def hist_plot(ticker, alias, hsource, df, plot=None, selected_df=None): if selected_df is None: selected_df = df global_hist, global_bins = np.histogram(df[ticker + "_returns"], bins=50) hist, bins = np.histogram(selected_df[ticker + "_returns"], bins=50) top = hist.max() start = global_bins.min() end = global_bins.max() width = 0.7 * (bins[1] - bins[0]) hdata = dict( width = [width] * len(hist), center = (bins[:-1] + bins[1:]) / 2, hist2 = hist / 2.0, hist = hist ) hsource.data = hdata if plot is None: plot = Figure( plot_width=500, plot_height=200, tools="", title_text_font_size="10pt", x_range=[start, end], y_range=[0, top], ) plot.rect('center', 'hist2', 'width', 'hist', source=hsource) plot.x_range.start = start plot.x_range.end = end plot.y_range.start = 0 plot.y_range.end = top plot.title = "%s hist" % alias return plot
def render_correlation_impact(itmdt: Intermediate, plot_width: int, plot_height: int, palette: Sequence[str]) -> Dict[str, Any]: """ Render correlation heatmaps in to tabs """ tabs: List[Panel] = [] tooltips = [("x", "@x"), ("y", "@y"), ("correlation", "@correlation{1.11}")] axis_range = itmdt["axis_range"] for method, df in itmdt["data"].items(): # in case of numerical column names df = df.copy() df["x"] = df["x"].apply(str) df["y"] = df["y"].apply(str) mapper, color_bar = create_color_mapper(palette) x_range = FactorRange(*axis_range) y_range = FactorRange(*reversed(axis_range)) fig = Figure( x_range=x_range, y_range=y_range, plot_width=plot_width, plot_height=plot_height, x_axis_location="below", tools="hover", toolbar_location=None, tooltips=tooltips, background_fill_color="#fafafa", title=" ", ) tweak_figure(fig) fig.rect( x="x", y="y", width=1, height=1, source=df, fill_color={ "field": "correlation", "transform": mapper }, line_color=None, ) fig.frame_width = plot_width fig.add_layout(color_bar, "left") tab = Panel(child=fig, title=method) tabs.append(tab) return { "insights": itmdt["insights"], "tabledata": itmdt["tabledata"], "layout": [panel.child for panel in tabs], "meta": [panel.title for panel in tabs], "container_width": plot_width + 150, }
def buildVendorsTab(): defaultGfxVendors = [ gfxVendors.index('NVIDIA Corporation'), gfxVendors.index('Advanced Micro Devices, Inc. [AMD/ATI]'), gfxVendors.index('Intel Corporation') ] gfxVendorCheckbox = CheckboxGroup(labels=gfxVendors, active=defaultGfxVendors) source_release = ColumnDataSource(data=dict(x=[], y=[], height=[])) source_beta = ColumnDataSource(data=dict(x=[], y=[], height=[])) fig = Figure(title="GFX Vendors", x_range=[], y_range=[0, 0], plot_width=1000, plot_height=650) hover = HoverTool(tooltips=[ ('Users', '@height %') ]) fig.add_tools(hover) fig.rect(x='x', y='y', height='height', source=source_release, width=0.4, color='orange', legend='Release') fig.rect(x='x', y='y', height='height', source=source_beta, width=0.4, color='blue', legend='Beta') fig.xaxis.major_label_orientation = np.pi / 3 def update(selected): vendors = [gfxVendors[i] for i in range(len(gfxVendors)) if i in selected] releaseUsers = 100 * getUsersForVendors('release', vendors) / gfxTotalReleaseUsers betaUsers = 100 * getUsersForVendors('beta', vendors) / gfxTotalBetaUsers fig.x_range.factors = vendors fig.y_range.end = max([releaseUsers.max(), betaUsers.max()]) source_release.data = dict( x=[c + ':0.3' for c in vendors], y=releaseUsers / 2, height=releaseUsers, ) source_beta.data = dict( x=[c + ':0.7' for c in vendors], y=betaUsers / 2, height=betaUsers, ) gfxVendorCheckbox.on_click(update) update(gfxVendorCheckbox.active) vendorComparison = HBox(HBox(VBoxForm(*[gfxVendorCheckbox]), width=300), fig, width=1100) return Panel(child=vendorComparison, title="GFX Vendor Comparison")
def render_heatmaps_tab(itmdt: Intermediate, plot_width: int, plot_height: int, palette: Sequence[str]) -> Figure: """ Render missing heatmaps in to tabs """ tooltips = [("x", "@x"), ("y", "@y"), ("correlation", "@correlation{1.11}")] axis_range = itmdt["axis_range"] df = itmdt["data_heatmap"] df = df.where( np.triu(np.ones(df.shape)).astype(np.bool) # pylint: disable=no-member ).T df = df.unstack().reset_index(name="correlation") df = df.rename(columns={"level_0": "x", "level_1": "y"}) df = df[df["x"] != df["y"]] df = df.dropna() # in case of numerical column names df["x"] = df["x"].apply(str) df["y"] = df["y"].apply(str) mapper, color_bar = create_color_mapper_heatmap(palette) x_range = FactorRange(*axis_range) y_range = FactorRange(*reversed(axis_range)) fig = Figure( x_range=x_range, y_range=y_range, plot_width=plot_width, plot_height=plot_height, x_axis_location="below", tools="hover", toolbar_location=None, tooltips=tooltips, background_fill_color="#fafafa", ) tweak_figure(fig) fig.grid.grid_line_color = None fig.axis.axis_line_color = None fig.rect( x="x", y="y", width=1, height=1, source=df, fill_color={ "field": "correlation", "transform": mapper }, line_color=None, ) fig.add_layout(color_bar, "right") return fig
def buildOSesTab(): osesCheckbox = CheckboxGroup(labels=oses, active=[i for i in range(len(oses))]) source_release = ColumnDataSource(data=dict(x=[], y=[], height=[])) source_beta = ColumnDataSource(data=dict(x=[], y=[], height=[])) fig = Figure(title='OS', x_range=[], y_range=[0, 0], plot_width=1000, plot_height=650) hover = HoverTool(tooltips=[ ('Users', '@height %') ]) fig.add_tools(hover) fig.rect(x='x', y='y', height='height', source=source_release, width=0.4, color='orange', legend='Release') fig.rect(x='x', y='y', height='height', source=source_beta, width=0.4, color='blue', legend='Beta') fig.xaxis.major_label_orientation = np.pi / 3 def update(selected): cur_oses = [oses[i] for i in range(len(oses)) if i in selected] releaseUsers = 100 * getUsersForOses('release', cur_oses) / osTotalReleaseUsers betaUsers = 100 * getUsersForOses('beta', cur_oses) / osTotalBetaUsers fig.x_range.factors = cur_oses fig.y_range.end = max([releaseUsers.max(), betaUsers.max()]) source_release.data = dict( x=[c + ':0.3' for c in cur_oses], y=releaseUsers / 2, height=releaseUsers, ) source_beta.data = dict( x=[c + ':0.7' for c in cur_oses], y=betaUsers / 2, height=betaUsers, ) osesCheckbox.on_click(update) update(osesCheckbox.active) osesComparison = HBox(HBox(VBoxForm(*[osesCheckbox]), width=300), fig, width=1100) return Panel(child=osesComparison, title="OS Comparison")
def render_correlation_heatmaps(itmdt: Intermediate, plot_width: int, plot_height: int) -> Tabs: """ Render correlation heatmaps in to tabs """ tabs: List[Panel] = [] tooltips = [("x", "@x"), ("y", "@y"), ("correlation", "@correlation{1.11}")] axis_range = itmdt["axis_range"] for method, df in itmdt["data"].items(): # in case of numerical column names df = df.copy() df["x"] = df["x"].apply(str) df["y"] = df["y"].apply(str) mapper, color_bar = create_color_mapper(RDBU) x_range = FactorRange(*axis_range) y_range = FactorRange(*reversed(axis_range)) fig = Figure( x_range=x_range, y_range=y_range, plot_width=plot_width, plot_height=plot_height, x_axis_location="below", tools="hover", toolbar_location=None, tooltips=tooltips, background_fill_color="#fafafa", ) tweak_figure(fig) fig.rect( x="x", y="y", width=1, height=1, source=df, fill_color={"field": "correlation", "transform": mapper}, line_color=None, ) fig.add_layout(color_bar, "right") tab = Panel(child=fig, title=method) tabs.append(tab) tabs = Tabs(tabs=tabs) return tabs
def empty_figure() -> Figure: # If no data to render in the heatmap, i.e. no missing values # we render a blank heatmap fig = Figure( x_range=[], y_range=[], plot_width=plot_width, plot_height=plot_height, x_axis_location="below", tools="hover", toolbar_location=None, background_fill_color="#fafafa", ) # Add at least one renderer to fig, otherwise bokeh # gives us error -1000 (MISSING_RENDERERS): Plot has no renderers fig.rect(x=0, y=0, width=0, height=0) return fig
color=selected["color"].astype(object) )) source.data.update(src.data) p.x_range.update(factors=list(set(source.data.get("x")))) p.y_range.update(factors=list(set(source.data.get("y")))) selected = select_facts() source = ColumnDataSource(data=dict(x=[], y=[], color=[])) source.data.update(ColumnDataSource(dict( x=selected["x"].astype(object), y=selected["y"].astype(object), color=selected["color"].astype(object) )).data) p = Figure(plot_height=900, plot_width=900, title="", toolbar_location=None, x_range=list(set(source.data.get("x"))), y_range=list(set(source.data.get("y")))) p.rect(x="x", y="y", source=source, color="color", width=1, height=1) p.xaxis.major_label_orientation = pi/4 p.yaxis.major_label_orientation = pi/4 controls = [top_n, x_axis, y_axis] for control in controls: control.on_change('value', update) inputs = HBox(VBoxForm(*controls), width=300) update(None, None, None) # initial load of the data layout = HBox(inputs, p) curdoc().add_root(layout)
# initialise a white block for the first plot hex_color = rgb_to_hex((255, 255, 255)) # initialise the text color as black. This will be switched to white if the block color gets dark enough text_color = '#000000' # create a data source to enable refreshing of fill & text color source = ColumnDataSource(data=dict(color=[hex_color], text_color=[text_color])) # create first plot, as a rect() glyph and centered text label, with fill and text color taken from source p1 = Figure(x_range=(-8, 8), y_range=(-4, 4), plot_width=600, plot_height=300, title='move sliders to change', tools='') p1.rect(0, 0, width=18, height=10, fill_color='color', line_color = 'black', source=source) p1.text(0, 0, text='color', text_color='text_color', alpha=0.6667, text_font_size='36pt', text_baseline='middle', text_align='center', source=source) # the callback function to update the color of the block and associated label text # NOTE: the JS functions for converting RGB to hex are taken from the excellent answer # by Tim Down at http://stackoverflow.com/questions/5623838/rgb-to-hex-and-hex-to-rgb callback = CustomJS(args=dict(source=source), code=""" function componentToHex(c) { var hex = c.toString(16); return hex.length == 1 ? "0" + hex : hex; } function rgbToHex(r, g, b) { return "#" + componentToHex(r) + componentToHex(g) + componentToHex(b);
def render_heatmaps(df: Optional[pd.DataFrame], plot_width: int, plot_height: int) -> Figure: """ Render missing heatmaps in to tabs """ tooltips = [("x", "@x"), ("y", "@y"), ("correlation", "@correlation{1.11}")] mapper, color_bar = create_color_mapper_heatmap(RDBU) def empty_figure() -> Figure: # If no data to render in the heatmap, i.e. no missing values # we render a blank heatmap fig = Figure( x_range=[], y_range=[], plot_width=plot_width, plot_height=plot_height, x_axis_location="below", tools="hover", toolbar_location=None, background_fill_color="#fafafa", ) # Add at least one renderer to fig, otherwise bokeh # gives us error -1000 (MISSING_RENDERERS): Plot has no renderers fig.rect(x=0, y=0, width=0, height=0) return fig if df is not None: df = df.where(np.triu(np.ones(df.shape)).astype(np.bool)).T # pylint: disable=no-member if df.size != 0: x_range = FactorRange(*df.columns) y_range = FactorRange(*reversed(df.columns)) df = df.unstack().reset_index(name="correlation") df = df.rename(columns={"level_0": "x", "level_1": "y"}) df = df[df["x"] != df["y"]] df = drop_null(df) # in case of numerical column names df["x"] = df["x"].apply(str) df["y"] = df["y"].apply(str) fig = Figure( x_range=x_range, y_range=y_range, plot_width=plot_width, plot_height=plot_height, x_axis_location="below", tools="hover", toolbar_location=None, tooltips=tooltips, background_fill_color="#fafafa", title=" ", ) fig.rect( x="x", y="y", width=1, height=1, source=df, fill_color={"field": "correlation", "transform": mapper}, line_color=None, ) else: fig = empty_figure() else: fig = empty_figure() tweak_figure(fig) fig.grid.grid_line_color = None fig.axis.axis_line_color = None fig.add_layout(color_bar, "left") fig.frame_width = plot_width return fig
('months after IP', '@counts'), ('percentage', '@percents%'), ]) # customize plot p.grid.grid_line_color = None p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_text_font_size = "10pt" p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = np.pi / 3 p.rect('counts', 'epoch', 1, 1, source=source, color='colors', alpha='percents', line_color=None) def get_cohorts_now(): c = counts.value sm = start_mon.value em = end_mon.value r = relativedelta.relativedelta(pd.to_datetime(em), pd.to_datetime(sm)) nmons = r.years * 12 + r.months + 1 c = min(c, nmons) pro = product.value #cohorts_now = b_cohorts[b_cohorts['y_m'].isin(pd.date_range(sm,em,freq='MS'))] cohorts_now = b_cohorts[b_cohorts['pname'] == pro]
def plot_amp(self, dz, refexp, name="", font_size="1.2vw", description="", nrg=[], wrg=[], status_plot=False): ''' Initializing AMP plot ''' ztext, cbarformat = self.set_amp(dz) dx = [0, 1, 0, 1] dy = [1, 1, 0, 0] zvalid = np.array([x if x > -999 else np.nan for x in dz]) data_source = dict( x=dx, y=dy, z=dz, zvalid=zvalid, ref=["{:.2f}".format(x) for x in refexp], zdiff=zvalid - np.array(refexp), y_offset1=[i + 0.15 for i in dy], y_offset2=[i - 0.10 for i in dy], amp=['AMP %s' % i for i in range(1, 5)], amp_number=['%s' % i for i in range(1, 5)], ztext=ztext, ) if status_plot: text_val = 'status' color_status = ['green', 'darkgrey', 'yellow', 'red'] color = { 'NaN': 'darkgrey', 'NORMAL': 'green', 'WARNING': 'yellow', 'ALARM': 'red', } status = [ self.val_status(x, nrg=nrg, wrg=wrg) for x in zvalid - np.array(refexp) ] color_status = [ color[self.val_status(x, nrg=nrg, wrg=wrg)] for x in zvalid - np.array(refexp) ] fill_color = "color_status" data_source.update({ 'status': status, 'color_status': color_status, }) fill_alpha = 0.8 if not status_plot: text_val = 'ztext' cmap = get_palette("RdBu_r") mapper = LinearColorMapper(palette=cmap, low=wrg[0], high=wrg[1], nan_color="darkgrey") formatter = PrintfTickFormatter(format=cbarformat) color_bar = ColorBar(color_mapper=mapper, major_label_text_align='left', major_label_text_font_size='10pt', label_standoff=2, location=(0, 0), formatter=formatter, title="(Val-Ref)", title_standoff=15, title_text_baseline="alphabetic") fill_color = {'field': 'zdiff', 'transform': mapper} fill_alpha = 0.9 cmap_tooltip = """ <div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">AMP: </span> <span style="font-size: 1vw; color: #515151;">@amp_number</span> </div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">counts: </span> <span style="font-size: 1vw; color: #515151">@text_val</span> </div> <div> <span style="font-size: 1vw; font-weight: bold; color: #303030;">Reference: </span> <span style="font-size: 1vw; color: #515151;">@ref</span> </div> </div> """.replace("counts:", name.replace("_AMP", "") + ":").replace( "text_val", text_val) hover = HoverTool(tooltips=cmap_tooltip) p = Figure(title=name, tools=[hover], x_range=list([-0.5, 1.5]), y_range=list([-0.5, 1.5]), plot_width=450, plot_height=400) source = ColumnDataSource(data=data_source) text_props = { "source": source, "angle": 0, "color": "black", "text_color": "black", "text_align": "center", "text_baseline": "middle" } p.rect("x", "y", .98, .98, 0, source=source, fill_color=fill_color, fill_alpha=fill_alpha) p.text(x="x", y="y_offset1", text="amp", text_font_size="2vw", **text_props) p.text(x="x", y="y_offset2", text="ztext", text_font_style="bold", text_font_size="2.5vw", **text_props) if not status_plot: p.add_layout(color_bar, 'right') # Format: p.xaxis.axis_label_text_font_size = font_size p.legend.label_text_font_size = font_size p.title.text_font_size = font_size p.xaxis.axis_label = description # Clear Axis: p.grid.grid_line_color = None p.outline_line_color = None p.axis.minor_tick_line_color = None p.axis.major_label_text_font_size = '0pt' p.yaxis.major_label_text_font_size = '0pt' p.xaxis.major_tick_line_color = None p.xaxis.minor_tick_line_color = None p.yaxis.major_tick_line_color = None p.yaxis.minor_tick_line_color = None p.yaxis.visible = False p.xaxis.visible = True p.axis.clear return p
def hist_viz( hist: List[Tuple[np.ndarray, np.ndarray]], nrows: List[int], col: str, yscale: str, plot_width: int, plot_height: int, show_yticks: bool, orig: List[str], df_labels: List[str], ) -> Figure: """ Render a histogram """ # pylint: disable=too-many-arguments,too-many-locals tooltips = [ ("Bin", "@intvl"), ("Frequency", "@freq"), ("Percent", "@pct{0.2f}%"), ("Source", "@orig"), ] fig = Figure( plot_height=plot_height, plot_width=plot_width, title=col, toolbar_location=None, y_axis_type=yscale, ) for i, hst in enumerate(hist): counts, bins = hst if sum(counts) == 0: fig.rect(x=0, y=0, width=0, height=0) continue intvls = _format_bin_intervals(bins) df = pd.DataFrame({ "intvl": intvls, "left": bins[:-1], "right": bins[1:], "freq": counts, "pct": counts / nrows[i] * 100, "orig": orig[i], }) bottom = 0 if yscale == "linear" or df.empty else counts.min() / 2 fig.quad( source=df, left="left", right="right", bottom=bottom, alpha=0.5, top="freq", fill_color=CATEGORY10[i], line_color=CATEGORY10[i], ) hover = HoverTool(tooltips=tooltips, attachment="vertical", mode="vline") fig.add_tools(hover) tweak_figure(fig, "hist", show_yticks) fig.yaxis.axis_label = "Frequency" _format_axis(fig, df.iloc[0]["left"], df.iloc[-1]["right"], "x") x_axis_label = "" if show_yticks: x_axis_label += col if yscale == "linear": _format_axis(fig, 0, df["freq"].max(), "y") if orig != df_labels: if x_axis_label: x_axis_label += f", this vairable is only in {','.join(orig)}" else: x_axis_label += f"This vairable is only in {','.join(orig)}" fig.xaxis.axis_label = x_axis_label fig.xaxis.axis_label_standoff = 0 return fig
text_props = { "source": source, "angle": 0, "color": "black", "text_color": "black", "text_align": "center", "text_baseline": "middle" } p.rect("x", "y", .98, .98, 0, source=source, fill_color={ 'field': 'z', 'transform': mapper }, fill_alpha=0.9) #, color="color") p.axis.minor_tick_line_color = None p.text(x="x", y="y_offset2", text="ztext", text_font_style="bold", text_font_size="20pt", **text_props) p.text(x="x", y="y_offset1", text="amp", text_font_size="18pt", **text_props) formatter = PrintfTickFormatter(format='%2.1e')
def buildDevicesTab(): gfxVendorSelect = Select(title='Vendor', options=gfxVendors, value=gfxVendors[0]) gfxDeviceCheckbox = CheckboxGroup() source_release = ColumnDataSource(data=dict(x=[], y=[], height=[])) source_beta = ColumnDataSource(data=dict(x=[], y=[], height=[])) fig = Figure(title="GFX Devices", x_range=[], y_range=[0, 0], plot_width=1000, plot_height=650) hover = HoverTool(tooltips=[ ('Users', '@height %') ]) fig.add_tools(hover) fig.rect(x='x', y='y', height='height', source=source_release, width=0.4, color='orange', legend='Release') fig.rect(x='x', y='y', height='height', source=source_beta, width=0.4, color='blue', legend='Beta') fig.xaxis.major_label_orientation = np.pi / 3 def update_view(): vendor = gfxVendorSelect.value deviceNames = getDeviceNames('release', vendor, True) gfxDeviceCheckbox.labels = deviceNames devices = [deviceNames[i] for i in range(len(deviceNames)) if i in gfxDeviceCheckbox.active] releaseUsers = 100 * getUsersForDevices('release', vendor, devices) / gfxTotalReleaseUsers betaUsers = 100 * getUsersForDevices('beta', vendor, devices) / gfxTotalBetaUsers fig.x_range.factors = devices fig.y_range.end = max([releaseUsers.max(), betaUsers.max()]) source_release.data = dict( x=[c + ':0.3' for c in devices], y=releaseUsers / 2, height=releaseUsers, ) source_beta.data = dict( x=[c + ':0.7' for c in devices], y=betaUsers / 2, height=betaUsers, ) def update(attrname, old, new): gfxDeviceCheckbox.active = [i for i in range(5)] update_view() def click(selected): update_view() gfxVendorSelect.on_change('value', update) gfxDeviceCheckbox.on_click(click) update('value', '', gfxVendorSelect.value) deviceComparison = HBox(HBox(VBoxForm(*[gfxVendorSelect, gfxDeviceCheckbox]), width=300), fig, width=1100) return Panel(child=deviceComparison, title="GFX Device Comparison")
def plot_dispersion_bokeh(filename, period_array, curve_data_array, boundary_data, style_parameter): ''' Plot dispersion maps and curves using bokeh Input: filename is the filename of the resulting html file period_array is a list of period curve_data_array is a list of dispersion curves boundary_data is a list of boundaries style_parameter contains plotting parameters Output: None ''' xlabel_fontsize = style_parameter['xlabel_fontsize'] # ============================== # prepare data map_data_all_slices_velocity = [] map_data_all_slices_period = [] map_data_all_slices_color = [] colorbar_data_all_left = [] colorbar_data_all_right = [] nperiod = len(period_array) ncurve = len(curve_data_array) ncolor = len(palette) palette_r = palette[::-1] colorbar_top = [0.1 for i in range(ncolor)] colorbar_bottom = [0 for i in range(ncolor)] for iperiod in range(nperiod): one_slice_lat_list = [] one_slice_lon_list = [] one_slice_vel_list = [] map_period = period_array[iperiod] for icurve in range(ncurve): acurve = curve_data_array[icurve] curve_lat = acurve['latitude'] curve_lon = acurve['longitude'] curve_vel = acurve['velocity'] curve_period = acurve['period'] one_slice_lat_list.append(curve_lat) one_slice_lon_list.append(curve_lon) if map_period in curve_period: curve_period_index = curve_period.index(map_period) one_slice_vel_list.append(curve_vel[curve_period_index]) else: one_slice_vel_list.append(style_parameter['nan_value']) # get color for dispersion values one_slice_vel_mean = np.nanmean(one_slice_vel_list) one_slice_vel_std = np.nanstd(one_slice_vel_list) color_min = one_slice_vel_mean - one_slice_vel_std * style_parameter['spread_factor'] color_max = one_slice_vel_mean + one_slice_vel_std * style_parameter['spread_factor'] color_step = (color_max - color_min)*1./ncolor one_slice_color_list = get_color_list(one_slice_vel_list,color_min,color_max,palette_r,\ style_parameter['nan_value'],style_parameter['nan_color']) colorbar_left = np.linspace(color_min,color_max-color_step,ncolor) colorbar_right = np.linspace(color_min+color_step,color_max,ncolor) if one_slice_lat_list: map_data_all_slices_velocity.append(one_slice_vel_list) map_data_all_slices_period.append('Period: {0:6.1f} s'.format(map_period)) map_data_all_slices_color.append(one_slice_color_list) colorbar_data_all_left.append(colorbar_left) colorbar_data_all_right.append(colorbar_right) # get location for all points map_lat_list, map_lon_list = [], [] map_lat_label_list, map_lon_label_list = [], [] for i in range(ncurve): acurve = curve_data_array[i] map_lat_list.append(acurve['latitude']) map_lon_list.append(acurve['longitude']) map_lat_label_list.append('Lat: {0:12.3f}'.format(acurve['latitude'])) map_lon_label_list.append('Lon: {0:12.3f}'.format(acurve['longitude'])) # data for the map view plot map_view_label_lon = style_parameter['map_view_period_label_lon'] map_view_label_lat = style_parameter['map_view_period_label_lat'] map_data_one_slice = map_data_all_slices_color[style_parameter['map_view_default_index']] map_data_one_slice_period = map_data_all_slices_period[style_parameter['map_view_default_index']] map_data_one_slice_bokeh = ColumnDataSource(data=dict(map_lat_list=map_lat_list,\ map_lon_list=map_lon_list,\ map_data_one_slice=map_data_one_slice)) map_data_one_slice_period_bokeh = ColumnDataSource(data=dict(lat=[map_view_label_lat], lon=[map_view_label_lon], map_period=[map_data_one_slice_period])) map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices_color=map_data_all_slices_color,\ map_data_all_slices_period=map_data_all_slices_period)) # data for the colorbar colorbar_data_one_slice = {} colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[style_parameter['map_view_default_index']] colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[style_parameter['map_view_default_index']] colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom, colorbar_left=colorbar_data_one_slice['colorbar_left'],\ colorbar_right=colorbar_data_one_slice['colorbar_right'],\ palette_r=palette_r)) colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\ colorbar_data_all_right=colorbar_data_all_right)) # data for dispersion curves curve_default_index = style_parameter['curve_default_index'] selected_dot_on_map_bokeh = ColumnDataSource(data=dict(lat=[map_lat_list[curve_default_index]],\ lon=[map_lon_list[curve_default_index]],\ color=[map_data_one_slice[curve_default_index]],\ index=[curve_default_index])) selected_curve_data = curve_data_array[curve_default_index] selected_curve_data_bokeh = ColumnDataSource(data=dict(curve_period=selected_curve_data['period'],\ curve_velocity=selected_curve_data['velocity'])) period_all = [] velocity_all = [] for acurve in curve_data_array: period_all.append(acurve['period']) velocity_all.append(acurve['velocity']) curve_data_all_bokeh = ColumnDataSource(data=dict(period_all=period_all, velocity_all=velocity_all)) selected_curve_lat_label_bokeh = ColumnDataSource(data=dict(x=[style_parameter['curve_lat_label_x']], \ y=[style_parameter['curve_lat_label_y']],\ lat_label=[map_lat_label_list[curve_default_index]])) selected_curve_lon_label_bokeh = ColumnDataSource(data=dict(x=[style_parameter['curve_lon_label_x']], \ y=[style_parameter['curve_lon_label_y']],\ lon_label=[map_lon_label_list[curve_default_index]])) all_curve_lat_label_bokeh = ColumnDataSource(data=dict(map_lat_label_list=map_lat_label_list)) all_curve_lon_label_bokeh = ColumnDataSource(data=dict(map_lon_label_list=map_lon_label_list)) # ============================== map_view = Figure(plot_width=style_parameter['map_view_plot_width'], \ plot_height=style_parameter['map_view_plot_height'], \ y_range=[style_parameter['map_view_lat_min'],\ style_parameter['map_view_lat_max']], x_range=[style_parameter['map_view_lon_min'],\ style_parameter['map_view_lon_max']], tools=style_parameter['map_view_tools'],\ title=style_parameter['map_view_title']) # ------------------------------ # add boundaries to map view # country boundaries map_view.multi_line(boundary_data['country']['longitude'],\ boundary_data['country']['latitude'],color='black',\ line_width=2, level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # marine boundaries map_view.multi_line(boundary_data['marine']['longitude'],\ boundary_data['marine']['latitude'],color='black',\ level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # shoreline boundaries map_view.multi_line(boundary_data['shoreline']['longitude'],\ boundary_data['shoreline']['latitude'],color='black',\ line_width=2, level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # state boundaries map_view.multi_line(boundary_data['state']['longitude'],\ boundary_data['state']['latitude'],color='black',\ level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # ------------------------------ # add period label map_view.rect(style_parameter['map_view_period_box_lon'], style_parameter['map_view_period_box_lat'], \ width=style_parameter['map_view_period_box_width'], height=style_parameter['map_view_period_box_height'], \ width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay') map_view.text('lon', 'lat', 'map_period', source=map_data_one_slice_period_bokeh,\ text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay') # ------------------------------ # plot dots map_view.circle('map_lon_list', 'map_lat_list', color='map_data_one_slice', \ source=map_data_one_slice_bokeh, size=style_parameter['marker_size'],\ line_width=0.2, line_color='black', alpha=1.0,\ selection_color='map_data_one_slice', selection_line_color='black',\ selection_fill_alpha=1.0,\ nonselection_fill_alpha=1.0, nonselection_fill_color='map_data_one_slice',\ nonselection_line_color='black', nonselection_line_alpha=1.0) map_view.circle('lon', 'lat', color='color', source=selected_dot_on_map_bokeh, \ line_color='#00ff00', line_width=4.0, alpha=1.0, \ size=style_parameter['selected_marker_size']) # ------------------------------ # change style map_view.title.text_font_size = style_parameter['title_font_size'] map_view.title.align = 'center' map_view.title.text_font_style = 'normal' map_view.xaxis.axis_label = style_parameter['map_view_xlabel'] map_view.xaxis.axis_label_text_font_style = 'normal' map_view.xaxis.axis_label_text_font_size = xlabel_fontsize map_view.xaxis.major_label_text_font_size = xlabel_fontsize map_view.yaxis.axis_label = style_parameter['map_view_ylabel'] map_view.yaxis.axis_label_text_font_style = 'normal' map_view.yaxis.axis_label_text_font_size = xlabel_fontsize map_view.yaxis.major_label_text_font_size = xlabel_fontsize map_view.xgrid.grid_line_color = None map_view.ygrid.grid_line_color = None map_view.toolbar.logo = None map_view.toolbar_location = 'above' map_view.toolbar_sticky = False # ============================== # plot colorbar colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \ plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title']) colorbar_fig.toolbar_location=None colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\ fill_color='palette_r',source=colorbar_data_one_slice_bokeh) colorbar_fig.yaxis[0].ticker=FixedTicker(ticks=[]) colorbar_fig.xgrid.grid_line_color = None colorbar_fig.ygrid.grid_line_color = None colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f") colorbar_fig.title.text_font_size = xlabel_fontsize colorbar_fig.title.align = 'center' colorbar_fig.title.text_font_style = 'normal' # ============================== curve_fig = Figure(plot_width=style_parameter['curve_plot_width'], plot_height=style_parameter['curve_plot_height'], \ y_range=(style_parameter['curve_y_min'],style_parameter['curve_y_max']), \ x_range=(style_parameter['curve_x_min'],style_parameter['curve_x_max']),x_axis_type='log',\ tools=['save','box_zoom','wheel_zoom','reset','crosshair','pan'], title=style_parameter['curve_title']) # ------------------------------ curve_fig.rect([style_parameter['curve_label_box_x']], [style_parameter['curve_label_box_y']], \ width=style_parameter['curve_label_box_width'], height=style_parameter['curve_label_box_height'], \ width_units='screen', height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay') curve_fig.text('x', 'y', \ 'lat_label', source=selected_curve_lat_label_bokeh) curve_fig.text('x', 'y', \ 'lon_label', source=selected_curve_lon_label_bokeh) # ------------------------------ curve_fig.line('curve_period', 'curve_velocity', source=selected_curve_data_bokeh, color='black') curve_fig.circle('curve_period', 'curve_velocity', source=selected_curve_data_bokeh, size=5, color='black') # ------------------------------ curve_fig.title.text_font_size = style_parameter['title_font_size'] curve_fig.title.align = 'center' curve_fig.title.text_font_style = 'normal' curve_fig.xaxis.axis_label = style_parameter['curve_xlabel'] curve_fig.xaxis.axis_label_text_font_style = 'normal' curve_fig.xaxis.axis_label_text_font_size = xlabel_fontsize curve_fig.xaxis.major_label_text_font_size = xlabel_fontsize curve_fig.yaxis.axis_label = style_parameter['curve_ylabel'] curve_fig.yaxis.axis_label_text_font_style = 'normal' curve_fig.yaxis.axis_label_text_font_size = xlabel_fontsize curve_fig.yaxis.major_label_text_font_size = xlabel_fontsize curve_fig.xgrid.grid_line_dash = [4, 2] curve_fig.ygrid.grid_line_dash = [4, 2] curve_fig.xaxis[0].formatter = PrintfTickFormatter(format="%4.0f") curve_fig.toolbar.logo = None curve_fig.toolbar_location = 'above' curve_fig.toolbar_sticky = False # ============================== map_data_one_slice_bokeh.callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\ map_data_one_slice_bokeh=map_data_one_slice_bokeh,\ selected_curve_data_bokeh=selected_curve_data_bokeh,\ curve_data_all_bokeh=curve_data_all_bokeh,\ selected_curve_lat_label_bokeh=selected_curve_lat_label_bokeh,\ selected_curve_lon_label_bokeh=selected_curve_lon_label_bokeh,\ all_curve_lat_label_bokeh=all_curve_lat_label_bokeh,\ all_curve_lon_label_bokeh=all_curve_lon_label_bokeh), code=""" var inds = Math.round(cb_obj.selected['1d'].indices) selected_dot_on_map_bokeh.data['index'] = [inds] var new_slice = map_data_one_slice_bokeh.data selected_dot_on_map_bokeh.data['lat'] = [new_slice['map_lat_list'][inds]] selected_dot_on_map_bokeh.data['lon'] = [new_slice['map_lon_list'][inds]] selected_dot_on_map_bokeh.data['color'] = [new_slice['map_data_one_slice'][inds]] selected_dot_on_map_bokeh.change.emit() selected_curve_data_bokeh.data['curve_period'] = curve_data_all_bokeh.data['period_all'][inds] selected_curve_data_bokeh.data['curve_velocity'] = curve_data_all_bokeh.data['velocity_all'][inds] selected_curve_data_bokeh.change.emit() var all_lat_labels = all_curve_lat_label_bokeh.data['map_lat_label_list'] var all_lon_labels = all_curve_lon_label_bokeh.data['map_lon_label_list'] selected_curve_lat_label_bokeh.data['lat_label'] = [all_lat_labels[inds]] selected_curve_lon_label_bokeh.data['lon_label'] = [all_lon_labels[inds]] selected_curve_lat_label_bokeh.change.emit() selected_curve_lon_label_bokeh.change.emit() """) # ============================== period_slider_callback = CustomJS(args=dict(map_data_all_slices_bokeh=map_data_all_slices_bokeh,\ map_data_one_slice_bokeh=map_data_one_slice_bokeh,\ colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh, \ colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\ selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\ map_data_one_slice_period_bokeh=map_data_one_slice_period_bokeh),\ code=""" var p_index = Math.round(cb_obj.value) var map_data_all_slices = map_data_all_slices_bokeh.data var map_data_new_slice = map_data_all_slices['map_data_all_slices_color'][p_index] map_data_one_slice_bokeh.data['map_data_one_slice'] = map_data_new_slice map_data_one_slice_bokeh.change.emit() var color_data_all_slices = colorbar_data_all_slices_bokeh.data colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][p_index] colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][p_index] colorbar_data_one_slice_bokeh.change.emit() var selected_index = selected_dot_on_map_bokeh.data['index'] selected_dot_on_map_bokeh.data['color'] = [map_data_new_slice[selected_index]] selected_dot_on_map_bokeh.change.emit() map_data_one_slice_period_bokeh.data['map_period'] = [map_data_all_slices['map_data_all_slices_period'][p_index]] map_data_one_slice_period_bokeh.change.emit() """) period_slider = Slider(start=0, end=nperiod-1, value=style_parameter['map_view_default_index'], \ step=1, title=style_parameter['period_slider_title'], \ width=style_parameter['period_slider_plot_width'],\ height=50, callback=period_slider_callback) # ============================== curve_slider_callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\ map_data_one_slice_bokeh=map_data_one_slice_bokeh,\ selected_curve_data_bokeh=selected_curve_data_bokeh,\ curve_data_all_bokeh=curve_data_all_bokeh,\ selected_curve_lat_label_bokeh=selected_curve_lat_label_bokeh,\ selected_curve_lon_label_bokeh=selected_curve_lon_label_bokeh,\ all_curve_lat_label_bokeh=all_curve_lat_label_bokeh,\ all_curve_lon_label_bokeh=all_curve_lon_label_bokeh),\ code=""" var c_index = Math.round(cb_obj.value) var one_slice = map_data_one_slice_bokeh.data selected_dot_on_map_bokeh.data['index'] = [c_index] selected_dot_on_map_bokeh.data['lat'] = [one_slice['map_lat_list'][c_index]] selected_dot_on_map_bokeh.data['lon'] = [one_slice['map_lon_list'][c_index]] selected_dot_on_map_bokeh.data['color'] = [one_slice['map_data_one_slice'][c_index]] selected_dot_on_map_bokeh.change.emit() selected_curve_data_bokeh.data['curve_period'] = curve_data_all_bokeh.data['period_all'][c_index] selected_curve_data_bokeh.data['curve_velocity'] = curve_data_all_bokeh.data['velocity_all'][c_index] selected_curve_data_bokeh.change.emit() var all_lat_labels = all_curve_lat_label_bokeh.data['map_lat_label_list'] var all_lon_labels = all_curve_lon_label_bokeh.data['map_lon_label_list'] selected_curve_lat_label_bokeh.data['lat_label'] = [all_lat_labels[c_index]] selected_curve_lon_label_bokeh.data['lon_label'] = [all_lon_labels[c_index]] selected_curve_lat_label_bokeh.change.emit() selected_curve_lon_label_bokeh.change.emit() """) curve_slider = Slider(start=0, end=ncurve-1, value=style_parameter['curve_default_index'], \ step=1, title=style_parameter['curve_slider_title'], width=style_parameter['curve_plot_width'],\ height=50, callback=curve_slider_callback) # ============================== # annotating text annotating_fig01 = Div(text=style_parameter['annotating_html01'], \ width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height']) annotating_fig02 = Div(text=style_parameter['annotating_html02'],\ width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height']) # ============================== output_file(filename,title=style_parameter['html_title'],mode=style_parameter['library_source']) left_fig = Column(period_slider, map_view, colorbar_fig, annotating_fig01,\ width=style_parameter['left_column_width'] ) right_fig = Column(curve_slider, curve_fig, annotating_fig02, \ width=style_parameter['right_column_width'] ) layout = Row(left_fig, right_fig) save(layout)
def periodic_plot(cds, title="Periodic Table", width=PLOT_WIDTH, height=PLOT_HEIGHT, cmap="viridis", showfblock=True, long_version=False, color_mapper=None): """ Create the periodic plot Args: df : DataFrame Pandas DataFrame with the data on elements tile : str Title to appear above the periodic table colorby : str Name of the column containig the colors width : int Width of the figure in pixels height : int Height of the figure in pixels cmap : str Colormap to use, see matplotlib colormaps long_version : bool Show the long version of the periodic table with the f block between the s and d blocks showfblock : bool Show the elements from the f block .. note:: `property` attribute holds the current property to be displayed """ fig = Figure(title=title, x_axis_location="above", x_range=(0.5, 18.5), y_range=(10.0, 0.5), plot_width=width, plot_height=height, tools="box_zoom,pan,resize,save,reset", toolbar_location="above", toolbar_sticky=False, ) if color_mapper is None: color_dict = "#1F77B4" else: color_dict = {"field": "value", "transform": color_mapper} fig.rect("x", "y", 0.9, 0.9, source=cds, fill_alpha=0.6, fill_color=color_dict, line_color=color_dict) # adjust the ticks and axis bounds fig.yaxis.bounds = (1, 7) fig.axis[1].ticker.num_minor_ticks = 0 fig.axis[0].ticker = FixedTicker(ticks=list(range(1, 19))) text_props = { "source": cds, "angle": 0, "color": "black", "text_align": "center", "text_baseline": "middle" } fig.text(x="x", y="y_symbol", text="symbol", text_font_style="bold", text_font_size="15pt", **text_props) fig.text(x="x", y="y_anumber", text="atomic_number", text_font_size="9pt", **text_props) fig.text(x="x", y="y_name", text="name", text_font_size="7pt", **text_props) fig.text(x="x", y="y_prop", text="value_str", text_font_size="8pt", **text_props) fig.grid.grid_line_color = None hover = HoverTool(tooltips=HOVER_TOOLTIPS) fig.add_tools(hover) return fig
def plot_cross_section_bokeh(filename, map_data_all_slices, map_depth_all_slices, \ color_range_all_slices, cross_data, boundary_data, \ style_parameter): ''' Plot shear velocity maps and cross-sections using bokeh Input: filename is the filename of the resulting html file map_data_all_slices contains the velocity model parameters saved for map view plots map_depth_all_slices is a list of depths color_range_all_slices is a list of color ranges profile_data_all is a list of velocity profiles cross_lat_data_all is a list of cross-sections along latitude lat_value_all is a list of corresponding latitudes for these cross-sections cross_lon_data_all is a list of cross-sections along longitude lon_value_all is a list of corresponding longitudes for these cross-sections boundary_data is a list of boundaries style_parameter contains parameters to customize the plots Output: None ''' xlabel_fontsize = style_parameter['xlabel_fontsize'] # colorbar_data_all_left = [] colorbar_data_all_right = [] map_view_ndepth = style_parameter['map_view_ndepth'] palette_r = palette[::-1] ncolor = len(palette_r) colorbar_top = [0.1 for i in range(ncolor)] colorbar_bottom = [0 for i in range(ncolor)] map_data_all_slices_depth = [] for idepth in range(map_view_ndepth): color_min = color_range_all_slices[idepth][0] color_max = color_range_all_slices[idepth][1] color_step = (color_max - color_min)*1./ncolor colorbar_left = np.linspace(color_min,color_max-color_step,ncolor) colorbar_right = np.linspace(color_min+color_step,color_max,ncolor) colorbar_data_all_left.append(colorbar_left) colorbar_data_all_right.append(colorbar_right) map_depth = map_depth_all_slices[idepth] map_data_all_slices_depth.append('Depth: {0:8.0f} km'.format(map_depth)) # data for the colorbar colorbar_data_one_slice = {} colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[style_parameter['map_view_default_index']] colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[style_parameter['map_view_default_index']] colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom,\ colorbar_left=colorbar_data_one_slice['colorbar_left'],\ colorbar_right=colorbar_data_one_slice['colorbar_right'],\ palette_r=palette_r)) colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\ colorbar_data_all_right=colorbar_data_all_right)) # map_view_label_lon = style_parameter['map_view_depth_label_lon'] map_view_label_lat = style_parameter['map_view_depth_label_lat'] map_data_one_slice_depth = map_data_all_slices_depth[style_parameter['map_view_default_index']] map_data_one_slice_depth_bokeh = ColumnDataSource(data=dict(lat=[map_view_label_lat], lon=[map_view_label_lon], map_depth=[map_data_one_slice_depth])) # map_view_default_index = style_parameter['map_view_default_index'] #map_data_one_slice = map_data_all_slices[map_view_default_index] map_color_all_slices = [] for i in range(len(map_data_all_slices)): vmin, vmax = color_range_all_slices[i] map_color = val_to_rgb(map_data_all_slices[i], palette_r, vmin, vmax) map_color_all_slices.append(map_color) map_color_one_slice = map_color_all_slices[map_view_default_index] # map_data_one_slice_bokeh = ColumnDataSource(data=dict(x=[style_parameter['map_view_image_lon_min']],\ y=[style_parameter['map_view_image_lat_min']],dw=[style_parameter['nlon']],\ dh=[style_parameter['nlat']],map_data_one_slice=[map_color_one_slice])) map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices=map_color_all_slices,\ map_data_all_slices_depth=map_data_all_slices_depth)) # plot_depth = np.shape(cross_data)[0] * style_parameter['cross_ddepth'] plot_lon = great_arc_distance(style_parameter['cross_default_lat0'], style_parameter['cross_default_lon0'],\ style_parameter['cross_default_lat1'], style_parameter['cross_default_lon1']) vs_min = style_parameter['cross_view_vs_min'] vs_max = style_parameter['cross_view_vs_max'] cross_color = val_to_rgb(cross_data, palette_r, vmin, vmax) cross_data_bokeh = ColumnDataSource(data=dict(x=[0],\ y=[plot_depth],dw=[plot_lon],\ dh=[plot_depth],cross_data=[cross_color])) map_line_bokeh = ColumnDataSource(data=dict(lat=[style_parameter['cross_default_lat0'], style_parameter['cross_default_lat1']],\ lon=[style_parameter['cross_default_lon0'], style_parameter['cross_default_lon1']])) # ncolor_cross = len(my_palette) colorbar_top_cross = [0.1 for i in range(ncolor_cross)] colorbar_bottom_cross = [0 for i in range(ncolor_cross)] color_min_cross = style_parameter['cross_view_vs_min'] color_max_cross = style_parameter['cross_view_vs_max'] color_step_cross = (color_max_cross - color_min_cross)*1./ncolor_cross colorbar_left_cross = np.linspace(color_min_cross, color_max_cross-color_step_cross, ncolor_cross) colorbar_right_cross = np.linspace(color_min_cross+color_step_cross, color_max_cross, ncolor_cross) # ============================== map_view = Figure(plot_width=style_parameter['map_view_plot_width'], plot_height=style_parameter['map_view_plot_height'], \ tools=style_parameter['map_view_tools'], title=style_parameter['map_view_title'], \ y_range=[style_parameter['map_view_figure_lat_min'], style_parameter['map_view_figure_lat_max']],\ x_range=[style_parameter['map_view_figure_lon_min'], style_parameter['map_view_figure_lon_max']]) # map_view.image_rgba('map_data_one_slice',x='x',\ y='y',dw='dw',dh='dh',\ source=map_data_one_slice_bokeh, level='image') depth_slider_callback = CustomJS(args=dict(map_data_one_slice_bokeh=map_data_one_slice_bokeh,\ map_data_all_slices_bokeh=map_data_all_slices_bokeh,\ colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh,\ colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\ map_data_one_slice_depth_bokeh=map_data_one_slice_depth_bokeh), code=""" var d_index = Math.round(cb_obj.value) var map_data_all_slices = map_data_all_slices_bokeh.data map_data_one_slice_bokeh.data['map_data_one_slice'] = [map_data_all_slices['map_data_all_slices'][d_index]] map_data_one_slice_bokeh.change.emit() var color_data_all_slices = colorbar_data_all_slices_bokeh.data colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][d_index] colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][d_index] colorbar_data_one_slice_bokeh.change.emit() map_data_one_slice_depth_bokeh.data['map_depth'] = [map_data_all_slices['map_data_all_slices_depth'][d_index]] map_data_one_slice_depth_bokeh.change.emit() """) depth_slider = Slider(start=0, end=style_parameter['map_view_ndepth']-1, \ value=map_view_default_index, step=1, \ width=style_parameter['map_view_plot_width'],\ title=style_parameter['depth_slider_title'], height=50, \ callback=depth_slider_callback) # ------------------------------ # add boundaries to map view # country boundaries map_view.multi_line(boundary_data['country']['longitude'],\ boundary_data['country']['latitude'],color='black',\ line_width=2, level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # marine boundaries map_view.multi_line(boundary_data['marine']['longitude'],\ boundary_data['marine']['latitude'],color='black',\ level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # shoreline boundaries map_view.multi_line(boundary_data['shoreline']['longitude'],\ boundary_data['shoreline']['latitude'],color='black',\ line_width=2, level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # state boundaries map_view.multi_line(boundary_data['state']['longitude'],\ boundary_data['state']['latitude'],color='black',\ level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # ------------------------------ # add depth label map_view.rect(style_parameter['map_view_depth_box_lon'], style_parameter['map_view_depth_box_lat'], \ width=style_parameter['map_view_depth_box_width'], height=style_parameter['map_view_depth_box_height'], \ width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay') map_view.text('lon', 'lat', 'map_depth', source=map_data_one_slice_depth_bokeh,\ text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay') # ------------------------------ map_view.line('lon', 'lat', source=map_line_bokeh, line_dash=[8,2,8,2], line_color='#00ff00',\ nonselection_line_alpha=1.0, line_width=5.,\ nonselection_line_color='black') map_view.text([style_parameter['cross_default_lon0']],[style_parameter['cross_default_lat0']], ['A'], \ text_font_size=style_parameter['title_font_size'],text_align='left') map_view.text([style_parameter['cross_default_lon1']],[style_parameter['cross_default_lat1']], ['B'], \ text_font_size=style_parameter['title_font_size'],text_align='left') # ------------------------------ # change style map_view.title.text_font_size = style_parameter['title_font_size'] map_view.title.align = 'center' map_view.title.text_font_style = 'normal' map_view.xaxis.axis_label = style_parameter['map_view_xlabel'] map_view.xaxis.axis_label_text_font_style = 'normal' map_view.xaxis.axis_label_text_font_size = xlabel_fontsize map_view.xaxis.major_label_text_font_size = xlabel_fontsize map_view.yaxis.axis_label = style_parameter['map_view_ylabel'] map_view.yaxis.axis_label_text_font_style = 'normal' map_view.yaxis.axis_label_text_font_size = xlabel_fontsize map_view.yaxis.major_label_text_font_size = xlabel_fontsize map_view.xgrid.grid_line_color = None map_view.ygrid.grid_line_color = None map_view.toolbar.logo = None map_view.toolbar_location = 'above' map_view.toolbar_sticky = False # ============================== # plot colorbar colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \ plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title']) colorbar_fig.toolbar_location=None colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\ color='palette_r',source=colorbar_data_one_slice_bokeh) colorbar_fig.yaxis[0].ticker=FixedTicker(ticks=[]) colorbar_fig.xgrid.grid_line_color = None colorbar_fig.ygrid.grid_line_color = None colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f") colorbar_fig.title.text_font_size = xlabel_fontsize colorbar_fig.title.align = 'center' colorbar_fig.title.text_font_style = 'normal' # ============================== # annotating text annotating_fig01 = Div(text=style_parameter['annotating_html01'], \ width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height']) annotating_fig02 = Div(text="""<p style="font-size:16px">""", \ width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height']) # ============================== # plot cross-section along latitude cross_section_plot_width = int(style_parameter['cross_plot_height']*1.0/plot_depth*plot_lon/10.) cross_view = Figure(plot_width=cross_section_plot_width, plot_height=style_parameter['cross_plot_height'], \ tools=style_parameter['cross_view_tools'], title=style_parameter['cross_view_title'], \ y_range=[plot_depth, -30],\ x_range=[0, plot_lon]) cross_view.image_rgba('cross_data',x='x',\ y='y',dw='dw',dh='dh',\ source=cross_data_bokeh, level='image') cross_view.text([plot_lon*0.1], [-10], ['A'], \ text_font_size=style_parameter['title_font_size'],text_align='left',level='underlay') cross_view.text([plot_lon*0.9], [-10], ['B'], \ text_font_size=style_parameter['title_font_size'],text_align='left',level='underlay') # ------------------------------ # change style cross_view.title.text_font_size = style_parameter['title_font_size'] cross_view.title.align = 'center' cross_view.title.text_font_style = 'normal' cross_view.xaxis.axis_label = style_parameter['cross_view_xlabel'] cross_view.xaxis.axis_label_text_font_style = 'normal' cross_view.xaxis.axis_label_text_font_size = xlabel_fontsize cross_view.xaxis.major_label_text_font_size = xlabel_fontsize cross_view.yaxis.axis_label = style_parameter['cross_view_ylabel'] cross_view.yaxis.axis_label_text_font_style = 'normal' cross_view.yaxis.axis_label_text_font_size = xlabel_fontsize cross_view.yaxis.major_label_text_font_size = xlabel_fontsize cross_view.xgrid.grid_line_color = None cross_view.ygrid.grid_line_color = None cross_view.toolbar.logo = None cross_view.toolbar_location = 'right' cross_view.toolbar_sticky = False # ============================== colorbar_fig_right = Figure(tools=[], y_range=(0,0.1),plot_width=cross_section_plot_width, \ plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title']) colorbar_fig_right.toolbar_location=None colorbar_fig_right.quad(top=colorbar_top_cross,bottom=colorbar_bottom_cross,\ left=colorbar_left_cross,right=colorbar_right_cross,\ color=my_palette) colorbar_fig_right.yaxis[0].ticker=FixedTicker(ticks=[]) colorbar_fig_right.xgrid.grid_line_color = None colorbar_fig_right.ygrid.grid_line_color = None colorbar_fig_right.xaxis.axis_label_text_font_size = xlabel_fontsize colorbar_fig_right.xaxis.major_label_text_font_size = xlabel_fontsize colorbar_fig_right.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f") colorbar_fig_right.title.text_font_size = xlabel_fontsize colorbar_fig_right.title.align = 'center' colorbar_fig_right.title.text_font_style = 'normal' # ============================== output_file(filename,title=style_parameter['html_title'], mode=style_parameter['library_source']) left_column = Column(depth_slider, map_view, colorbar_fig, annotating_fig01, width=style_parameter['left_column_width']) right_column = Column(annotating_fig02, cross_view, colorbar_fig_right, width=cross_section_plot_width) layout = Row(left_column, right_column, height=800) save(layout)
selected = select_facts() source = ColumnDataSource(data=dict(x=[], y=[], color=[])) source.data.update( ColumnDataSource( dict(x=selected["x"].astype(object), y=selected["y"].astype(object), color=selected["color"].astype(object))).data) p = Figure(plot_height=900, plot_width=900, title="", toolbar_location=None, x_range=list(set(source.data.get("x"))), y_range=list(set(source.data.get("y")))) p.rect(x="x", y="y", source=source, color="color", width=1, height=1) p.xaxis.major_label_orientation = pi / 4 p.yaxis.major_label_orientation = pi / 4 controls = [top_n, x_axis, y_axis] for control in controls: control.on_change('value', update) inputs = HBox(VBoxForm(*controls), width=300) update(None, None, None) # initial load of the data layout = HBox(inputs, p) curdoc().add_root(layout)
def plot_3DModel_bokeh(filename, map_data_all_slices, map_depth_all_slices, \ color_range_all_slices, profile_data_all, boundary_data, \ style_parameter): ''' Plot shear velocity maps and velocity profiles using bokeh Input: filename is the filename of the resulting html file map_data_all_slices contains the velocity model parameters saved for map view plots map_depth_all_slices is a list of depths color_range_all_slices is a list of color ranges profile_data_all constains the velocity model parameters saved for profile plots boundary_data is a list of boundaries style_parameter contains plotting parameters Output: None ''' xlabel_fontsize = style_parameter['xlabel_fontsize'] # colorbar_data_all_left = [] colorbar_data_all_right = [] map_view_ndepth = style_parameter['map_view_ndepth'] ncolor = len(palette) colorbar_top = [0.1 for i in range(ncolor)] colorbar_bottom = [0 for i in range(ncolor)] map_data_all_slices_depth = [] for idepth in range(map_view_ndepth): color_min = color_range_all_slices[idepth][0] color_max = color_range_all_slices[idepth][1] color_step = (color_max - color_min) * 1. / ncolor colorbar_left = np.linspace(color_min, color_max - color_step, ncolor) colorbar_right = np.linspace(color_min + color_step, color_max, ncolor) colorbar_data_all_left.append(colorbar_left) colorbar_data_all_right.append(colorbar_right) map_depth = map_depth_all_slices[idepth] map_data_all_slices_depth.append( 'Depth: {0:8.1f} km'.format(map_depth)) # palette_r = palette[::-1] # data for the colorbar colorbar_data_one_slice = {} colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[ style_parameter['map_view_default_index']] colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[ style_parameter['map_view_default_index']] colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom,\ colorbar_left=colorbar_data_one_slice['colorbar_left'],\ colorbar_right=colorbar_data_one_slice['colorbar_right'],\ palette_r=palette_r)) colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\ colorbar_data_all_right=colorbar_data_all_right)) # map_view_label_lon = style_parameter['map_view_depth_label_lon'] map_view_label_lat = style_parameter['map_view_depth_label_lat'] map_data_one_slice_depth = map_data_all_slices_depth[ style_parameter['map_view_default_index']] map_data_one_slice_depth_bokeh = ColumnDataSource(data=dict(lat=[map_view_label_lat], lon=[map_view_label_lon], map_depth=[map_data_one_slice_depth], left=[style_parameter['profile_plot_xmin']], \ right=[style_parameter['profile_plot_xmax']])) # map_view_default_index = style_parameter['map_view_default_index'] #map_data_one_slice = map_data_all_slices[map_view_default_index] # map_color_all_slices = [] for i in range(len(map_data_all_slices)): vmin, vmax = color_range_all_slices[i] map_color = val_to_rgb(map_data_all_slices[i], palette_r, vmin, vmax) map_color_2d = map_color.view('uint32').reshape(map_color.shape[:2]) map_color_all_slices.append(map_color_2d) map_color_one_slice = map_color_all_slices[map_view_default_index] # map_data_one_slice_bokeh = ColumnDataSource(data=dict(x=[style_parameter['map_view_image_lon_min']],\ y=[style_parameter['map_view_image_lat_min']],dw=[style_parameter['nlon']*style_parameter['dlon']],\ dh=[style_parameter['nlat']*style_parameter['dlat']],map_data_one_slice=[map_color_one_slice])) map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices=map_color_all_slices,\ map_data_all_slices_depth=map_data_all_slices_depth)) # ------------------------------ nprofile = len(profile_data_all) grid_lat_list = [] grid_lon_list = [] width_list = [] height_list = [] for iprofile in range(nprofile): aprofile = profile_data_all[iprofile] grid_lat_list.append(aprofile['lat']) grid_lon_list.append(aprofile['lon']) width_list.append(style_parameter['map_view_grid_width']) height_list.append(style_parameter['map_view_grid_height']) grid_data_bokeh = ColumnDataSource(data=dict(lon=grid_lon_list,lat=grid_lat_list,\ width=width_list, height=height_list)) profile_default_index = style_parameter['profile_default_index'] selected_dot_on_map_bokeh = ColumnDataSource(data=dict(lat=[grid_lat_list[profile_default_index]], \ lon=[grid_lon_list[profile_default_index]], \ width=[style_parameter['map_view_grid_width']],\ height=[style_parameter['map_view_grid_height']],\ index=[profile_default_index])) # ------------------------------ profile_vs_all = [] profile_depth_all = [] profile_ndepth = style_parameter['profile_ndepth'] profile_lat_label_list = [] profile_lon_label_list = [] for iprofile in range(nprofile): aprofile = profile_data_all[iprofile] vs_raw = aprofile['vs'] top_raw = aprofile['top'] profile_lat_label_list.append('Lat: {0:12.1f}'.format(aprofile['lat'])) profile_lon_label_list.append('Lon: {0:12.1f}'.format(aprofile['lon'])) vs_plot = [] depth_plot = [] for idepth in range(profile_ndepth): vs_plot.append(vs_raw[idepth]) depth_plot.append(top_raw[idepth]) vs_plot.append(vs_raw[idepth]) depth_plot.append(top_raw[idepth + 1]) profile_vs_all.append(vs_plot) profile_depth_all.append(depth_plot) profile_data_all_bokeh = ColumnDataSource(data=dict(profile_vs_all=profile_vs_all, \ profile_depth_all=profile_depth_all)) selected_profile_data_bokeh = ColumnDataSource(data=dict(vs=profile_vs_all[profile_default_index],\ depth=profile_depth_all[profile_default_index])) selected_profile_lat_label_bokeh = ColumnDataSource(data=\ dict(x=[style_parameter['profile_lat_label_x']], y=[style_parameter['profile_lat_label_y']],\ lat_label=[profile_lat_label_list[profile_default_index]])) selected_profile_lon_label_bokeh = ColumnDataSource(data=\ dict(x=[style_parameter['profile_lon_label_x']], y=[style_parameter['profile_lon_label_y']],\ lon_label=[profile_lon_label_list[profile_default_index]])) all_profile_lat_label_bokeh = ColumnDataSource(data=dict( profile_lat_label_list=profile_lat_label_list)) all_profile_lon_label_bokeh = ColumnDataSource(data=dict( profile_lon_label_list=profile_lon_label_list)) # button_ndepth = style_parameter['button_ndepth'] button_data_all_vs = [] button_data_all_vp = [] button_data_all_rho = [] button_data_all_top = [] for iprofile in range(nprofile): aprofile = profile_data_all[iprofile] button_data_all_vs.append(aprofile['vs'][:button_ndepth]) button_data_all_vp.append(aprofile['vp'][:button_ndepth]) button_data_all_rho.append(aprofile['rho'][:button_ndepth]) button_data_all_top.append(aprofile['top'][:button_ndepth]) button_data_all_bokeh = ColumnDataSource(data=dict(button_data_all_vs=button_data_all_vs,\ button_data_all_vp=button_data_all_vp,\ button_data_all_rho=button_data_all_rho,\ button_data_all_top=button_data_all_top)) # ============================== map_view = Figure(plot_width=style_parameter['map_view_plot_width'], plot_height=style_parameter['map_view_plot_height'], \ tools=style_parameter['map_view_tools'], title=style_parameter['map_view_title'], \ y_range=[style_parameter['map_view_figure_lat_min'], style_parameter['map_view_figure_lat_max']],\ x_range=[style_parameter['map_view_figure_lon_min'], style_parameter['map_view_figure_lon_max']]) # map_view.image_rgba('map_data_one_slice',x='x',\ y='y',dw='dw',dh='dh', source=map_data_one_slice_bokeh, level='image') depth_slider_callback = CustomJS(args=dict(map_data_one_slice_bokeh=map_data_one_slice_bokeh,\ map_data_all_slices_bokeh=map_data_all_slices_bokeh,\ colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh,\ colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\ map_data_one_slice_depth_bokeh=map_data_one_slice_depth_bokeh), code=""" var d_index = Math.round(cb_obj.value) var map_data_all_slices = map_data_all_slices_bokeh.data map_data_one_slice_bokeh.data['map_data_one_slice'] = [map_data_all_slices['map_data_all_slices'][d_index]] map_data_one_slice_bokeh.change.emit() var color_data_all_slices = colorbar_data_all_slices_bokeh.data colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][d_index] colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][d_index] colorbar_data_one_slice_bokeh.change.emit() map_data_one_slice_depth_bokeh.data['map_depth'] = [map_data_all_slices['map_data_all_slices_depth'][d_index]] map_data_one_slice_depth_bokeh.change.emit() """) depth_slider = Slider(start=0, end=style_parameter['map_view_ndepth']-1, \ value=map_view_default_index, step=1, \ width=style_parameter['map_view_plot_width'],\ title=style_parameter['depth_slider_title'], height=50) depth_slider.js_on_change('value', depth_slider_callback) depth_slider_callback.args["depth_index"] = depth_slider # ------------------------------ # add boundaries to map view # country boundaries map_view.multi_line(boundary_data['country']['longitude'],\ boundary_data['country']['latitude'],color='black',\ line_width=2, level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # marine boundaries map_view.multi_line(boundary_data['marine']['longitude'],\ boundary_data['marine']['latitude'],color='black',\ level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # shoreline boundaries map_view.multi_line(boundary_data['shoreline']['longitude'],\ boundary_data['shoreline']['latitude'],color='black',\ line_width=2, level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # state boundaries map_view.multi_line(boundary_data['state']['longitude'],\ boundary_data['state']['latitude'],color='black',\ level='underlay',nonselection_line_alpha=1.0,\ nonselection_line_color='black') # ------------------------------ # add depth label map_view.rect(style_parameter['map_view_depth_box_lon'], style_parameter['map_view_depth_box_lat'], \ width=style_parameter['map_view_depth_box_width'], height=style_parameter['map_view_depth_box_height'], \ width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay') map_view.text('lon', 'lat', 'map_depth', source=map_data_one_slice_depth_bokeh,\ text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay') # ------------------------------ map_view.rect('lon', 'lat', width='width', \ width_units='screen', height='height', \ height_units='screen', line_color='gray', line_alpha=0.5, \ selection_line_color='gray', selection_line_alpha=0.5, selection_fill_color=None,\ nonselection_line_color='gray',nonselection_line_alpha=0.5, nonselection_fill_color=None,\ source=grid_data_bokeh, color=None, line_width=1, level='glyph') map_view.rect('lon', 'lat',width='width', \ width_units='screen', height='height', \ height_units='screen', line_color='#00ff00', line_alpha=1.0, \ source=selected_dot_on_map_bokeh, fill_color=None, line_width=3.,level='glyph') # ------------------------------ grid_data_js = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh, \ grid_data_bokeh=grid_data_bokeh,\ profile_data_all_bokeh=profile_data_all_bokeh,\ selected_profile_data_bokeh=selected_profile_data_bokeh,\ selected_profile_lat_label_bokeh=selected_profile_lat_label_bokeh,\ selected_profile_lon_label_bokeh=selected_profile_lon_label_bokeh, \ all_profile_lat_label_bokeh=all_profile_lat_label_bokeh, \ all_profile_lon_label_bokeh=all_profile_lon_label_bokeh, \ ), code=""" var inds = cb_obj.indices var grid_data = grid_data_bokeh.data selected_dot_on_map_bokeh.data['lat'] = [grid_data['lat'][inds]] selected_dot_on_map_bokeh.data['lon'] = [grid_data['lon'][inds]] selected_dot_on_map_bokeh.data['index'] = [inds] selected_dot_on_map_bokeh.change.emit() var profile_data_all = profile_data_all_bokeh.data selected_profile_data_bokeh.data['vs'] = profile_data_all['profile_vs_all'][inds] selected_profile_data_bokeh.data['depth'] = profile_data_all['profile_depth_all'][inds] selected_profile_data_bokeh.change.emit() var all_profile_lat_label = all_profile_lat_label_bokeh.data['profile_lat_label_list'] var all_profile_lon_label = all_profile_lon_label_bokeh.data['profile_lon_label_list'] selected_profile_lat_label_bokeh.data['lat_label'] = [all_profile_lat_label[inds]] selected_profile_lon_label_bokeh.data['lon_label'] = [all_profile_lon_label[inds]] selected_profile_lat_label_bokeh.change.emit() selected_profile_lon_label_bokeh.change.emit() """) grid_data_bokeh.selected.js_on_change('indices', grid_data_js) # ------------------------------ # change style map_view.title.text_font_size = style_parameter['title_font_size'] map_view.title.align = 'center' map_view.title.text_font_style = 'normal' map_view.xaxis.axis_label = style_parameter['map_view_xlabel'] map_view.xaxis.axis_label_text_font_style = 'normal' map_view.xaxis.axis_label_text_font_size = xlabel_fontsize map_view.xaxis.major_label_text_font_size = xlabel_fontsize map_view.yaxis.axis_label = style_parameter['map_view_ylabel'] map_view.yaxis.axis_label_text_font_style = 'normal' map_view.yaxis.axis_label_text_font_size = xlabel_fontsize map_view.yaxis.major_label_text_font_size = xlabel_fontsize map_view.xgrid.grid_line_color = None map_view.ygrid.grid_line_color = None map_view.toolbar.logo = None map_view.toolbar_location = 'above' map_view.toolbar_sticky = False # ============================== # plot colorbar colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \ plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title']) colorbar_fig.toolbar_location = None colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\ color='palette_r',source=colorbar_data_one_slice_bokeh) colorbar_fig.yaxis[0].ticker = FixedTicker(ticks=[]) colorbar_fig.xgrid.grid_line_color = None colorbar_fig.ygrid.grid_line_color = None colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f") colorbar_fig.title.text_font_size = xlabel_fontsize colorbar_fig.title.align = 'center' colorbar_fig.title.text_font_style = 'normal' # ============================== profile_xrange = Range1d(start=style_parameter['profile_plot_xmin'], end=style_parameter['profile_plot_xmax']) profile_yrange = Range1d(start=style_parameter['profile_plot_ymax'], end=style_parameter['profile_plot_ymin']) profile_fig = Figure(plot_width=style_parameter['profile_plot_width'], plot_height=style_parameter['profile_plot_height'],\ x_range=profile_xrange, y_range=profile_yrange, tools=style_parameter['profile_tools'],\ title=style_parameter['profile_title']) profile_fig.line('vs', 'depth', source=selected_profile_data_bokeh, line_width=2, line_color='black') # ------------------------------ # add lat, lon profile_fig.rect([style_parameter['profile_label_box_x']], [style_parameter['profile_label_box_y']],\ width=style_parameter['profile_label_box_width'], height=style_parameter['profile_label_box_height'],\ width_units='screen', height_units='screen', color='#FFFFFF', line_width=1., line_color='black',\ level='underlay') profile_fig.text('x', 'y', 'lat_label', source=selected_profile_lat_label_bokeh) profile_fig.text('x', 'y', 'lon_label', source=selected_profile_lon_label_bokeh) # ------------------------------ # change style profile_fig.xaxis.axis_label = style_parameter['profile_xlabel'] profile_fig.xaxis.axis_label_text_font_style = 'normal' profile_fig.xaxis.axis_label_text_font_size = xlabel_fontsize profile_fig.xaxis.major_label_text_font_size = xlabel_fontsize profile_fig.yaxis.axis_label = style_parameter['profile_ylabel'] profile_fig.yaxis.axis_label_text_font_style = 'normal' profile_fig.yaxis.axis_label_text_font_size = xlabel_fontsize profile_fig.yaxis.major_label_text_font_size = xlabel_fontsize profile_fig.xgrid.grid_line_dash = [4, 2] profile_fig.ygrid.grid_line_dash = [4, 2] profile_fig.title.text_font_size = style_parameter['title_font_size'] profile_fig.title.align = 'center' profile_fig.title.text_font_style = 'normal' profile_fig.toolbar_location = 'above' profile_fig.toolbar_sticky = False profile_fig.toolbar.logo = None # ============================== profile_slider_callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\ grid_data_bokeh=grid_data_bokeh, \ profile_data_all_bokeh=profile_data_all_bokeh, \ selected_profile_data_bokeh=selected_profile_data_bokeh,\ selected_profile_lat_label_bokeh=selected_profile_lat_label_bokeh,\ selected_profile_lon_label_bokeh=selected_profile_lon_label_bokeh, \ all_profile_lat_label_bokeh=all_profile_lat_label_bokeh, \ all_profile_lon_label_bokeh=all_profile_lon_label_bokeh), code=""" var p_index = Math.round(cb_obj.value) var grid_data = grid_data_bokeh.data selected_dot_on_map_bokeh.data['lat'] = [grid_data['lat'][p_index]] selected_dot_on_map_bokeh.data['lon'] = [grid_data['lon'][p_index]] selected_dot_on_map_bokeh.data['index'] = [p_index] selected_dot_on_map_bokeh.change.emit() var profile_data_all = profile_data_all_bokeh.data selected_profile_data_bokeh.data['vs'] = profile_data_all['profile_vs_all'][p_index] selected_profile_data_bokeh.data['depth'] = profile_data_all['profile_depth_all'][p_index] selected_profile_data_bokeh.change.emit() var all_profile_lat_label = all_profile_lat_label_bokeh.data['profile_lat_label_list'] var all_profile_lon_label = all_profile_lon_label_bokeh.data['profile_lon_label_list'] selected_profile_lat_label_bokeh.data['lat_label'] = [all_profile_lat_label[p_index]] selected_profile_lon_label_bokeh.data['lon_label'] = [all_profile_lon_label[p_index]] selected_profile_lat_label_bokeh.change.emit() selected_profile_lon_label_bokeh.change.emit() """) profile_slider = Slider(start=0, end=nprofile-1, value=style_parameter['profile_default_index'], \ step=1, title=style_parameter['profile_slider_title'], \ width=style_parameter['profile_plot_width'], height=50) profile_slider_callback.args['profile_index'] = profile_slider profile_slider.js_on_change('value', profile_slider_callback) # ============================== simple_text_button_callback = CustomJS(args=dict(button_data_all_bokeh=button_data_all_bokeh,\ selected_dot_on_map_bokeh=selected_dot_on_map_bokeh), \ code=""" var index = selected_dot_on_map_bokeh.data['index'] var button_data_vs = button_data_all_bokeh.data['button_data_all_vs'][index] var button_data_vp = button_data_all_bokeh.data['button_data_all_vp'][index] var button_data_rho = button_data_all_bokeh.data['button_data_all_rho'][index] var button_data_top = button_data_all_bokeh.data['button_data_all_top'][index] var csvContent = "" var i = 0 var temp = csvContent temp += "# Layer Top (km) Vs(km/s) Vp(km/s) Rho(g/cm^3) \\n" while(button_data_vp[i]) { temp+=button_data_top[i].toPrecision(6) + " " + button_data_vs[i].toPrecision(4) + " " + \ button_data_vp[i].toPrecision(4) + " " + button_data_rho[i].toPrecision(4) + "\\n" i = i + 1 } const blob = new Blob([temp], { type: 'text/csv;charset=utf-8;' }) const link = document.createElement('a'); link.href = URL.createObjectURL(blob); link.download = 'vel_model.txt'; link.target = '_blank' link.style.visibility = 'hidden' link.dispatchEvent(new MouseEvent('click')) """) simple_text_button = Button( label=style_parameter['simple_text_button_label'], button_type='default', width=style_parameter['button_width']) simple_text_button.js_on_click(simple_text_button_callback) # ------------------------------ model96_button_callback = CustomJS(args=dict(button_data_all_bokeh=button_data_all_bokeh,\ selected_dot_on_map_bokeh=selected_dot_on_map_bokeh), \ code=""" var index = selected_dot_on_map_bokeh.data['index'] var lat = selected_dot_on_map_bokeh.data['lat'] var lon = selected_dot_on_map_bokeh.data['lon'] var button_data_vs = button_data_all_bokeh.data['button_data_all_vs'][index] var button_data_vp = button_data_all_bokeh.data['button_data_all_vp'][index] var button_data_rho = button_data_all_bokeh.data['button_data_all_rho'][index] var button_data_top = button_data_all_bokeh.data['button_data_all_top'][index] var csvContent = "" var i = 0 var temp = csvContent temp += "MODEL." + index + " \\n" temp += "ShearVelocityModel Lat: "+ lat +" Lon: " + lon + "\\n" temp += "ISOTROPIC \\n" temp += "KGS \\n" temp += "SPHERICAL EARTH \\n" temp += "1-D \\n" temp += "CONSTANT VELOCITY \\n" temp += "LINE08 \\n" temp += "LINE09 \\n" temp += "LINE10 \\n" temp += "LINE11 \\n" temp += " H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS \\n" while(button_data_vp[i+1]) { var thickness = button_data_top[i+1] - button_data_top[i] temp+=" " +thickness.toPrecision(6) + " " + button_data_vp[i].toPrecision(4) + " " + button_data_vs[i].toPrecision(4) \ + " " + button_data_rho[i].toPrecision(4) + " 0.00 0.00 0.00 0.00 1.00 1.00" + "\\n" i = i + 1 } const blob = new Blob([temp], { type: 'text/csv;charset=utf-8;' }) const link = document.createElement('a'); link.href = URL.createObjectURL(blob); link.download = 'vel_model96.txt'; link.target = '_blank' link.style.visibility = 'hidden' link.dispatchEvent(new MouseEvent('click')) """) model96_button = Button(label=style_parameter['model96_button_label'], button_type='default', width=style_parameter['button_width']) model96_button.js_on_click(model96_button_callback) # ============================== # annotating text annotating_fig01 = Div(text=style_parameter['annotating_html01'], \ width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height']) annotating_fig02 = Div(text=style_parameter['annotating_html02'],\ width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height']) # ============================== output_file(filename, title=style_parameter['html_title'], mode=style_parameter['library_source']) left_column = Column(depth_slider, map_view, colorbar_fig, annotating_fig01, width=style_parameter['left_column_width']) button_pannel = Row(simple_text_button, model96_button) right_column = Column(profile_slider, profile_fig, button_pannel, annotating_fig02, width=style_parameter['right_column_width']) layout = Row(left_column, right_column) save(layout)
def plotTracks(preds,tag,n=3,title=None,width=820,height=None, seqdepot=None,bcell=None,exp=None): """Plot epitopes as parallel tracks""" from bokeh.models import Range1d,HoverTool,FactorRange,Grid,GridPlot,ColumnDataSource from bokeh.plotting import Figure alls=1 if title == None: title=tag for m in preds: alls += len(preds[m].data.groupby('allele')) if height==None: height = 130+10*alls yrange = Range1d(start=0, end=alls+3) plot = Figure(title=title,title_text_font_size="11pt",plot_width=width, plot_height=height, y_range=yrange, y_axis_label='allele', tools="xpan, xwheel_zoom, resize, hover, reset, save", background_fill="#FAFAFA", toolbar_location="below") h=3 if bcell != None: plotBCell(plot, bcell, alls) if seqdepot != None: plotAnnotations(plot,seqdepot) if exp is not None: plotExp(plot, exp) #plotRegions(plot) #lists for hover data #we plot all rects at once x=[];y=[];allele=[];widths=[];clrs=[];peptide=[] predictor=[];position=[];score=[];leg=[] l=80 for m in preds: pred = preds[m] cmap = mpl.cm.get_cmap(colormaps[m]) df = pred.data sckey = pred.scorekey pb = pred.getPromiscuousBinders(data=df,n=n) if len(pb) == 0: continue l = pred.getLength() grps = df.groupby('allele') alleles = grps.groups.keys() if len(pb)==0: continue c=colors[m] leg.append(m) for a,g in grps: b = pred.getBinders(data=g) b = b[b.pos.isin(pb.pos)] #only promiscuous b.sort('pos',inplace=True) scores = b[sckey].values score.extend(scores) pos = b['pos'].values position.extend(pos) x.extend(pos+(l/2.0)) #offset as coords are rect centers widths.extend([l for i in scores]) clrs.extend([c for i in scores]) y.extend([h+0.5 for i in scores]) alls = [a for i in scores] allele.extend(alls) peptide.extend(list(b.peptide.values)) predictor.extend([m for i in scores]) h+=1 source = ColumnDataSource(data=dict(x=x,y=y,allele=allele,peptide=peptide, predictor=predictor,position=position,score=score)) plot.rect(x,y, width=widths, height=0.8, #x_range=Range1d(start=1, end=seqlen+l), color=clrs,line_color='gray',alpha=0.7,source=source) hover = plot.select(dict(type=HoverTool)) hover.tooltips = OrderedDict([ ("allele", "@allele"), ("position", "@position"), ("peptide", "@peptide"), ("score", "@score"), ("predictor", "@predictor"), ]) seqlen = pred.data.pos.max()+l plot.set(x_range=Range1d(start=0, end=seqlen+1)) plot.xaxis.major_label_text_font_size = "8pt" plot.xaxis.major_label_text_font_style = "bold" plot.ygrid.grid_line_color = None plot.yaxis.major_label_text_font_size = '0pt' plot.xaxis.major_label_orientation = np.pi/4 #js,html = embedPlot(plot) script, div = embedPlot(plot) return script, div
# create a data source to enable refreshing of fill & text color source = ColumnDataSource( data=dict(color=[hex_color], text_color=[text_color])) # create first plot, as a rect() glyph and centered text label, with fill and text color taken from source p1 = Figure(x_range=(-8, 8), y_range=(-4, 4), plot_width=600, plot_height=300, title='move sliders to change', tools='') p1.rect(0, 0, width=18, height=10, fill_color='color', line_color='black', source=source) p1.text(0, 0, text='color', text_color='text_color', alpha=0.6667, text_font_size='36pt', text_baseline='middle', text_align='center', source=source) # the callback function to update the color of the block and associated label text
TOOLS="tap, reset" hover = HoverTool(names = ["glyphs"], tooltips=[("Cooccurring", "@x, @y"), ("Counts", "@counts"), ("wikidataID for this item (x-axis)", "@wikidataID")]) fig = Figure(plot_height=700, plot_width=700, title="", tools=TOOLS, toolbar_location="above", x_range=new_x_factors[:top_n.value], y_range=new_y_factors[:top_n.value]) fig.add_tools(hover) update(None, None, None) # initial load of the data rects = fig.rect(x="x", y="y", source=source, color="color", width=0.95, height=0.95, name="glyphs") fig.xaxis.major_label_orientation = np.pi/4 fig.yaxis.major_label_orientation = np.pi/4 fig.xgrid.visible = False fig.ygrid.visible = False url = "https://www.wikidata.org/wiki/@wikidataID" taptool = fig.select(type=TapTool) taptool.callback = OpenURL(url=url) renderer = fig.select(name="glyphs")[0] renderer.selection_glyph = renderer.glyph renderer.nonselection_glyph = renderer.glyph renderer.hover_glyph = renderer.glyph # table_columns = [TableColumn(field="x", title="X-axis facts"),