예제 #1
0
        analyser_wavelength = nfile["/entry/instrument/analyzer%d/wavelength" % (i+1)].value[remove_ghosts]
        analyser_energy = 81.8042051/analyser_wavelength**2

        bank_id = "bank%d" % (i+1)
        det.addComponent(bank_id, idlist=bank_id, root=handle_silicon)
        
        (xbank, ybank, zbank) = pixels_physical_xyz(i)
        det.addComponent(bank_id, bank_id)
        #doc_handle = det.makeTypeElement(bank_id)

        det.addDetectorPixels(bank_id, x=xbank, y=ybank, z=zbank,
                              names=pixel_id, energy=analyser_energy,
                              neutronic=True,
                              nr=distance, ntheta=polar_angle, nphi=azimuthal_angle,)

        det.addDetectorPixelsIdList(bank_id, r=distance, names=pixel_id)

    # Create the diffraction bank information
    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []

    detector_z = [-2.1474825,-1.704594,-1.108373,-0.4135165,0.3181,1.0218315,1.6330115,2.0993535,2.376999]
    detector_x = [1.1649855,1.7484015,2.175541,2.408594,2.422933,2.216378,1.8142005,1.247867,0.5687435]
    detector_y = [-0.001807,-0.001801,-0.0011845,-0.0006885,-0.0013145,-0.001626,-0.001397,0.0003465,-0.0001125]

    for i in range(ELASTIC_BANK_START, ELASTIC_BANK_END+1):
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)
예제 #2
0
def generate_reflection_file(reflection_key):
    r"""

    Parameters
    ----------
    reflection_key: str

    Returns
    -------

    """
    refl = reflections[reflection_key]
    if not os.path.exists(refl['nexus']):
        message = '{} not found. Not creating geometry'.format(refl['nexus'])
        raise FileExistsError(message)
    inst_name = "BASIS"
    # Set header information
    comment = "Created by Michael Reuter and Jose Borreguero"
    # Time needs to be in UTC?
    valid_from = "2014-01-01 00:00:00"

    xml_outfile = '{}_Definition_Si{}.xml'.format(inst_name, reflection_key)
    nfile = h5py.File(refl['nexus'], 'r')

    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-84.0)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1"], distance=["-0.23368"], neutronic=True)

    # Create the inelastic banks information
    det.addComment('INELASTIC DECTECTORS')
    det.addComponent('silicon')
    handle_silicon = det.makeTypeElement("silicon")
    # Slicer for removing ghosts. Due to the mapping, the ghost tubes sit
    # on the same sides of the arrays for all banks.
    remove_ghosts = slice(-INELASTIC_TUBES_NGHOST)

    for i in range(n_inelastic_banks):
        bank_id = "bank%d" % (i + 1)
        pixel_id = nfile["/entry/instrument/bank%d/pixel_id" %
                         (i + 1)].value[remove_ghosts]
        distance = nfile["/entry/instrument/bank%d/distance" %
                         (i + 1)].value[remove_ghosts]
        # theta or polar_angle: angle from the Z-axis towards the X-axis
        polar_angle = nfile["/entry/instrument/bank%d/polar_angle" %
                            (i + 1)].value[remove_ghosts]
        polar_angle *= (180.0 / math.pi)
        # phi or azimuthal_angle: angle in the XY-plane
        azimuthal_angle = nfile["/entry/instrument/bank%d/azimuthal_angle" %
                                (i + 1)].value[remove_ghosts]
        azimuthal_angle *= (180.0 / math.pi)

        analyser_wavelength = nfile["/entry/instrument/analyzer%d/wavelength" %
                                    (i + 1)].value[remove_ghosts]
        analyser_wavelength *= refl['ratio_to_irreducible_hkl']
        analyser_energy = 81.8042051 / analyser_wavelength**2

        det.addComponent(bank_id, idlist=bank_id, root=handle_silicon)

        xbank, ybank, zbank = pixels_physical_xyz(i)
        det.addDetectorPixels(bank_id,
                              x=xbank,
                              y=ybank,
                              z=zbank,
                              names=pixel_id,
                              energy=analyser_energy,
                              nr=distance,
                              ntheta=polar_angle,
                              nphi=azimuthal_angle,
                              output_efixed=refl['efixed'])

        det.addDetectorPixelsIdList(bank_id,
                                    r=distance,
                                    names=pixel_id,
                                    elg="multiple_ranges")

    # Create the diffraction bank information
    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []

    detector_z = [
        -2.1474825, -1.704594, -1.108373, -0.4135165, 0.3181, 1.0218315,
        1.6330115, 2.0993535, 2.376999
    ]
    detector_x = [
        1.1649855, 1.7484015, 2.175541, 2.408594, 2.422933, 2.216378,
        1.8142005, 1.247867, 0.5687435
    ]
    detector_y = [
        -0.001807, -0.001801, -0.0011845, -0.0006885, -0.0013145, -0.001626,
        -0.001397, 0.0003465, -0.0001125
    ]

    for i in range(ELASTIC_BANK_START, ELASTIC_BANK_END + 1):
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)

        k = i - ELASTIC_BANK_START

        x_coord = detector_x[k]
        y_coord = detector_y[k]
        z_coord = detector_z[k]

        det.addDetector(x_coord,
                        y_coord,
                        z_coord,
                        0.0,
                        0.,
                        90.,
                        bank_name,
                        "tube-elastic",
                        facingSample=True)

        idlist.append(ELASTIC_DETECTORID_START + ELASTIC_TUBE_NPIXELS *
                      (i - ELASTIC_BANK_START))
        idlist.append(ELASTIC_DETECTORID_START + ELASTIC_TUBE_NPIXELS *
                      (i - ELASTIC_BANK_START) + ELASTIC_TUBE_NPIXELS - 1)
        idlist.append(None)

    # Diffraction tube information
    det.addComment("ELASTIC TUBE (90 degrees)")
    det.addPixelatedTube("tube-elastic",
                         ELASTIC_TUBE_NPIXELS,
                         ELASTIC_TUBE_LENGTH,
                         "pixel-elastic-tube",
                         neutronic=True,
                         neutronicIsPhysical=True)

    # Set the diffraction pixel Ids
    det.addDetectorIds("elastic", idlist)

    # Creating diffraction pixel
    det.addComment("PIXEL FOR DIFFRACTION TUBES")
    det.addCylinderPixel("pixel-elastic-tube", (0.0, 0.0, 0.0),
                         (0.0, 1.0, 0.0), (ELASTIC_TUBE_WIDTH / 2.0),
                         (ELASTIC_TUBE_LENGTH / ELASTIC_TUBE_NPIXELS))

    det.addComment("PIXEL FOR INELASTIC TUBES")
    det.addCylinderPixel(
        "pixel", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
        INELASTIC_TUBE_WIDTH * (1.0 - INELASTIC_PIXEL_RADIUS_GAP_RATIO) / 2.0,
        INELASTIC_TUBE_LENGTH * (1.0 - INELASTIC_PIXEL_HEIGHT_GAP_RATIO) /
        INELASTIC_TUBE_NPIXEL,
        is_type="detector",
        algebra="cyl-approx")

    det.addComment("MONITOR SHAPE")
    det.addComment("FIXME: Do something real here.")
    det.addDummyMonitor(0.01, 0.03)

    det.addComment("MONITOR IDs")
    det.addMonitorIds(["-1"])

    det.writeGeom(xml_outfile)

    # Always clean after yourself
    nfile.close()
def generate_reflection_file(reflection_key):
    r"""

    Parameters
    ----------
    reflection_key: str

    Returns
    -------

    """
    refl = reflections[reflection_key]
    if not os.path.exists(refl['nexus']):
        message = '{} not found. Not creating geometry'.format(refl['nexus'])
        raise FileExistsError(message)
    inst_name = "BASIS"
    # Set header information
    comment = "Created by Michael Reuter and Jose Borreguero"
    # Time needs to be in UTC?
    valid_from = "2014-01-01 00:00:00"

    xml_outfile = '{}_Definition_Si{}.xml'.format(inst_name, reflection_key)
    nfile = h5py.File(refl['nexus'], 'r')

    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-84.0)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1"], distance=["-0.23368"], neutronic=True)

    # Create the inelastic banks information
    det.addComment('INELASTIC DECTECTORS')
    det.addComponent('silicon')
    handle_silicon = det.makeTypeElement("silicon")
    # Slicer for removing ghosts. Due to the mapping, the ghost tubes sit
    # on the same sides of the arrays for all banks.
    remove_ghosts = slice(-INELASTIC_TUBES_NGHOST)

    for i in range(n_inelastic_banks):
        bank_id = "bank%d" % (i+1)
        pixel_id = nfile["/entry/instrument/bank%d/pixel_id" % (i+1)].value[remove_ghosts]
        distance = nfile["/entry/instrument/bank%d/distance" % (i+1)].value[remove_ghosts]
        # theta or polar_angle: angle from the Z-axis towards the X-axis
        polar_angle = nfile["/entry/instrument/bank%d/polar_angle" % (i+1)].value[remove_ghosts]
        polar_angle *= (180.0/math.pi)
        # phi or azimuthal_angle: angle in the XY-plane
        azimuthal_angle = nfile["/entry/instrument/bank%d/azimuthal_angle" % (i+1)].value[remove_ghosts]
        azimuthal_angle *= (180.0/math.pi)

        analyser_wavelength = nfile["/entry/instrument/analyzer%d/wavelength" % (i+1)].value[remove_ghosts]
        analyser_wavelength *= refl['ratio_to_irreducible_hkl']
        analyser_energy = 81.8042051/analyser_wavelength**2

        det.addComponent(bank_id, idlist=bank_id, root=handle_silicon)

        xbank, ybank, zbank = pixels_physical_xyz(i)
        det.addDetectorPixels(bank_id, x=xbank, y=ybank, z=zbank,
                              names=pixel_id, energy=analyser_energy,
                              nr=distance, ntheta=polar_angle,
                              nphi=azimuthal_angle,
                              output_efixed=refl['efixed'])

        det.addDetectorPixelsIdList(bank_id, r=distance, names=pixel_id,
                                    elg="multiple_ranges")


    # Create the diffraction bank information
    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []

    detector_z = [-2.1474825, -1.704594, -1.108373, -0.4135165, 0.3181,
                  1.0218315, 1.6330115, 2.0993535, 2.376999]
    detector_x = [1.1649855, 1.7484015, 2.175541, 2.408594, 2.422933,
                  2.216378, 1.8142005, 1.247867, 0.5687435]
    detector_y = [-0.001807, -0.001801, -0.0011845, -0.0006885, -0.0013145,
                  -0.001626, -0.001397, 0.0003465, -0.0001125]

    for i in range(ELASTIC_BANK_START, ELASTIC_BANK_END+1):
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)

        k = i - ELASTIC_BANK_START

        x_coord = detector_x[k]
        y_coord = detector_y[k]
        z_coord = detector_z[k]

        det.addDetector(x_coord, y_coord, z_coord, 0.0, 0., 90.,
                        bank_name, "tube-elastic", facingSample=True)

        idlist.append(ELASTIC_DETECTORID_START +
                      ELASTIC_TUBE_NPIXELS*(i-ELASTIC_BANK_START))
        idlist.append(ELASTIC_DETECTORID_START +
                      ELASTIC_TUBE_NPIXELS*(i-ELASTIC_BANK_START) +
                      ELASTIC_TUBE_NPIXELS-1)
        idlist.append(None)

    # Diffraction tube information
    det.addComment("ELASTIC TUBE (90 degrees)")
    det.addPixelatedTube("tube-elastic", ELASTIC_TUBE_NPIXELS,
                         ELASTIC_TUBE_LENGTH, "pixel-elastic-tube",
                         neutronic=True, neutronicIsPhysical=True)

    # Set the diffraction pixel Ids
    det.addDetectorIds("elastic", idlist)

    # Creating diffraction pixel
    det.addComment("PIXEL FOR DIFFRACTION TUBES")
    det.addCylinderPixel("pixel-elastic-tube",
                         (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                         (ELASTIC_TUBE_WIDTH/2.0),
                         (ELASTIC_TUBE_LENGTH/ELASTIC_TUBE_NPIXELS))

    det.addComment("PIXEL FOR INELASTIC TUBES")
    det.addCylinderPixel("pixel", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                        INELASTIC_TUBE_WIDTH * (1.0-INELASTIC_PIXEL_RADIUS_GAP_RATIO) / 2.0,
                        INELASTIC_TUBE_LENGTH * (1.0-INELASTIC_PIXEL_HEIGHT_GAP_RATIO) / INELASTIC_TUBE_NPIXEL,
                        is_type="detector", algebra="cyl-approx")

    det.addComment("MONITOR SHAPE")
    det.addComment("FIXME: Do something real here.")
    det.addDummyMonitor(0.01, 0.03)

    det.addComment("MONITOR IDs")
    det.addMonitorIds(["-1"])

    det.writeGeom(xml_outfile)

    # Always clean after yourself
    nfile.close()
예제 #4
0
        analyser_wavelength = file["/entry/instrument/analyzer%d/wavelength" %
                                   (i + 1)].value
        analyser_energy = 81.8042051 / analyser_wavelength**2

        bank_id = "bank%d" % (i + 1)
        det.addComponent(bank_id, bank_id)
        #doc_handle = det.makeTypeElement(bank_id)

        det.addDetectorPixels(bank_id,
                              r=distance,
                              theta=polar_angle,
                              phi=azimuthal_angle,
                              names=pixel_id,
                              energy=analyser_energy)

        det.addDetectorPixelsIdList(bank_id, r=distance, names=pixel_id)

    # Pixel Height
    y_pixel_offset = file["/entry/instrument/bank1/y_pixel_offset"].value
    pixel_ysize = y_pixel_offset[1] - y_pixel_offset[0]

    # Pixel Width
    x_pixel_offset = file["/entry/instrument/bank1/x_pixel_offset"].value
    pixel_xsize = x_pixel_offset[1] - x_pixel_offset[0]

    # Lets just make them bigger for a moment so we can see them
    pixel_xsize *= 5.0
    pixel_ysize *= 2.0

    # arbitary value plucked from thin air!
    detector_depth = 0.01