def solve(self, bounds=None): """Solve the variational problem. :arg bounds: Optional bounds on the solution (lower, upper). ``lower`` and ``upper`` must both be :class:`~.Function`\s. or :class:`~.Vector`\s. .. note:: If bounds are provided the ``snes_type`` must be set to ``vinewtonssls`` or ``vinewtonrsls``. """ # Make sure appcontext is attached to the DM before we solve. dm = self.snes.getDM() dmhooks.set_appctx(dm, self._ctx) # Apply the boundary conditions to the initial guess. for bc in self._problem.bcs: bc.apply(self._problem.u) if bounds is not None: lower, upper = bounds with lower.dat.vec_ro as lb, upper.dat.vec_ro as ub: self.snes.setVariableBounds(lb, ub) work = self._work.dat # Ensure options database has full set of options (so monitors work right) with self.inserted_options(): with work.vec as v: with self._problem.u.dat.vec as u: u.copy(v) self.snes.solve(None, v) v.copy(u) solving_utils.check_snes_convergence(self.snes)
def __init__(self, problem, **kwargs): """ :arg problem: A :class:`NonlinearVariationalProblem` to solve. :kwarg nullspace: an optional :class:`.VectorSpaceBasis` (or :class:`.MixedVectorSpaceBasis`) spanning the null space of the operator. :kwarg transpose_nullspace: as for the nullspace, but used to make the right hand side consistent. :kwarg near_nullspace: as for the nullspace, but used to specify the near nullspace (for multigrid solvers). :kwarg solver_parameters: Solver parameters to pass to PETSc. This should be a dict mapping PETSc options to values. :kwarg options_prefix: an optional prefix used to distinguish PETSc options. If not provided a unique prefix will be created. Use this option if you want to pass options to the solver from the command line in addition to through the ``solver_parameters`` dict. Example usage of the ``solver_parameters`` option: to set the nonlinear solver type to just use a linear solver, use .. code-block:: python {'snes_type': 'ksponly'} PETSc flag options should be specified with `bool` values. For example: .. code-block:: python {'snes_monitor': True} """ assert isinstance(problem, NonlinearVariationalProblem) parameters = kwargs.get("solver_parameters") if "parameters" in kwargs: raise TypeError("Use solver_parameters, not parameters") nullspace = kwargs.get("nullspace") nullspace_T = kwargs.get("transpose_nullspace") near_nullspace = kwargs.get("near_nullspace") options_prefix = kwargs.get("options_prefix") super(NonlinearVariationalSolver, self).__init__(parameters, options_prefix) # Allow anything, interpret "matfree" as matrix_free. mat_type = self.parameters.get("mat_type") pmat_type = self.parameters.get("pmat_type") matfree = mat_type == "matfree" pmatfree = pmat_type == "matfree" appctx = kwargs.get("appctx") ctx = solving_utils._SNESContext(problem, mat_type=mat_type, pmat_type=pmat_type, appctx=appctx) # No preconditioner by default for matrix-free if (problem.Jp is not None and pmatfree) or matfree: self.set_default_parameter("pc_type", "none") elif ctx.is_mixed: # Mixed problem, use jacobi pc if user has not supplied # one. self.set_default_parameter("pc_type", "jacobi") self.snes = PETSc.SNES().create(comm=problem.dm.comm) self._problem = problem self._ctx = ctx self._work = type(problem.u)(problem.u.function_space()) self.snes.setDM(problem.dm) ctx.set_function(self.snes) ctx.set_jacobian(self.snes) ctx.set_nullspace(nullspace, problem.J.arguments()[0].function_space()._ises, transpose=False, near=False) ctx.set_nullspace(nullspace_T, problem.J.arguments()[1].function_space()._ises, transpose=True, near=False) ctx.set_nullspace(near_nullspace, problem.J.arguments()[0].function_space()._ises, transpose=False, near=True) # Set from options now, so that people who want to noodle with # the snes object directly (mostly Patrick), can. We need the # DM with an app context in place so that if the DM is active # on a subKSP the context is available. dm = self.snes.getDM() dmhooks.set_appctx(dm, self._ctx) self.set_from_options(self.snes)
def __init__(self, problem, **kwargs): """ :arg problem: A :class:`NonlinearVariationalProblem` to solve. :kwarg nullspace: an optional :class:`.VectorSpaceBasis` (or :class:`.MixedVectorSpaceBasis`) spanning the null space of the operator. :kwarg transpose_nullspace: as for the nullspace, but used to make the right hand side consistent. :kwarg near_nullspace: as for the nullspace, but used to specify the near nullspace (for multigrid solvers). :kwarg solver_parameters: Solver parameters to pass to PETSc. This should be a dict mapping PETSc options to values. :kwarg options_prefix: an optional prefix used to distinguish PETSc options. If not provided a unique prefix will be created. Use this option if you want to pass options to the solver from the command line in addition to through the ``solver_parameters`` dict. :kwarg pre_jacobian_callback: A user-defined function that will be called immediately before Jacobian assembly. This can be used, for example, to update a coefficient function that has a complicated dependence on the unknown solution. :kwarg pre_function_callback: As above, but called immediately before residual assembly Example usage of the ``solver_parameters`` option: to set the nonlinear solver type to just use a linear solver, use .. code-block:: python {'snes_type': 'ksponly'} PETSc flag options should be specified with `bool` values. For example: .. code-block:: python {'snes_monitor': True} To use the ``pre_jacobian_callback`` or ``pre_function_callback`` functionality, the user-defined function must accept the current solution as a petsc4py Vec. Example usage is given below: .. code-block:: python def update_diffusivity(current_solution): with cursol.dat.vec as v: current_solution.copy(v) solve(trial*test*dx == dot(grad(cursol), grad(test))*dx, diffusivity) solver = NonlinearVariationalSolver(problem, pre_jacobian_callback=update_diffusivity) """ assert isinstance(problem, NonlinearVariationalProblem) parameters = kwargs.get("solver_parameters") if "parameters" in kwargs: raise TypeError("Use solver_parameters, not parameters") nullspace = kwargs.get("nullspace") nullspace_T = kwargs.get("transpose_nullspace") near_nullspace = kwargs.get("near_nullspace") options_prefix = kwargs.get("options_prefix") pre_j_callback = kwargs.get("pre_jacobian_callback") pre_f_callback = kwargs.get("pre_function_callback") super(NonlinearVariationalSolver, self).__init__(parameters, options_prefix) # Allow anything, interpret "matfree" as matrix_free. mat_type = self.parameters.get("mat_type") pmat_type = self.parameters.get("pmat_type") matfree = mat_type == "matfree" pmatfree = pmat_type == "matfree" appctx = kwargs.get("appctx") ctx = solving_utils._SNESContext(problem, mat_type=mat_type, pmat_type=pmat_type, appctx=appctx, pre_jacobian_callback=pre_j_callback, pre_function_callback=pre_f_callback) # No preconditioner by default for matrix-free if (problem.Jp is not None and pmatfree) or matfree: self.set_default_parameter("pc_type", "none") elif ctx.is_mixed: # Mixed problem, use jacobi pc if user has not supplied # one. self.set_default_parameter("pc_type", "jacobi") self.snes = PETSc.SNES().create(comm=problem.dm.comm) self._problem = problem self._ctx = ctx self._work = type(problem.u)(problem.u.function_space()) self.snes.setDM(problem.dm) ctx.set_function(self.snes) ctx.set_jacobian(self.snes) ctx.set_nullspace(nullspace, problem.J.arguments()[0].function_space()._ises, transpose=False, near=False) ctx.set_nullspace(nullspace_T, problem.J.arguments()[1].function_space()._ises, transpose=True, near=False) ctx.set_nullspace(near_nullspace, problem.J.arguments()[0].function_space()._ises, transpose=False, near=True) # Set from options now, so that people who want to noodle with # the snes object directly (mostly Patrick), can. We need the # DM with an app context in place so that if the DM is active # on a subKSP the context is available. dm = self.snes.getDM() dmhooks.set_appctx(dm, self._ctx) self.set_from_options(self.snes)