / h_limit) - 1 if hue_bin < 0: hue_bin = 0 # print hue_bin if cv.cvGetReal1D(h_hue.bins, int(hue_bin)) < hue_cutoff: cv.cvSetReal2D(output_mask, y, x, 255) continue val = cv.cvGetReal2D(img_v, y, x) val_bin = math.ceil(val * v_bins / v_limit) - 1 if val_bin < 0: val_bin = 0 if cv.cvGetReal1D(h_val.bins, int(val_bin)) < val_cutoff: cv.cvSetReal2D(output_mask, y, x, 255) continue # highgui.cvWaitKey(1) highgui.cvShowImage("Obstacles", output_mask) highgui.cvWaitKey(10)