def create_legend(self, img, x, y, dw, dh, x_start, x_end, y_range): x_axis_type = 'linear' if self.transfer_function == 'linear' else 'log' legend_fig = Figure(x_range=(x_start, x_end), plot_height=max(dh, 50), plot_width=self.plot_width, lod_threshold=None, toolbar_location=None, y_range=y_range, x_axis_type=x_axis_type) legend_fig.min_border_top = 0 legend_fig.min_border_bottom = 10 legend_fig.min_border_left = 15 legend_fig.min_border_right = 15 legend_fig.yaxis.visible = False legend_fig.grid.grid_line_alpha = 0 legend_fig.image_rgba(image=[img], x=[x], y=[y], dw=[dw], dh=[dh], dw_units='screen') return legend_fig
def create_ramp_legend(agg, cmap, how='linear', width=600): ''' Helper function to create a Bokeh ``Figure`` object with a color ramp corresponding to input aggregate and transfer function. Parameters ---------- agg : xarray Datashader aggregate object (e.g. result of Canvas.points()) cmap : list of colors or matplotlib.colors.Colormap, optional The colormap to use. Can be either a list of colors (in any of the formats described above), or a matplotlib colormap object. how : str Datashader transfer function name (either linear or log) width : int Width in pixels of resulting legend figure (default=600) ''' vals_arr, min_val, max_val = summarize_aggregate_values(agg, how=how) img = tf.shade(vals_arr, cmap=cmap, how=how) x_axis_type = how assert x_axis_type == 'linear' or x_axis_type == 'log' legend_fig = Figure(x_range=(min_val, max_val), plot_height=50, plot_width=width, lod_threshold=None, toolbar_location=None, y_range=(0, 18), x_axis_type=x_axis_type) legend_fig.min_border_top = 0 legend_fig.min_border_bottom = 10 legend_fig.min_border_left = 15 legend_fig.min_border_right = 15 legend_fig.yaxis.visible = False legend_fig.grid.grid_line_alpha = 0 legend_fig.image_rgba(image=[img.values], x=[min_val], y=[0], dw=[max_val - min_val], dh=[18], dw_units='screen') return legend_fig
def _replacement_plot(self, source): start = self.now - datetime.timedelta(days=self.RECOATING_PERIOD) start_timestamp = datetime.datetime(start.year, start.month, start.day, 0, 0, 0, 0).timestamp() end_timestamp = datetime.datetime(self.now.year, self.now.month, self.now.day, 0, 0, 0, 0).timestamp() x_range = DataRange1d(start=1000 * start_timestamp, end=1000 * end_timestamp) y_range = DataRange1d(start=0, end=120) plot = Figure(x_axis_type='datetime', x_range=x_range, y_range=y_range, tools=['tap'], toolbar_location=None) # required recoated segments plot.line(x=[start, self.now], y=[0, 91], legend='required recoated segments', line_width=2, line_color='blue') # recoated segments plot.line(x='ReplacementDate', y='RecoatingsSinceYearStart', source=source, legend='recoated segments', line_width=2, color='orange') plot.circle(x='ReplacementDate', y='RecoatingsSinceYearStart', source=source, legend='recoated segments', size=6, color='orange') date_format = '%d %b %Y' formats = dict(hours=[date_format], days=[date_format], months=[date_format], years=[date_format]) plot.xaxis[0].formatter = DatetimeTickFormatter(formats=formats) plot.legend.location = 'top_left' plot.min_border_top = 20 plot.min_border_bottom = 30 return plot
def make_plots(linesources, pointsources): plots = [] i=0 for linesource, pointsource in zip(linesources, pointsources): fig = Figure(title=None, toolbar_location=None, tools=[], x_axis_type="datetime", width=300, height=70) fig.xaxis.visible = False if i in [0, 9] : fig.xaxis.visible = True fig.height = 90 fig.yaxis.visible = False fig.xgrid.visible = True fig.ygrid.visible = False fig.min_border_left = 10 fig.min_border_right = 10 fig.min_border_top = 5 fig.min_border_bottom = 5 if not i in [0, 9]: fig.xaxis.major_label_text_font_size = "0pt" #fig.yaxis.major_label_text_font_size = "0pt" fig.xaxis.major_tick_line_color = None fig.yaxis.major_tick_line_color = None fig.xaxis.minor_tick_line_color = None fig.yaxis.minor_tick_line_color = None fig.background_fill_color = "whitesmoke" fig.line(x='date', y="y", source=linesource) fig.circle(x='date', y='y', size=5, source=pointsource) fig.text(x='date', y='y', text='text', x_offset=5, y_offset=10, text_font_size='7pt', source=pointsource) fig.title.align = 'left' fig.title.text_font_style = 'normal' plots.append(fig) i+=1 return plots
ymax = 4979238.441 path = './data/projected.tif' fig = Figure(x_range=(xmin, xmax), y_range=(ymin, ymax), plot_height=600, plot_width=900, tools='pan,wheel_zoom') fig.background_fill_color = 'black' fig.add_tile(STAMEN_TONER, alpha=0) # used to set axis ranges fig.x_range.callback = CustomJS(code=dims_jscode, args=dict(plot=fig, dims=dims)) fig.y_range.callback = CustomJS(code=dims_jscode, args=dict(plot=fig, dims=dims)) fig.axis.visible = False fig.grid.grid_line_alpha = 0 fig.min_border_left = 0 fig.min_border_right = 0 fig.min_border_top = 0 fig.min_border_bottom = 0 image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[])) fig.image_rgba(source=image_source, image='image', x='x', y='y', dw='dw', dh='dh', dilate=False) curdoc().add_root(fig)
fig = Figure(x_range=(xmin, xmax), y_range=(ymin, ymax), plot_height=600, plot_width=900, tools='pan,wheel_zoom') fig.background_fill_color = 'black' fig.add_tile(get_provider("STAMEN_TONER"), alpha=.3) fig.x_range.callback = CustomJS(code=dims_jscode, args=dict(plot=fig, dims=dims)) fig.y_range.callback = CustomJS(code=dims_jscode, args=dict(plot=fig, dims=dims)) fig.axis.visible = False fig.grid.grid_line_alpha = 0 fig.min_border_left = 0 fig.min_border_right = 0 fig.min_border_top = 0 fig.min_border_bottom = 0 image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[])) fig.image_rgba(source=image_source, image='image', x='x', y='y', dw='dw', dh='dh', dilate=False) time_text = Paragraph(text='Time Period: 00:00 - 00:00') controls = HBox(children=[time_text, time_select], width=fig.plot_width) layout = VBox(children=[fig, controls])
def main(): print('''Please select the CSV dataset you\'d like to use. The dataset should contain these columns: - metric to apply threshold to - indicator of event to detect (e.g. malicious activity) - Please label this as 1 or 0 (true or false); This will not work otherwise! ''') # Import the dataset imported_data = None while isinstance(imported_data, pd.DataFrame) == False: file_path = input('Enter the path of your dataset: ') imported_data = file_to_df(file_path) time.sleep(1) print(f'''\nGreat! Here is a preview of your data: Imported fields:''') # List headers by column index. cols = list(imported_data.columns) for index in range(len(cols)): print(f'{index}: {cols[index]}') print(f'Number of records: {len(imported_data.index)}\n') # Preview the DataFrame time.sleep(1) print(imported_data.head(), '\n') # Prompt for the metric and source of truth. time.sleep(1) metric_col, indicator_col = columns_picker(cols) # User self-validation. col_check = input('Can you confirm if this is correct? (y/n): ').lower() # If it's wrong, let them try again while col_check != 'y': metric_col, indicator_col = columns_picker(cols) col_check = input( 'Can you confirm if this is correct? (y/n): ').lower() else: print( '''\nGreat! Thanks for your patience. Generating summary stats now..\n''' ) # Generate summary stats. time.sleep(1) malicious, normal = classification_split(imported_data, metric_col, indicator_col) mal_mean = malicious.mean() mal_stddev = malicious.std() mal_count = malicious.size mal_median = malicious.median() norm_mean = normal.mean() norm_stddev = normal.std() norm_count = normal.size norm_median = normal.median() print(f'''Normal vs Malicious Summary (metric = {metric_col}): Normal: ----------------------------- Observations: {round(norm_count, 2)} Average: {round(norm_mean, 2)} Median: {round(norm_median, 2)} Standard Deviation: {round(norm_stddev, 2)} Malicious: ----------------------------- Observations: {round(mal_count, 2)} Average: {round(mal_mean, 2)} Median: {round(mal_median, 2)} Standard Deviation: {round(mal_stddev, 2)} ''') # Insights and advisories # Provide the accuracy metrics of a generic threshold at avg + 3 std deviations generic_threshold = confusion_matrix( malicious, normal, threshold_calc(norm_mean, norm_stddev, 3)) time.sleep(1) print( f'''A threshold at (average + 3x standard deviations) {metric_col} would result in: - True Positives (correctly identified malicious events: {generic_threshold['TP']:,} - False Positives (wrongly identified normal events: {generic_threshold['FP']:,} - True Negatives (correctly identified normal events: {generic_threshold['TN']:,} - False Negatives (wrongly identified malicious events: {generic_threshold['FN']:,} Accuracy Metrics: - Precision (what % of events above threshold are actually malicious): {round(generic_threshold['precision'] * 100, 1)}% - Recall (what % of malicious events did we catch): {round(generic_threshold['recall'] * 100, 1)}% - F1 Score (blends precision and recall): {round(generic_threshold['f1_score'] * 100, 1)}%''' ) # Distribution skew check. if norm_mean >= (norm_median * 1.1): time.sleep(1) print( f'''\nYou may want to be cautious as your normal traffic\'s {metric_col} has a long tail towards high values. The median is {round(norm_median, 2)} compared to {round(norm_mean, 2)} for the average.''') if mal_mean < threshold_calc(norm_mean, norm_stddev, 2): time.sleep(1) print( f'''\nWarning: you may find it difficult to avoid false positives as the average {metric_col} for malicious traffic is under the 95th percentile of the normal traffic.''' ) # For fun/anticipation. Actually a nerd joke because of the method we'll be using. if '-q' not in sys.argv[1:]: time.sleep(1) play_a_game.billy() decision = input('yes/no: ').lower() while decision != 'yes': time.sleep(1) print('...That\'s no fun...') decision = input('Let\'s try that again: ').lower() # Let's get to the simulations! time.sleep(1) print('''\nInstead of manually experimenting with threshold multipliers, let\'s simulate a range of options and see what produces the best result. This is similar to what is known as \"Monte Carlo simulation\".\n''') # Initialize session name & create app folder if there isn't one. time.sleep(1) session_name = input('Please provide a name for this project/session: ') session_folder = make_folder(session_name) # Generate list of multipliers to iterate over. time.sleep(1) mult_start = float( input( 'Please provide the minimum multiplier you want to start at. We recommend 2: ' )) # Set the max to how many std deviations away the sample max is. mult_end = (imported_data[metric_col].max() - norm_mean) / norm_stddev mult_interval = float( input('Please provide the desired gap between multiplier options: ')) # range() only allows integers, let's manually populate a list multipliers = [] mult_counter = mult_start while mult_counter < mult_end: multipliers.append(round(mult_counter, 2)) mult_counter += mult_interval print('Generating simulations..\n') # Run simulations using our multipliers. simulations = monte_carlo(malicious, normal, norm_mean, norm_stddev, multipliers) print('Done!') time.sleep(1) # Save simulations as CSV for later use. simulation_filepath = os.path.join( session_folder, f'{session_name}_simulation_results.csv') simulations.to_csv(simulation_filepath, index=False) print(f'Saved results to: {simulation_filepath}') # Find the first threshold with the highest F1 score. # This provides a balanced approach between precision and recall. f1_max = simulations[simulations.f1_score == simulations.f1_score.max()].head(1) f1_max_mult = f1_max.squeeze()['multiplier'] time.sleep(1) print( f'''\nBased on the F1 score metric, setting a threshold at {round(f1_max_mult,1)} standard deviations above the average magnitude might provide optimal results.\n''') time.sleep(1) print(f'''{f1_max} We recommend that you skim the CSV and the following visualization outputs to sanity check results and make your own judgement. ''') # Now for the fun part..generating the visualizations via Bokeh. # Header & internal CSS. title_text = ''' <style> @font-face { font-family: RobotoBlack; src: url(fonts/Roboto-Black.ttf); font-weight: bold; } @font-face { font-family: RobotoBold; src: url(fonts/Roboto-Bold.ttf); font-weight: bold; } @font-face { font-family: RobotoRegular; src: url(fonts/Roboto-Regular.ttf); } body { background-color: #f2ebe6; } title_header { font-size: 80px; font-style: bold; font-family: RobotoBlack, Helvetica; font-weight: bold; margin-bottom: -200px; } h1, h2, h3 { font-family: RobotoBlack, Helvetica; color: #313596; } p { font-size: 12px; font-family: RobotoRegular } b { color: #58c491; } th, td { text-align:left; padding: 5px; } tr:nth-child(even) { background-color: white; opacity: .7; } .vertical { border-left: 1px solid black; height: 190px; } </style> <title_header style="text-align:left; color: white;"> Cream. </title_header> <p style="font-family: RobotoBold, Helvetica; font-size:18px; margin-top: 0px; margin-left: 5px;"> Because time is money, and <b style="font-size=18px;">"Cash Rules Everything Around Me"</b>. </p> </div> ''' title_div = Div(text=title_text, width=800, height=160, margin=(40, 0, 0, 70)) # Summary stats from earlier. summary_text = f''' <h1>Results Overview</h1> <i>metric = magnitude</i> <table style="width:100%"> <tr> <th>Metric</th> <th>Normal Events</th> <th>Malicious Events</th> </tr> <tr> <td>Observations</td> <td>{norm_count:,}</td> <td>{mal_count:,}</td> </tr> <tr> <td>Average</td> <td>{round(norm_mean, 2):,}</td> <td>{round(mal_mean, 2):,}</td> </tr> <tr> <td>Median</td> <td>{round(norm_median, 2):,}</td> <td>{round(mal_median, 2):,}</td> </tr> <tr> <td>Standard Deviation</td> <td>{round(norm_stddev, 2):,}</td> <td>{round(mal_stddev, 2):,}</td> </tr> </table> ''' summary_div = Div(text=summary_text, width=470, height=320, margin=(3, 0, -70, 73)) # Results of the hypothetical threshold. hypothetical = f''' <h1>"Rule of thumb" Hypothetical Threshold</h1> <p>A threshold at <i>(average + 3x standard deviations)</i> {metric_col} would result in:</p> <ul> <li>True Positives (correctly identified malicious events: <b>{generic_threshold['TP']:,}</b></li> <li>False Positives (wrongly identified normal events: <b>{generic_threshold['FP']:,}</b></li> <li>True Negatives (correctly identified normal events: <b>{generic_threshold['TN']:,}</b></li> <li>False Negatives (wrongly identified malicious events: <b>{generic_threshold['FN']:,}</b></li> </ul> <h2>Accuracy Metrics</h2> <ul> <li>Precision (what % of events above threshold are actually malicious): <b>{round(generic_threshold['precision'] * 100, 1)}%</b></li> <li>Recall (what % of malicious events did we catch): <b>{round(generic_threshold['recall'] * 100, 1)}%</b></li> <li>F1 Score (blends precision and recall): <b>{round(generic_threshold['f1_score'] * 100, 1)}%</b></li> </ul> ''' hypo_div = Div(text=hypothetical, width=600, height=320, margin=(5, 0, -70, 95)) line = ''' <div class="vertical"></div> ''' vertical_line = Div(text=line, width=20, height=320, margin=(80, 0, -70, -10)) # Let's get the exploratory charts generated. malicious_hist, malicious_edge = np.histogram(malicious, bins=100) mal_hist_df = pd.DataFrame({ 'metric': malicious_hist, 'left': malicious_edge[:-1], 'right': malicious_edge[1:] }) normal_hist, normal_edge = np.histogram(normal, bins=100) norm_hist_df = pd.DataFrame({ 'metric': normal_hist, 'left': normal_edge[:-1], 'right': normal_edge[1:] }) exploratory = figure( plot_width=plot_width, plot_height=plot_height, sizing_mode='fixed', title=f'{metric_col.capitalize()} Distribution (σ = std dev)', x_axis_label=f'{metric_col.capitalize()}', y_axis_label='Observations') exploratory.title.text_font_size = title_font_size exploratory.border_fill_color = cell_bg_color exploratory.border_fill_alpha = cell_bg_alpha exploratory.background_fill_color = cell_bg_color exploratory.background_fill_alpha = plot_bg_alpha exploratory.min_border_left = left_border exploratory.min_border_right = right_border exploratory.min_border_top = top_border exploratory.min_border_bottom = bottom_border exploratory.quad(bottom=0, top=mal_hist_df.metric, left=mal_hist_df.left, right=mal_hist_df.right, legend_label='malicious', fill_color=malicious_color, alpha=.85, line_alpha=.35, line_width=.5) exploratory.quad(bottom=0, top=norm_hist_df.metric, left=norm_hist_df.left, right=norm_hist_df.right, legend_label='normal', fill_color=normal_color, alpha=.35, line_alpha=.35, line_width=.5) exploratory.add_layout( Arrow(end=NormalHead(fill_color=malicious_color, size=10, line_alpha=0), line_color=malicious_color, x_start=mal_mean, y_start=mal_count, x_end=mal_mean, y_end=0)) arrow_label = Label(x=mal_mean, y=mal_count, y_offset=5, text='Malicious Events', text_font_style='bold', text_color=malicious_color, text_font_size='10pt') exploratory.add_layout(arrow_label) exploratory.xaxis.formatter = NumeralTickFormatter(format='0,0') exploratory.yaxis.formatter = NumeralTickFormatter(format='0,0') # 3 sigma reference line sigma_ref(exploratory, norm_mean, norm_stddev) exploratory.legend.location = "top_right" exploratory.legend.background_fill_alpha = .3 # Zoomed in version overlap_view = figure( plot_width=plot_width, plot_height=plot_height, sizing_mode='fixed', title=f'Overlap Highlight', x_axis_label=f'{metric_col.capitalize()}', y_axis_label='Observations', y_range=(0, mal_count * .33), x_range=(norm_mean + (norm_stddev * 2.5), mal_mean + (mal_stddev * 3)), ) overlap_view.title.text_font_size = title_font_size overlap_view.border_fill_color = cell_bg_color overlap_view.border_fill_alpha = cell_bg_alpha overlap_view.background_fill_color = cell_bg_color overlap_view.background_fill_alpha = plot_bg_alpha overlap_view.min_border_left = left_border overlap_view.min_border_right = right_border overlap_view.min_border_top = top_border overlap_view.min_border_bottom = bottom_border overlap_view.quad(bottom=0, top=mal_hist_df.metric, left=mal_hist_df.left, right=mal_hist_df.right, legend_label='malicious', fill_color=malicious_color, alpha=.85, line_alpha=.35, line_width=.5) overlap_view.quad(bottom=0, top=norm_hist_df.metric, left=norm_hist_df.left, right=norm_hist_df.right, legend_label='normal', fill_color=normal_color, alpha=.35, line_alpha=.35, line_width=.5) overlap_view.xaxis.formatter = NumeralTickFormatter(format='0,0') overlap_view.yaxis.formatter = NumeralTickFormatter(format='0,0') sigma_ref(overlap_view, norm_mean, norm_stddev) overlap_view.legend.location = "top_right" overlap_view.legend.background_fill_alpha = .3 # Probability Density - bigger bins for sparser malicous observations malicious_hist_dense, malicious_edge_dense = np.histogram(malicious, density=True, bins=50) mal_hist_dense_df = pd.DataFrame({ 'metric': malicious_hist_dense, 'left': malicious_edge_dense[:-1], 'right': malicious_edge_dense[1:] }) normal_hist_dense, normal_edge_dense = np.histogram(normal, density=True, bins=100) norm_hist_dense_df = pd.DataFrame({ 'metric': normal_hist_dense, 'left': normal_edge_dense[:-1], 'right': normal_edge_dense[1:] }) density = figure(plot_width=plot_width, plot_height=plot_height, sizing_mode='fixed', title='Probability Density', x_axis_label=f'{metric_col.capitalize()}', y_axis_label='% of Group Total') density.title.text_font_size = title_font_size density.border_fill_color = cell_bg_color density.border_fill_alpha = cell_bg_alpha density.background_fill_color = cell_bg_color density.background_fill_alpha = plot_bg_alpha density.min_border_left = left_border density.min_border_right = right_border density.min_border_top = top_border density.min_border_bottom = bottom_border density.quad(bottom=0, top=mal_hist_dense_df.metric, left=mal_hist_dense_df.left, right=mal_hist_dense_df.right, legend_label='malicious', fill_color=malicious_color, alpha=.85, line_alpha=.35, line_width=.5) density.quad(bottom=0, top=norm_hist_dense_df.metric, left=norm_hist_dense_df.left, right=norm_hist_dense_df.right, legend_label='normal', fill_color=normal_color, alpha=.35, line_alpha=.35, line_width=.5) density.xaxis.formatter = NumeralTickFormatter(format='0,0') density.yaxis.formatter = NumeralTickFormatter(format='0.000%') sigma_ref(density, norm_mean, norm_stddev) density.legend.location = "top_right" density.legend.background_fill_alpha = .3 # Simulation Series to be used false_positives = simulations.FP false_negatives = simulations.FN multiplier = simulations.multiplier precision = simulations.precision recall = simulations.recall f1_score = simulations.f1_score f1_max = simulations[simulations.f1_score == simulations.f1_score.max( )].head(1).squeeze()['multiplier'] # False Positives vs False Negatives errors = figure(plot_width=plot_width, plot_height=plot_height, sizing_mode='fixed', x_range=(multiplier.min(), multiplier.max()), y_range=(0, false_positives.max()), title='False Positives vs False Negatives', x_axis_label='Multiplier', y_axis_label='Count') errors.title.text_font_size = title_font_size errors.border_fill_color = cell_bg_color errors.border_fill_alpha = cell_bg_alpha errors.background_fill_color = cell_bg_color errors.background_fill_alpha = plot_bg_alpha errors.min_border_left = left_border errors.min_border_right = right_border errors.min_border_top = top_border errors.min_border_bottom = right_border errors.line(multiplier, false_positives, legend_label='false positives', line_width=2, color=fp_color) errors.line(multiplier, false_negatives, legend_label='false negatives', line_width=2, color=fn_color) errors.yaxis.formatter = NumeralTickFormatter(format='0,0') errors.extra_y_ranges = {"y2": Range1d(start=0, end=1.1)} errors.add_layout( LinearAxis(y_range_name="y2", axis_label="Score", formatter=NumeralTickFormatter(format='0.00%')), 'right') errors.line(multiplier, f1_score, line_width=2, color=f1_color, legend_label='F1 Score', y_range_name="y2") # F1 Score Maximization point f1_thresh = Span(location=f1_max, dimension='height', line_color=f1_color, line_dash='dashed', line_width=2) f1_label = Label(x=f1_max + .05, y=180, y_units='screen', text=f'F1 Max: {round(f1_max,2)}', text_font_size='10pt', text_font_style='bold', text_align='left', text_color=f1_color) errors.add_layout(f1_thresh) errors.add_layout(f1_label) errors.legend.location = "top_right" errors.legend.background_fill_alpha = .3 # False Negative Weighting. # Intro. weighting_intro = f''' <h3>Error types differ in impact.</h3> <p>In the case of security incidents, a false negative, though possibly rarer than false positives, is likely more costly. For example, downtime suffered from a DDoS attack (lost sales/customers) incurs more loss than time wasted chasing a false positive (labor hours). </p> <p>Try playing around with the slider to the right to see how your thresholding strategy might need to change depending on the relative weight of false negatives to false positives. What does it look like at 1:1, 50:1, etc.?</p> ''' weighting_div = Div(text=weighting_intro, width=420, height=180, margin=(0, 75, 0, 0)) # Now for the weighted errors viz default_weighting = 10 initial_fp_cost = 100 simulations['weighted_FN'] = simulations.FN * default_weighting weighted_fn = simulations.weighted_FN simulations[ 'total_weighted_error'] = simulations.FP + simulations.weighted_FN total_weighted_error = simulations.total_weighted_error simulations['fp_cost'] = initial_fp_cost fp_cost = simulations.fp_cost simulations[ 'total_estimated_cost'] = simulations.total_weighted_error * simulations.fp_cost total_estimated_cost = simulations.total_estimated_cost twe_min = simulations[simulations.total_weighted_error == simulations.total_weighted_error.min()].head( 1).squeeze()['multiplier'] twe_min_count = simulations[simulations.multiplier == twe_min].head( 1).squeeze()['total_weighted_error'] generic_twe = simulations[simulations.multiplier.apply( lambda x: round(x, 2)) == 3.00].squeeze()['total_weighted_error'] comparison = f''' <p>Based on your inputs, the optimal threshold is around <b>{twe_min}</b>. This would result in an estimated <b>{int(twe_min_count):,}</b> total weighted errors and <b>${int(twe_min_count * initial_fp_cost):,}</b> in losses.</p> <p>The generic threshold of 3.0 standard deviations would result in <b>{int(generic_twe):,}</b> total weighted errors and <b>${int(generic_twe * initial_fp_cost):,}</b> in losses.</p> <p>Using the optimal threshold would save <b>${int((generic_twe - twe_min_count) * initial_fp_cost):,}</b>, reducing costs by <b>{(generic_twe - twe_min_count) / generic_twe * 100:.1f}%</b> (assuming near-future events are distributed similarly to those from the past).</p> ''' comparison_div = Div(text=comparison, width=420, height=230, margin=(0, 75, 0, 0)) loss_min = ColumnDataSource(data=dict(multiplier=multiplier, fp=false_positives, fn=false_negatives, weighted_fn=weighted_fn, twe=total_weighted_error, fpc=fp_cost, tec=total_estimated_cost, precision=precision, recall=recall, f1=f1_score)) evaluation = Figure(plot_width=900, plot_height=520, sizing_mode='fixed', x_range=(multiplier.min(), multiplier.max()), title='Evaluation Metrics vs Total Estimated Cost', x_axis_label='Multiplier', y_axis_label='Cost') evaluation.title.text_font_size = title_font_size evaluation.border_fill_color = cell_bg_color evaluation.border_fill_alpha = cell_bg_alpha evaluation.background_fill_color = cell_bg_color evaluation.background_fill_alpha = plot_bg_alpha evaluation.min_border_left = left_border evaluation.min_border_right = right_border evaluation.min_border_top = top_border evaluation.min_border_bottom = bottom_border evaluation.line('multiplier', 'tec', source=loss_min, line_width=3, line_alpha=0.6, color=total_weighted_color, legend_label='Total Estimated Cost') evaluation.yaxis.formatter = NumeralTickFormatter(format='$0,0') # Evaluation metrics on second right axis. evaluation.extra_y_ranges = {"y2": Range1d(start=0, end=1.1)} evaluation.add_layout( LinearAxis(y_range_name="y2", axis_label="Score", formatter=NumeralTickFormatter(format='0.00%')), 'right') evaluation.line('multiplier', 'precision', source=loss_min, line_width=3, line_alpha=0.6, color=precision_color, legend_label='Precision', y_range_name="y2") evaluation.line('multiplier', 'recall', source=loss_min, line_width=3, line_alpha=0.6, color=recall_color, legend_label='Recall', y_range_name="y2") evaluation.line('multiplier', 'f1', source=loss_min, line_width=3, line_alpha=0.6, color=f1_color, legend_label='F1 score', y_range_name="y2") evaluation.legend.location = "bottom_right" evaluation.legend.background_fill_alpha = .3 twe_thresh = Span(location=twe_min, dimension='height', line_color=total_weighted_color, line_dash='dashed', line_width=2) twe_label = Label(x=twe_min - .05, y=240, y_units='screen', text=f'Cost Min: {round(twe_min,2)}', text_font_size='10pt', text_font_style='bold', text_align='right', text_color=total_weighted_color) evaluation.add_layout(twe_thresh) evaluation.add_layout(twe_label) # Add in same f1 thresh as previous viz evaluation.add_layout(f1_thresh) evaluation.add_layout(f1_label) handler = CustomJS(args=dict(source=loss_min, thresh=twe_thresh, label=twe_label, comparison=comparison_div), code=""" var data = source.data var ratio = cb_obj.value var multiplier = data['multiplier'] var fp = data['fp'] var fn = data['fn'] var weighted_fn = data['weighted_fn'] var twe = data['twe'] var fpc = data['fpc'] var tec = data['tec'] var generic_twe = 0 function round(value, decimals) { return Number(Math.round(value+'e'+decimals)+'e-'+decimals); } function comma_sep(x) { return x.toString().replace(/\B(?<!\.\d*)(?=(\d{3})+(?!\d))/g, ","); } for (var i = 0; i < multiplier.length; i++) { weighted_fn[i] = Math.round(fn[i] * ratio) twe[i] = weighted_fn[i] + fp[i] tec[i] = twe[i] * fpc[i] if (round(multiplier[i],2) == 3.00) { generic_twe = twe[i] } } var min_loss = Math.min.apply(null,twe) var new_thresh = 0 for (var i = 0; i < multiplier.length; i++) { if (twe[i] == min_loss) { new_thresh = multiplier[i] thresh.location = new_thresh thresh.change.emit() label.x = new_thresh label.text = `Cost Min: ${new_thresh}` label.change.emit() comparison.text = ` <p>Based on your inputs, the optimal threshold is around <b>${new_thresh}</b>. This would result in an estimated <b>${comma_sep(round(min_loss,0))}</b> total weighted errors and <b>$${comma_sep(round(min_loss * fpc[i],0))}</b> in losses.</p> <p>The generic threshold of 3.0 standard deviations would result in <b>${comma_sep(round(generic_twe,0))}</b> total weighted errors and <b>$${comma_sep(round(generic_twe * fpc[i],0))}</b> in losses.</p> <p>Using the optimal threshold would save <b>$${comma_sep(round((generic_twe - min_loss) * fpc[i],0))}</b>, reducing costs by <b>${comma_sep(round((generic_twe - min_loss) / generic_twe * 100,0))}%</b> (assuming near-future events are distributed similarly to those from the past).</p> ` comparison.change.emit() } } source.change.emit(); """) slider = Slider(start=1.0, end=500, value=default_weighting, step=.25, title="FN:FP Ratio", bar_color='#FFD100', height=50, margin=(5, 0, 5, 0)) slider.js_on_change('value', handler) cost_handler = CustomJS(args=dict(source=loss_min, comparison=comparison_div), code=""" var data = source.data var new_cost = cb_obj.value var multiplier = data['multiplier'] var fp = data['fp'] var fn = data['fn'] var weighted_fn = data['weighted_fn'] var twe = data['twe'] var fpc = data['fpc'] var tec = data['tec'] var generic_twe = 0 function round(value, decimals) { return Number(Math.round(value+'e'+decimals)+'e-'+decimals); } function comma_sep(x) { return x.toString().replace(/\B(?<!\.\d*)(?=(\d{3})+(?!\d))/g, ","); } for (var i = 0; i < multiplier.length; i++) { fpc[i] = new_cost tec[i] = twe[i] * fpc[i] if (round(multiplier[i],2) == 3.00) { generic_twe = twe[i] } } var min_loss = Math.min.apply(null,twe) var new_thresh = 0 for (var i = 0; i < multiplier.length; i++) { if (twe[i] == min_loss) { new_thresh = multiplier[i] comparison.text = ` <p>Based on your inputs, the optimal threshold is around <b>${new_thresh}</b>. This would result in an estimated <b>${comma_sep(round(min_loss,0))}</b> total weighted errors and <b>$${comma_sep(round(min_loss * new_cost,0))}</b> in losses.</p> <p>The generic threshold of 3.0 standard deviations would result in <b>${comma_sep(round(generic_twe,0))}</b> total weighted errors and <b>$${comma_sep(round(generic_twe * new_cost,0))}</b> in losses.</p> <p>Using the optimal threshold would save <b>$${comma_sep(round((generic_twe - min_loss) * new_cost,0))}</b>, reducing costs by <b>${comma_sep(round((generic_twe - min_loss)/generic_twe * 100,0))}%</b> (assuming near-future events are distributed similarly to those from the past).</p> ` comparison.change.emit() } } source.change.emit(); """) cost_input = TextInput(value=f"{initial_fp_cost}", title="How much a false positive costs:", height=75, margin=(20, 75, 20, 0)) cost_input.js_on_change('value', cost_handler) # Include DataTable of simulation results dt_columns = [ TableColumn(field="multiplier", title="Multiplier"), TableColumn(field="fp", title="False Positives", formatter=NumberFormatter(format='0,0')), TableColumn(field="fn", title="False Negatives", formatter=NumberFormatter(format='0,0')), TableColumn(field="weighted_fn", title="Weighted False Negatives", formatter=NumberFormatter(format='0,0.00')), TableColumn(field="twe", title="Total Weighted Errors", formatter=NumberFormatter(format='0,0.00')), TableColumn(field="fpc", title="Estimated FP Cost", formatter=NumberFormatter(format='$0,0.00')), TableColumn(field="tec", title="Estimated Total Cost", formatter=NumberFormatter(format='$0,0.00')), TableColumn(field="precision", title="Precision", formatter=NumberFormatter(format='0.00%')), TableColumn(field="recall", title="Recall", formatter=NumberFormatter(format='0.00%')), TableColumn(field="f1", title="F1 Score", formatter=NumberFormatter(format='0.00%')), ] data_table = DataTable(source=loss_min, columns=dt_columns, width=1400, height=700, sizing_mode='fixed', fit_columns=True, reorderable=True, sortable=True, margin=(30, 0, 20, 0)) # weighting_layout = column([weighting_div, evaluation, slider, data_table]) weighting_layout = column( row(column(weighting_div, cost_input, comparison_div), column(slider, evaluation), Div(text='', height=200, width=60)), data_table) # Initialize visualizations in browser time.sleep(1.5) layout = grid([ [title_div], [row(summary_div, vertical_line, hypo_div)], [ row(Div(text='', height=200, width=60), exploratory, Div(text='', height=200, width=10), overlap_view, Div(text='', height=200, width=40)) ], [Div(text='', height=10, width=200)], [ row(Div(text='', height=200, width=60), density, Div(text='', height=200, width=10), errors, Div(text='', height=200, width=40)) ], [Div(text='', height=10, width=200)], [ row(Div(text='', height=200, width=60), weighting_layout, Div(text='', height=200, width=40)) ], ]) # Generate html resources for dashboard fonts = os.path.join(os.getcwd(), 'fonts') if os.path.isdir(os.path.join(session_folder, 'fonts')): shutil.rmtree(os.path.join(session_folder, 'fonts')) shutil.copytree(fonts, os.path.join(session_folder, 'fonts')) else: shutil.copytree(fonts, os.path.join(session_folder, 'fonts')) html = file_html(layout, INLINE, "Cream") with open(os.path.join(session_folder, f'{session_name}.html'), "w") as file: file.write(html) webbrowser.open("file://" + os.path.join(session_folder, f'{session_name}.html'))
plot = Figure() source = ColumnDataSource(dict(x=[], y=[], avg=[])) plot.scatter(x='x', y='y', size=8, source=source) labels = LabelSet(x='x', y='y', text='avg', level='glyph', x_offset=5, y_offset=5, source=source, render_mode='canvas') #fig.line(source=source, x='x', y = 'y', line_width=2, alpha=85, color='red') #fig.line(source=source, x='x', y = 'avg', line_width=2, alpha=85, color='blue') plot.add_layout(labels) plot.toolbar.logo = None plot.min_border_top = 0 plot.xgrid.grid_line_color = None plot.ygrid.grid_line_color = "#999999" plot.yaxis.axis_label = "Meters" plot.ygrid.grid_line_alpha = 0.1 plot.xaxis.axis_label = "Meters" plot.xaxis.major_label_orientation = 1 ct = 0 sine_sum = 0 def update_data(): global ct, sine_sum ct = random.uniform(1, 10) sine = random.uniform(10, 1) new_data = dict(x=[ct], y=[sine], avg=[sine / ct])
def _segment_plot(self, source): """Plot showing the mirror segments. The plot shows the 91 segment positions with their position number. The colour of the segments indicates how long ago they have been recoated. Params: ------- source: pandas.DataFrame Data source. Returns: -------- bokeh.plotting.Figure Plot showing the mirror segments. """ def segment_color(date): """Fill colour of a mirror segment.""" days = (datetime.datetime.now().date() - date).days days = min(days, self.RECOATING_PERIOD) days = max(days, 0) def hex_value(v): """Convert integer into a hexadecimal string suitable for specifying an RGB value in a css rule.""" s = format(int(round(255 * v)), 'x') if len(s) < 2: s = '0' + s return s # The colour ranges from dark green for recently recoated segments to white for segments which need to be # recoated. h = 99 s = 100 l = 33 + 67 * days / self.RECOATING_PERIOD rgb = colorsys.hls_to_rgb(h / 360, l / 100, s / 100) return '#{r}{g}{b}'.format(r=hex_value(rgb[0]), g=hex_value(rgb[1]), b=hex_value(rgb[2])) plot = Figure(tools='tap', toolbar_location=None) colors = [segment_color(d) for d in source.data['ReplacementDate']] plot.patches(xs='SegmentPositionCornerXs', ys='SegmentPositionCornerYs', source=source, color=colors, line_color='#dddddd') plot.text(x='SegmentPositionX', y='SegmentPositionY', text='SegmentPosition', source=source, text_color='black', text_align='center', text_baseline='middle') plot.grid.grid_line_color = None plot.axis.visible = False plot.min_border_top = 20 plot.min_border_bottom = 30 plot.outline_line_color = None return plot