예제 #1
0
        np.set_printoptions(legacy='1.13')
    except TypeError:
        pass

    # Set header information
    comment = "Created by Ross Whitfield"
    # Time needs to be in UTC?
    valid_from = "2018-04-01 00:00:00"

    # Get geometry information file
    xml_outfile = INST_NAME + "_Definition.xml"

    det = MantidGeom(INST_NAME, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(default_view="cylindrical_y")
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-3.289, "monochromator")
    det.addSamplePosition()

    doc_handle = None
    for i in range(NUM_DETS):
        bank = det.addComponent("bank" + str(i + 1),
                                idlist="bank" + str(i + 1),
                                root=doc_handle)
        log = le.SubElement(bank, "parameter", **{"name": "y"})
        le.SubElement(
            log,
            "logfile",
            **{
                "id": "HB2C:Mot:detz.RBV",  # detz is in mm
                "eq":
                "rint(value*100)/100000",  # Round to 0.01mm and convert to metres
예제 #2
0
    r, t, p = topolar(x, y, z)
    if project:
        p = pi
        t = pi - atan2(x, z)
        r += 2 * analyser - psd
    else:
        p += pi
        t = pi - t
        r += 2 * analyser
    return tocartesian(r, t, p)


geometry = MantidGeom(instrument_name, comment=comment, valid_from=valid_from)
geometry.addSnsDefaults(indirect=args.geometrytype != 'N')
geometry.addSamplePosition()
geometry.addModerator(distance=ch12, name="chopper")
geometry.addMonitors(names=["monitor"],
                     distance=[mon],
                     neutronic=args.geometrytype != 'N')
geometry.addDummyMonitor(0.001, 0.001)
geometry.addMonitorIds([0])
geometry.addComponent("single_detectors",
                      "single_detectors",
                      blank_location=False)
sds = geometry.makeTypeElement("single_detectors")
sdc = geometry.addComponent("single_pixel", root=sds)
for i in range(len(SD_azimuths)):
    t = SD_azimuths[i] * pi / 180.
    x = sd * sin(t)
    y = 0.
    z = -sd * cos(t)
        positions[i] = Vector(x_i, y_i, z_i - 19.5)
    return positions


if __name__ == "__main__":
    inst_name = "NOMAD"
    xml_outfile = inst_name + "_Definition.xml"

    # boiler plate stuff
    instr = MantidGeom(inst_name,
                       comment=" Created by Peter Peterson",
                       valid_from="2022-05-05 00:00:01")
    instr.addComment("DEFAULTS")
    instr.addSnsDefaults(theta_sign_axis="x")
    instr.addComment("SOURCE")
    instr.addModerator(-19.5)
    instr.addComment("SAMPLE")
    instr.addSamplePosition()

    # monitors
    instr.addComment("MONITORS")
    instr.addMonitorIds([-1, -2])
    instr.addMonitors([-0.879475, 5.748782], ["monitor1", "monitor2"])
    instr.addComment("Shape for monitors")
    instr.addComment("TODO: Update to real shape")
    instr.addDummyMonitor(0.01, .03)

    # TODO choppers and slits could go here

    ####################
    # read the positions of the pixels that was provided
    inst_name = "VULCAN"
    xml_outfile = f"{inst_name}_Definition_tmp.xml"
    authors = ["Peter Peterson", "Malcolm Guthrie", "Chen Zhang"]

    # -- ROOT --
    vulcan_geom = MantidGeom(
        inst_name,
        comment="Created by " + ", ".join(authors),
        valid_from="2022-05-15 00:00:01",
    )

    # -- MISC --
    vulcan_geom.addComment("DEFAULTS")
    vulcan_geom.addSnsDefaults()
    vulcan_geom.addComment("SOURCE")
    vulcan_geom.addModerator(L1)
    vulcan_geom.addComment("SAMPLE")
    vulcan_geom.addSamplePosition()

    # -- MONITOR --
    vulcan_geom.addComment("MONITORS")
    vulcan_geom.addMonitors(distance=[4.83, 1.50],
                            names=["monitor2", "monitor3"])

    # -- ADD BANKS --
    # NOTE:
    # To compensate for the curved (1,2,3,4,6) and flat (5) banks, the actual
    # physical positions is stored at the eight-pack level.
    # The bank here is set to (0,0,0) with zero rotations.
    logging.info(f"Add Banks")
    bank_ids = df["bank"].unique()
예제 #5
0
        
    # Set header information
    comment = "Created by Michael Reuter"
    # Time needs to be in UTC?
    valid_from = "2016-07-14 00:00:00"

    # Get geometry information file
    inst_name = "CNCS"
    detinfo = readFile(geom_input_file)
    num_dets = len(detinfo.values()[0])
    xml_outfile = inst_name+"_Definition.xml"
 
    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults()
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-36.262)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1", "monitor2", "monitor3"],
                    distance=["-29.949", "-28.706", "-1.416"])

    label = "detectors"
    det.addComponent(label, label)
    doc_handle = det.makeTypeElement(label)
    for i in range(num_dets):
        detname = BANKFMT % (i+1)
        roty = float(detinfo["BankAngle"][i]) + FLIPY
        xpos = convert(detinfo["Bank_xpos"][i])
        ypos = convert(detinfo["Bank_ypos"][i])
        zpos = convert(detinfo["Bank_zpos"][i])
        det.addComponent(detname, root=doc_handle)
예제 #6
0
    inst_name = "BASIS"
    short_name = "BSS"

    # Set header information
    comment = "Created by Michael Reuter & Jose Borreguero"
    # Time needs to be in UTC?
    valid_from = "2014-01-01 00:00:00"

    xml_outfile = inst_name+"_Definition.xml"

    nfile = h5py.File(nexusfile, 'r')

    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-84.0)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1"], distance=["-0.23368"], neutronic=True)

    # Create the inelastic banks information
    det.addComment("INELASTIC DECTECTORS")
    det.addComponent("silicon")
    handle_silicon = det.makeTypeElement("silicon")
    # Slicer for removing ghosts. Due to the mapping, the ghost tubes sit 
    # on the same sides of the arrays for all banks.
    remove_ghosts = slice(-INELASTIC_TUBES_NGHOST)    
    
    for i in range(banks):
        pixel_id = nfile["/entry/instrument/bank%d/pixel_id" % (i+1)].value[remove_ghosts]
        distance = nfile["/entry/instrument/bank%d/distance" % (i+1)].value[remove_ghosts]
    x = r * sin(t) * cos(p)
    y = r * sin(t) * sin(p)
    z = r * cos(t)
    return [x, y, z]

def mirror(x, y, z):
    r, t, p = topolar(x, y, z)
    r += 2*analyser
    t = pi - t
    p += pi
    return tocartesian(r, t, p)

geometry = MantidGeom(instrument_name, comment=comment, valid_from=valid_from)
geometry.addSnsDefaults(indirect=args.geometrytype != 'N')
geometry.addSamplePosition()
geometry.addModerator(distance=ch12, name="chopper")
geometry.addMonitors(names=["monitor"], distance=[mon], neutronic=args.geometrytype != 'N')
geometry.addDummyMonitor(0.001, 0.001)
geometry.addMonitorIds([0])
geometry.addComponent("single_detectors", "single_detectors")
sds = geometry.makeTypeElement("single_detectors")
sdc = geometry.addComponent("single_pixel", root=sds, blank_location=False)
r = 2*analyser+psd
for i in range(len(SD_azimuths)):
    t=SD_azimuths[i]* pi/180.
    x = - psd * sin(t)
    y = 0.
    z = - psd * cos(t)
    nx, ny, nz = mirror(x, y, z)
    if args.geometrytype == 'N':
        geometry.addLocation(root=sdc, x=nx, y=ny, z=nz, name="single_tube_{0}".format(i+1))
예제 #8
0
if __name__ == "__main__":
    inst_name = "PG3"
    xml_outfile = inst_name + "_Definition.xml"
    authors = [
        "Stuart Campbell", "Vickie Lynch", "Peter Peterson", "Janik Zikovsky"
    ]

    # boiler plate stuff
    instr = MantidGeom(inst_name,
                       comment="Created by " + ", ".join(authors),
                       valid_from="2013-08-01 00:00:01")
    instr.addComment("DEFAULTS")
    instr.addSnsDefaults()
    instr.addComment("SOURCE")
    instr.addModerator(L1)
    instr.addComment("SAMPLE")
    instr.addSamplePosition()

    # monitors
    instr.addComment("MONITORS")
    instr.addMonitors([-1.], ["monitor1"])
    #instr.addMonitors([L1+59., L1+62.5, L1+64], ["monitor1", "monitor2", "monitor3"])

    # choppers - copied verbatium from TS-geometry
    """
    chopper1 = Component("chopper1", "NXchopper")
    chopper1.setComment("CHOPPERS")
    chopper1.setHelper("ParameterCopy")
    chopper1.addParameter("distance", "6.647418", units="metre")
    instrument.addComponent(chopper1)
def main():
    from helper import MantidGeom
    
    inst_name = "VISION"
    
    xml_outfile = inst_name+"_Definition.xml"
    
    comment = " Created by Stuart Campbell "
    valid_from = "2013-10-21 00:00:01"
    
    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-16.0)
    det.addSamplePosition()


    # Backscattering Banks are 21-100

    BACKSCATTERING_NTUBES = 80
    BACKSCATTERING_SECTORS = 10
    TUBES_PER_SECTOR = BACKSCATTERING_NTUBES / BACKSCATTERING_SECTORS
    PIXELS_PER_SECTOR = TUBES_PER_SECTOR * 256

    det.addComponent("elastic-backscattering", "elastic-backscattering")
    handle = det.makeTypeElement("elastic-backscattering")

    idlist = []

    for k in range(BACKSCATTERING_SECTORS):
	bankid = 15 + k
	bank_name = "bank%d" % bankid

	#doc_handle = det.makeDetectorElement(bank_name, root=handle)
	
	z_coord = -0.998

	id_start = 14336 + (PIXELS_PER_SECTOR * k)
	id_end = 14336 + (PIXELS_PER_SECTOR * k) + PIXELS_PER_SECTOR - 1


	for l in range(TUBES_PER_SECTOR):


		tube_index = (k*TUBES_PER_SECTOR) + l
		tube_name = bank_name + "-tube" + str(tube_index+1)		

		#det.addComponent(tube_name, root=doc_handle)
		det.addComponent(tube_name, root=handle)

	        angle = -(2.25 + 4.5*tube_index)
        		
        	if tube_index%2 == 0:
            		# Even tube number (long)
            		centre_offset = BS_ELASTIC_LONG_TUBE_INNER_RADIUS + (BS_ELASTIC_LONG_TUBE_LENGTH/2.0)
            		#centre_offset = BS_ELASTIC_LONG_TUBE_INNER_RADIUS
            		component_name = "tube-long-bs-elastic"
        	else:
            		# Odd tube number (short)
            		centre_offset = BS_ELASTIC_SHORT_TUBE_INNER_RADIUS + (BS_ELASTIC_SHORT_TUBE_LENGTH/2.0)
        		component_name = "tube-short-bs-elastic"

        	x_coord = centre_offset * math.cos(math.radians(90-angle))
        	y_coord = centre_offset * math.sin(math.radians(90-angle))

		det.addDetector( x_coord, y_coord, z_coord, 0, 0, -angle, tube_name, component_name)


        idlist.append(id_start)
        idlist.append(id_end)
        idlist.append(None)

    det.addDetectorIds("elastic-backscattering", idlist)


    # 90 elastic banks

    elastic_banklist = [25,26,27,28,29,30]
    elastic_bank_start = [34816,36864,38912,40960,43008,45056]
    elastic_angle = [157.5,-157.5,-67.5,-112.5,-22.5,22.5]


    sample_elastic_distance = 0.635

    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []
    elastic_index = 0

    for i in elastic_banklist:
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)

        z_coord = 0.0
        x_coord = sample_elastic_distance * math.cos(math.radians(elastic_angle[elastic_index]))
        y_coord = sample_elastic_distance * math.sin(math.radians(elastic_angle[elastic_index]))

        det.addDetector(x_coord, y_coord, z_coord, -90.0, 180, 0., bank_name, "eightpack-elastic", facingSample=True)

        idlist.append(elastic_bank_start[elastic_index])
        idlist.append(elastic_bank_start[elastic_index]+2047)
        idlist.append(None)

        elastic_index += 1


    det.addDetectorIds("elastic", idlist)

    # Inelastic
    inelastic_banklist = [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
    inelastic_bank_start=[0,1024,2048,3072,4096,5120,6144,7168,8192,9216,10240,11264,12288,13312]
    inelastic_angle = [45.0,0.0,-45.0,-90.0,-135.0,-180.0,135.0,45.0,0.0,-45.0,-90.0,-135.0,-180.0,135.0]
    inelastic_angle_for_rotation = [-45.0,180.0,-135.0,-90.0,-225.0,0.0,45.0,-45.0,180.0,-135.0,-90.0,-225.0,0.0,45.0]

    sample_inelastic_distance = 0.5174

    det.addComponent("inelastic", "inelastic")
    handle = det.makeTypeElement("inelastic")

    idlist = []
    inelastic_index = 0

    for i in inelastic_banklist:
        bank_name = "bank%d" % i
        bank_comp = det.addComponent(bank_name, root=handle, blank_location=True)
#        location_element = le.SubElement(bank_comp, "location")
#        le.SubElement(location_element, "rot", **{"val":"90", "axis-x":"0",
#                                              "axis-y":"0", "axis-z":"1"})

        # Neutronic Positions
        z_coord_neutronic = sample_inelastic_distance * math.tan(math.radians(45.0))

        if inelastic_index+1 > 7:
            # Facing Downstream
            z_coord = -0.01
        else:
            # Facing to Moderator
            z_coord = 0.01
            z_coord_neutronic = -z_coord_neutronic

            # Physical Positions
        x_coord = sample_inelastic_distance * math.cos(math.radians(inelastic_angle[inelastic_index]))
        y_coord = sample_inelastic_distance * math.sin(math.radians(inelastic_angle[inelastic_index]))

        det.addDetector(-x_coord, y_coord, z_coord, 0, 0, inelastic_angle_for_rotation[inelastic_index]-90.0, bank_name,
            "eightpack-inelastic", neutronic=True, nx=-x_coord, ny=y_coord, nz=z_coord_neutronic)

        efixed = ("Efixed", "3.64", "meV")
        det.addDetectorParameters(bank_name, efixed )

        idlist.append(inelastic_bank_start[inelastic_index])
        idlist.append(inelastic_bank_start[inelastic_index]+1023)
        idlist.append(None)

        inelastic_index += 1


    det.addDetectorIds("inelastic", idlist)


    # 8 packs
    
    det.addComment("INELASTIC 8-PACK")
    det.addNPack("eightpack-inelastic", INELASTIC_TUBES_PER_BANK, INELASTIC_TUBE_WIDTH, 
                 INELASTIC_AIR_GAP, "tube-inelastic", neutronic=True)
    
    det.addComment("ELASTIC 8-PACK")
    det.addNPack("eightpack-elastic", ELASTIC_TUBES_PER_BANK, ELASTIC_TUBE_WIDTH, 
                 ELASTIC_AIR_GAP, "tube-elastic", neutronic=True, neutronicIsPhysical=True)
 
    # TUBES
    det.addComment("INELASTIC TUBE")
    det.addPixelatedTube("tube-inelastic", INELASTIC_TUBE_NPIXELS, 
                         INELASTIC_TUBE_LENGTH, "pixel-inelastic-tube", neutronic=True)
    
    det.addComment("BACKSCATTERING LONG TUBE")
    det.addPixelatedTube("tube-long-bs-elastic", BS_ELASTIC_LONG_TUBE_NPIXELS,
        BS_ELASTIC_LONG_TUBE_LENGTH, "pixel-bs-elastic-long-tube",
        neutronic=True, neutronicIsPhysical=True)
    det.addComment("BACKSCATTERING SHORT TUBE")
    det.addPixelatedTube("tube-short-bs-elastic", BS_ELASTIC_SHORT_TUBE_NPIXELS, 
        BS_ELASTIC_SHORT_TUBE_LENGTH, "pixel-bs-elastic-short-tube",
        neutronic=True, neutronicIsPhysical=True)

    det.addComment("ELASTIC TUBE (90 degrees)")
    det.addPixelatedTube("tube-elastic", ELASTIC_TUBE_NPIXELS, 
                         ELASTIC_TUBE_LENGTH, "pixel-elastic-tube", neutronic=True, neutronicIsPhysical=True)

    # PIXELS
    
    det.addComment("PIXEL FOR INELASTIC TUBES")
    det.addCylinderPixel("pixel-inelastic-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                        (INELASTIC_TUBE_WIDTH/2.0),
                        (INELASTIC_TUBE_LENGTH/INELASTIC_TUBE_NPIXELS))
    
    det.addComment("PIXEL FOR BACKSCATTERING ELASTIC TUBES (LONG)")
    det.addCylinderPixel("pixel-bs-elastic-long-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0), 
                         (BS_ELASTIC_LONG_TUBE_WIDTH/2.0), 
                         (BS_ELASTIC_LONG_TUBE_LENGTH/BS_ELASTIC_LONG_TUBE_NPIXELS))

    det.addComment("PIXEL FOR BACKSCATTERING ELASTIC TUBES (SHORT)")
    det.addCylinderPixel("pixel-bs-elastic-short-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                         (BS_ELASTIC_SHORT_TUBE_WIDTH/2.0), 
                         (BS_ELASTIC_SHORT_TUBE_LENGTH/BS_ELASTIC_SHORT_TUBE_NPIXELS))
    
    det.addComment("PIXEL FOR ELASTIC TUBES (90 degrees)")
    det.addCylinderPixel("pixel-elastic-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                         (ELASTIC_TUBE_WIDTH/2.0), 
                         (ELASTIC_TUBE_LENGTH/ELASTIC_TUBE_NPIXELS))

    det.addComment(" ##### MONITORS ##### ")
    det.addMonitors(names=["monitor1","monitor4"], distance=["-6.71625","0.287"], neutronic=True)

    # MONITORS

    det.addComment("MONITOR SHAPE")
    det.addComment("FIXME: All monitors share the dimensions of monitor4.")

    det.addCuboidMonitor(0.051,0.054,0.013)

    det.addComment("MONITOR IDs")
	
    det.addMonitorIds(["-1","-4"])

    #det.showGeom()
    det.writeGeom(xml_outfile)
예제 #10
0
__author__ = "Stuart Campbell"
__date__ = "$Dec 14, 2010 3:13:15 PM$"

if __name__ == "__main__":

    inst_name = "BASIS"
    short_name = "BSS"

    xml_outfile = inst_name + "_Definition_new.xml"

    file = h5py.File(nexusfile, 'r')

    det = MantidGeom(inst_name, comment=" Created by Stuart Campbell ")
    det.addSnsDefaults()
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-84.0)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1"], distance=["-0.23368"])

    for i in range(banks):
        pixel_id = file["/entry/instrument/bank%d/pixel_id" % (i + 1)].value
        distance = file["/entry/instrument/bank%d/distance" % (i + 1)].value
        polar_angle = file["/entry/instrument/bank%d/polar_angle" %
                           (i + 1)].value
        polar_angle *= (180.0 / math.pi)
        azimuthal_angle = file["/entry/instrument/bank%d/azimuthal_angle" %
                               (i + 1)].value
        azimuthal_angle *= (180.0 / math.pi)

        analyser_wavelength = file["/entry/instrument/analyzer%d/wavelength" %
예제 #11
0
  di["TUBE_SIZE"]=sheet.cell_value(4,8)*1e-3
  di["TUBE_WIDTH"]=sheet.cell_value(8,4)*1e-3
  di["TUBE_THICKNESS"]=("tube_thickness",sheet.cell_value(7,8)*1e-3,"meter")
  di["TUBE_PRESSURE"]=("tube_pressure",10.0,"atm")
  di["TUBE_TEMPERATURE"]=("tube_temperature",290.0,"K")
  return di
  
if __name__=="__main__":
  filename='SNS/HYSPEC/hyspec_MotorList4GG.xls'
  info=read_xls(filename)
  inst_name="HYSPEC"
  xml_outfile=inst_name+"_Definition.xml"
  det=MantidGeom(inst_name)
  det.addSnsDefaults()
  det.addComment("SOURCE AND SAMPLE POSITION")
  det.addModerator("msd -0.001*msd-38.980")# TODO: change moderator position to read from the excel sheet
  det.addSamplePosition()
  det.addComment("MONITORS")
  det.addMonitors(names=["monitor1", "monitor2", "monitor3"],distance=["msd -0.001*msd-3.340", "msd -0.001*msd-1.59643", "-0.200"])
  # TODO: change monitor positions to read from the excel sheet

  label = "Tank"
  tank=det.addComponent(label, label,blank_location=False)
  det.addLocationRTP(tank,"0","s2 0.0+s2","0","0","s2 0.0+s2","0")
  doc_handle = det.makeTypeElement(label)
  num_dets=len(info["name"])
  for i in range(num_dets):
    det.addComponent(info["name"][i], root=doc_handle)
    det.addDetector(info["X"][i], info["Y"][i], info["Z"][i], 
                    info["RotX"][i], info["RotY"][i], info["RotZ"][i],
                    info["name"][i], "eightpack")
예제 #12
0
        geom_input_file = "SNS/CORELLI/CORELLI_geom.txt"

    # Set header information
    comment = "Created by Ross Whitfield"
    # Time needs to be in UTC?
    valid_from = "2017-04-04 00:00:00"

    # Get geometry information file
    detinfo = readFile(geom_input_file)
    num_dets = len(detinfo.values()[0])
    xml_outfile = INST_NAME+"_Definition.xml"
    
    det = MantidGeom(INST_NAME, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(default_view="cylindrical_y")
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-20.00)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1", "monitor2", "monitor3"],
                    distance=["-2.046", "-1.948", "4.554"])

    #det.addChopper("single-disk-chopper",-7.669527)
    #det.addSingleDiskChopper("single-disk-chopper")
    det.addEmptyChopper("single-disk-chopper",-7.669527)

    #det.addChopper("double-disk-chopper",-11.79995,["Speed (Hz)","BL9:Chop:Skf2:MotorSpeed"],["Bandwidth (A)","BL9:Chop:Skf23:Bandwidth"],["Center (A)","BL9:Chop:Skf23:CenterWavelength"])
    #det.addDoubleDiskChopper("double-disk-chopper")
    det.addEmptyChopper("double-disk-chopper",-11.79995)

    choppersequence="4.185 2.823 4.267 4.248 2.816 2.809 1.388 7.113 1.406 1.41 2.816 4.251 1.403 4.244 5.646 1.43 1.353 1.424 1.429 1.419 1.401 2.803 1.425 2.821 4.262 1.386 7.098 1.403 4.221 4.242 1.332 2.856 4.23 1.437 4.214 7.054 1.423 2.822 2.841 1.38 1.45 2.783 1.446 7.036 1.429 1.384 1.451 1.389 2.847 5.611 1.45 1.379 1.418 1.414 2.866 1.354 1.437 4.225 5.643 2.803 1.444 1.411 2.803 8.488 1.38 5.678 2.838 1.393 2.838 1.411 2.823 4.238 1.379 2.833 2.821 1.402 1.423 1.4 1.421 1.412 8.471 1.415 2.865 1.394 2.805 2.83 4.208 2.851 1.383 2.854 1.299 1.557 4.136 5.692 4.213 1.437 1.345 2.867 2.831 1.426 9.876 4.296 1.388 1.392 1.438 1.376 2.833 1.415 1.42 1.411 1.444 2.789 2.86 5.592 7.069 2.876 9.821 1.417 1.449 1.404 1.41 1.431 1.406 5.642 1.411 2.818 1.405 2.85"
    #det.addChopper("correlation-chopper",-2.000653,["Speed (Hz)","BL9:Chop:Skf4:MotorSpeed"])
예제 #13
0
                            "meter")
    di["TUBE_PRESSURE"] = ("tube_pressure", 10.0, "atm")
    di["TUBE_TEMPERATURE"] = ("tube_temperature", 290.0, "K")
    return di


if __name__ == "__main__":
    filename = 'SNS/HYSPEC/hyspec_MotorList4GG.xls'
    info = read_xls(filename)
    inst_name = "HYSPEC"
    xml_outfile = inst_name + "_Definition.xml"
    det = MantidGeom(inst_name)
    det.addSnsDefaults()
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(
        "msd -0.001*msd-38.980"
    )  # TODO: change moderator position to read from the excel sheet
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(
        names=["monitor1", "monitor2", "monitor3"],
        distance=["msd -0.001*msd-3.340", "msd -0.001*msd-1.59643", "-0.200"])
    # TODO: change monitor positions to read from the excel sheet

    label = "Tank"
    tank = det.addComponent(label, label, blank_location=False)
    det.addLocationRTP(tank, "0", "s2 0.0+s2", "0", "0", "s2 0.0+s2", "0")
    doc_handle = det.makeTypeElement(label)
    num_dets = len(info["name"])
    for i in range(num_dets):
        det.addComponent(info["name"][i], root=doc_handle)
예제 #14
0
        geom_input_file = "SNS/ARCS/ARCS_geom_20121011-.txt"

    # Set header information
    comment = "Created by Michael Reuter"
    # Time needs to be in UTC?
    valid_from = "2012-10-11 12:54:01"

    # Get geometry information file
    detinfo = readFile(geom_input_file)
    num_dets = len(detinfo.values()[0])
    xml_outfile = INST_NAME+"_Definition.xml"
    
    det = MantidGeom(INST_NAME, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(default_view="cylindrical_y")
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-13.60)
    det.addSamplePosition()
    det.addComment("CHOPPERS")
    det.addChopper("t0-chopper",-4.83)
    det.addVerticalAxisT0Chopper("t0-chopper")
    det.addChopper("fermi-chopper",-1.99)
    det.addFermiChopper("fermi-chopper")
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1", "monitor2"],
                    distance=["-1.769", "4.9"])

    row_id = ""
    row_id_list = []
    doc_handle = None
    for i in range(num_dets):
        location = detinfo["Location"][i]
예제 #15
0
def main():
    from helper import MantidGeom

    inst_name = "VISION"

    xml_outfile = inst_name + "_Definition.xml"

    det = MantidGeom(inst_name, comment=" Created by Stuart Campbell ")
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-16.0)
    det.addSamplePosition()

    # Backscattering Banks are 21-100

    BACKSCATTERING_NTUBES = 80

    det.addComponent("elastic-backscattering", "elastic-backscattering")
    handle = det.makeTypeElement("elastic-backscattering")

    idlist = []

    for k in range(BACKSCATTERING_NTUBES):
        id_start = 26624 + (256 * k)
        id_end = 26624 + (256 * k) + 255
        angle = -(2.25 + 4.5 * k)
        bankid = 21 + k
        bank_name = "bank%d" % bankid

        det.addComponent(bank_name, root=handle)

        z_coord = -0.998

        if k % 2 == 0:
            # Even tube number (long)
            centre_offset = BS_ELASTIC_LONG_TUBE_INNER_RADIUS + (
                BS_ELASTIC_LONG_TUBE_LENGTH / 2.0)
            #centre_offset = BS_ELASTIC_LONG_TUBE_INNER_RADIUS
            component_name = "tube-long-bs-elastic"
        else:
            # Odd tube number (short)
            centre_offset = BS_ELASTIC_SHORT_TUBE_INNER_RADIUS + (
                BS_ELASTIC_SHORT_TUBE_LENGTH / 2.0)
            component_name = "tube-short-bs-elastic"

        x_coord = centre_offset * math.cos(math.radians(90 - angle))
        y_coord = centre_offset * math.sin(math.radians(90 - angle))

        det.addDetector(x_coord, y_coord, z_coord, 0, 0, -angle, bank_name,
                        component_name)

        idlist.append(id_start)
        idlist.append(id_end)
        idlist.append(None)

    det.addDetectorIds("elastic-backscattering", idlist)

    # 90 elastic banks

    elastic_banklist = [3, 6, 9, 12, 15, 18]
    elastic_bank_start = [2048, 6144, 10240, 14336, 18432, 22528]
    elastic_angle = [22.5, -22.5, -67.5, -112.5, -157.5, 157.5]

    sample_elastic_distance = 0.635

    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []
    elastic_index = 0

    for i in elastic_banklist:
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)

        z_coord = 0.0
        x_coord = sample_elastic_distance * math.cos(
            math.radians(elastic_angle[elastic_index]))
        y_coord = sample_elastic_distance * math.sin(
            math.radians(elastic_angle[elastic_index]))

        det.addDetector(x_coord,
                        y_coord,
                        z_coord,
                        -90.0,
                        0,
                        0.,
                        bank_name,
                        "eightpack-elastic",
                        facingSample=True)

        idlist.append(elastic_bank_start[elastic_index])
        idlist.append(elastic_bank_start[elastic_index] + 2047)
        idlist.append(None)

        elastic_index += 1

    det.addDetectorIds("elastic", idlist)

    # Inelastic
    inelastic_banklist = [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20]
    inelastic_bank_start = [
        0, 1024, 4096, 5120, 8192, 9216, 12288, 13312, 16384, 17408, 20480,
        21504, 24576, 25600
    ]
    inelastic_angle = [
        45.0, 45.0, 0.0, 0.0, -45.0, -45.0, -90.0, -90.0, -135.0, -135.0,
        180.0, 180.0, 135.0, 135.0
    ]
    inelastic_angle_for_rotation = [
        -45.0, -45.0, 180.0, 180.0, -135.0, -135.0, -90.0, -90.0, -225.0,
        -225.0, 0.0, 0.0, 45.0, 45.0
    ]

    sample_inelastic_distance = 0.5174

    det.addComponent("inelastic", "inelastic")
    handle = det.makeTypeElement("inelastic")

    idlist = []
    inelastic_index = 0

    for i in inelastic_banklist:
        bank_name = "bank%d" % i
        bank_comp = det.addComponent(bank_name,
                                     root=handle,
                                     blank_location=True)
        #        location_element = le.SubElement(bank_comp, "location")
        #        le.SubElement(location_element, "rot", **{"val":"90", "axis-x":"0",
        #                                              "axis-y":"0", "axis-z":"1"})

        # Neutronic Positions
        z_coord_neutronic = sample_inelastic_distance * math.tan(
            math.radians(45.0))

        if inelastic_index % 2 == 0:
            # Facing Downstream
            z_coord = 0.01
        else:
            # Facing to Moderator
            z_coord = -0.01
            z_coord_neutronic = -z_coord_neutronic

            # Physical Positions
        x_coord = sample_inelastic_distance * math.cos(
            math.radians(inelastic_angle[inelastic_index]))
        y_coord = sample_inelastic_distance * math.sin(
            math.radians(inelastic_angle[inelastic_index]))

        det.addDetector(-x_coord,
                        y_coord,
                        z_coord,
                        0,
                        0,
                        inelastic_angle_for_rotation[inelastic_index] - 90.0,
                        bank_name,
                        "eightpack-inelastic",
                        neutronic=True,
                        nx=-x_coord,
                        ny=y_coord,
                        nz=z_coord_neutronic)

        efixed = ("Efixed", "3.64", "meV")
        det.addDetectorParameters(bank_name, efixed)

        idlist.append(inelastic_bank_start[inelastic_index])
        idlist.append(inelastic_bank_start[inelastic_index] + 1023)
        idlist.append(None)

        inelastic_index += 1

    det.addDetectorIds("inelastic", idlist)

    # 8 packs

    det.addComment("INELASTIC 8-PACK")
    det.addNPack("eightpack-inelastic",
                 INELASTIC_TUBES_PER_BANK,
                 INELASTIC_TUBE_WIDTH,
                 INELASTIC_AIR_GAP,
                 "tube-inelastic",
                 neutronic=True)

    det.addComment("ELASTIC 8-PACK")
    det.addNPack("eightpack-elastic",
                 ELASTIC_TUBES_PER_BANK,
                 ELASTIC_TUBE_WIDTH,
                 ELASTIC_AIR_GAP,
                 "tube-elastic",
                 neutronic=True,
                 neutronicIsPhysical=True)

    # TUBES
    det.addComment("INELASTIC TUBE")
    det.addPixelatedTube("tube-inelastic",
                         INELASTIC_TUBE_NPIXELS,
                         INELASTIC_TUBE_LENGTH,
                         "pixel-inelastic-tube",
                         neutronic=True)

    det.addComment("BACKSCATTERING LONG TUBE")
    det.addPixelatedTube("tube-long-bs-elastic",
                         BS_ELASTIC_LONG_TUBE_NPIXELS,
                         BS_ELASTIC_LONG_TUBE_LENGTH,
                         "pixel-bs-elastic-long-tube",
                         neutronic=True,
                         neutronicIsPhysical=True)
    det.addComment("BACKSCATTERING SHORT TUBE")
    det.addPixelatedTube("tube-short-bs-elastic",
                         BS_ELASTIC_SHORT_TUBE_NPIXELS,
                         BS_ELASTIC_SHORT_TUBE_LENGTH,
                         "pixel-bs-elastic-short-tube",
                         neutronic=True,
                         neutronicIsPhysical=True)

    det.addComment("ELASTIC TUBE (90 degrees)")
    det.addPixelatedTube("tube-elastic",
                         ELASTIC_TUBE_NPIXELS,
                         ELASTIC_TUBE_LENGTH,
                         "pixel-elastic-tube",
                         neutronic=True,
                         neutronicIsPhysical=True)

    # PIXELS

    det.addComment("PIXEL FOR INELASTIC TUBES")
    det.addCylinderPixel("pixel-inelastic-tube", (0.0, 0.0, 0.0),
                         (0.0, 1.0, 0.0), (INELASTIC_TUBE_WIDTH / 2.0),
                         (INELASTIC_TUBE_LENGTH / INELASTIC_TUBE_NPIXELS))

    det.addComment("PIXEL FOR BACKSCATTERING ELASTIC TUBES (LONG)")
    det.addCylinderPixel(
        "pixel-bs-elastic-long-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
        (BS_ELASTIC_LONG_TUBE_WIDTH / 2.0),
        (BS_ELASTIC_LONG_TUBE_LENGTH / BS_ELASTIC_LONG_TUBE_NPIXELS))

    det.addComment("PIXEL FOR BACKSCATTERING ELASTIC TUBES (SHORT)")
    det.addCylinderPixel(
        "pixel-bs-elastic-short-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
        (BS_ELASTIC_SHORT_TUBE_WIDTH / 2.0),
        (BS_ELASTIC_SHORT_TUBE_LENGTH / BS_ELASTIC_SHORT_TUBE_NPIXELS))

    det.addComment("PIXEL FOR ELASTIC TUBES (90 degrees)")
    det.addCylinderPixel("pixel-elastic-tube", (0.0, 0.0, 0.0),
                         (0.0, 1.0, 0.0), (ELASTIC_TUBE_WIDTH / 2.0),
                         (ELASTIC_TUBE_LENGTH / ELASTIC_TUBE_NPIXELS))

    det.addComment(" ##### MONITORS ##### ")
    det.addMonitors(names=["monitor1"], distance=["-6.71625"], neutronic=True)

    # MONITORS

    det.addComment("MONITOR SHAPE")
    det.addComment("FIXME: Do something real here.")
    det.addDummyMonitor(0.01, 0.03)

    det.addComment("MONITOR IDs")
    det.addMonitorIds(["-1"])

    det.showGeom()
    det.writeGeom(xml_outfile)
예제 #16
0
        np.set_printoptions(legacy='1.13')
    except TypeError:
        pass

    # Set header information
    comment = "Created by Ross Whitfield"
    # Time needs to be in UTC?
    valid_from = "2018-04-01 00:00:00"

    # Get geometry information file
    xml_outfile = INST_NAME+"_Definition.xml"

    det = MantidGeom(INST_NAME, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(default_view="cylindrical_y")
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-3.289, "monochromator")
    det.addSamplePosition()

    doc_handle = None
    for i in range(NUM_DETS):
        bank = det.addComponent("bank"+str(i+1),
                                idlist="bank"+str(i+1),
                                root=doc_handle)
        log = le.SubElement(bank, "parameter", **{"name": "y"})
        le.SubElement(log, "logfile",
                      **{"id": "HB2C:Mot:detz.RBV", # detz is in mm
                         "eq": "rint(value*100)/100000", # Round to 0.01mm and convert to metres
                         "extract-single-value-as": "mean"})

        det_type = "panel"
        angle = (i)*15+7.5  # Mantid
    # Set header information
    comment = "Created by Michael Reuter"
    # Time needs to be in UTC?
    valid_from = "2012-04-04 14:15:46"

    # Get geometry information file

    detinfo = readFile(geom_input_file)
    num_dets = len(detinfo.values()[0])
    xml_outfile = INST_NAME + "_Definition.xml"

    det = MantidGeom(INST_NAME, comment=comment, valid_from=valid_from)
    det.addSnsDefaults()
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-20.0114)
    det.addSamplePosition()
    det.addComment("CHOPPERS")
    det.addChopper("t0-chopper", -10.51)
    det.addVerticalAxisT0Chopper("t0-chopper")
    det.addChopper("fermi-chopper", -2.00180)
    det.addFermiChopper("fermi-chopper")
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1", "monitor2"],
                    distance=["-1.77808", "8.99184"])

    row_id = ""
    row_id_list = []
    doc_handle = None
    for i in range(num_dets):
        location = detinfo["Location"][i]
예제 #18
0
def generate_reflection_file(reflection_key):
    r"""

    Parameters
    ----------
    reflection_key: str

    Returns
    -------

    """
    refl = reflections[reflection_key]
    if not os.path.exists(refl['nexus']):
        message = '{} not found. Not creating geometry'.format(refl['nexus'])
        raise FileExistsError(message)
    inst_name = "BASIS"
    # Set header information
    comment = "Created by Michael Reuter and Jose Borreguero"
    # Time needs to be in UTC?
    valid_from = "2014-01-01 00:00:00"

    xml_outfile = '{}_Definition_Si{}.xml'.format(inst_name, reflection_key)
    nfile = h5py.File(refl['nexus'], 'r')

    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-84.0)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1"], distance=["-0.23368"], neutronic=True)

    # Create the inelastic banks information
    det.addComment('INELASTIC DECTECTORS')
    det.addComponent('silicon')
    handle_silicon = det.makeTypeElement("silicon")
    # Slicer for removing ghosts. Due to the mapping, the ghost tubes sit
    # on the same sides of the arrays for all banks.
    remove_ghosts = slice(-INELASTIC_TUBES_NGHOST)

    for i in range(n_inelastic_banks):
        bank_id = "bank%d" % (i + 1)
        pixel_id = nfile["/entry/instrument/bank%d/pixel_id" %
                         (i + 1)].value[remove_ghosts]
        distance = nfile["/entry/instrument/bank%d/distance" %
                         (i + 1)].value[remove_ghosts]
        # theta or polar_angle: angle from the Z-axis towards the X-axis
        polar_angle = nfile["/entry/instrument/bank%d/polar_angle" %
                            (i + 1)].value[remove_ghosts]
        polar_angle *= (180.0 / math.pi)
        # phi or azimuthal_angle: angle in the XY-plane
        azimuthal_angle = nfile["/entry/instrument/bank%d/azimuthal_angle" %
                                (i + 1)].value[remove_ghosts]
        azimuthal_angle *= (180.0 / math.pi)

        analyser_wavelength = nfile["/entry/instrument/analyzer%d/wavelength" %
                                    (i + 1)].value[remove_ghosts]
        analyser_wavelength *= refl['ratio_to_irreducible_hkl']
        analyser_energy = 81.8042051 / analyser_wavelength**2

        det.addComponent(bank_id, idlist=bank_id, root=handle_silicon)

        xbank, ybank, zbank = pixels_physical_xyz(i)
        det.addDetectorPixels(bank_id,
                              x=xbank,
                              y=ybank,
                              z=zbank,
                              names=pixel_id,
                              energy=analyser_energy,
                              nr=distance,
                              ntheta=polar_angle,
                              nphi=azimuthal_angle,
                              output_efixed=refl['efixed'])

        det.addDetectorPixelsIdList(bank_id,
                                    r=distance,
                                    names=pixel_id,
                                    elg="multiple_ranges")

    # Create the diffraction bank information
    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []

    detector_z = [
        -2.1474825, -1.704594, -1.108373, -0.4135165, 0.3181, 1.0218315,
        1.6330115, 2.0993535, 2.376999
    ]
    detector_x = [
        1.1649855, 1.7484015, 2.175541, 2.408594, 2.422933, 2.216378,
        1.8142005, 1.247867, 0.5687435
    ]
    detector_y = [
        -0.001807, -0.001801, -0.0011845, -0.0006885, -0.0013145, -0.001626,
        -0.001397, 0.0003465, -0.0001125
    ]

    for i in range(ELASTIC_BANK_START, ELASTIC_BANK_END + 1):
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)

        k = i - ELASTIC_BANK_START

        x_coord = detector_x[k]
        y_coord = detector_y[k]
        z_coord = detector_z[k]

        det.addDetector(x_coord,
                        y_coord,
                        z_coord,
                        0.0,
                        0.,
                        90.,
                        bank_name,
                        "tube-elastic",
                        facingSample=True)

        idlist.append(ELASTIC_DETECTORID_START + ELASTIC_TUBE_NPIXELS *
                      (i - ELASTIC_BANK_START))
        idlist.append(ELASTIC_DETECTORID_START + ELASTIC_TUBE_NPIXELS *
                      (i - ELASTIC_BANK_START) + ELASTIC_TUBE_NPIXELS - 1)
        idlist.append(None)

    # Diffraction tube information
    det.addComment("ELASTIC TUBE (90 degrees)")
    det.addPixelatedTube("tube-elastic",
                         ELASTIC_TUBE_NPIXELS,
                         ELASTIC_TUBE_LENGTH,
                         "pixel-elastic-tube",
                         neutronic=True,
                         neutronicIsPhysical=True)

    # Set the diffraction pixel Ids
    det.addDetectorIds("elastic", idlist)

    # Creating diffraction pixel
    det.addComment("PIXEL FOR DIFFRACTION TUBES")
    det.addCylinderPixel("pixel-elastic-tube", (0.0, 0.0, 0.0),
                         (0.0, 1.0, 0.0), (ELASTIC_TUBE_WIDTH / 2.0),
                         (ELASTIC_TUBE_LENGTH / ELASTIC_TUBE_NPIXELS))

    det.addComment("PIXEL FOR INELASTIC TUBES")
    det.addCylinderPixel(
        "pixel", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
        INELASTIC_TUBE_WIDTH * (1.0 - INELASTIC_PIXEL_RADIUS_GAP_RATIO) / 2.0,
        INELASTIC_TUBE_LENGTH * (1.0 - INELASTIC_PIXEL_HEIGHT_GAP_RATIO) /
        INELASTIC_TUBE_NPIXEL,
        is_type="detector",
        algebra="cyl-approx")

    det.addComment("MONITOR SHAPE")
    det.addComment("FIXME: Do something real here.")
    det.addDummyMonitor(0.01, 0.03)

    det.addComment("MONITOR IDs")
    det.addMonitorIds(["-1"])

    det.writeGeom(xml_outfile)

    # Always clean after yourself
    nfile.close()
        
    # Set header information
    comment = "Created by Michael Reuter"
    # Time needs to be in UTC?
    valid_from = "2012-04-04 14:15:46"

    # Get geometry information file

    detinfo = readFile(geom_input_file)
    num_dets = len(detinfo.values()[0])
    xml_outfile = INST_NAME+"_Definition.xml"
    
    det = MantidGeom(INST_NAME, comment=comment, valid_from=valid_from)
    det.addSnsDefaults()
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-20.0114)
    det.addSamplePosition()
    det.addComment("CHOPPERS")
    det.addChopper("t0-chopper",-10.51)
    det.addVerticalAxisT0Chopper("t0-chopper")
    det.addChopper("fermi-chopper",-2.00180)
    det.addFermiChopper("fermi-chopper")
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1", "monitor2"],
                    distance=["-1.77808", "8.99184"])

    row_id = ""
    row_id_list = []
    doc_handle = None
    for i in range(num_dets):
        location = detinfo["Location"][i]
tube_angles = [12, 31, 50, 69, 88, 107, 126, 145]
vertical_offset = 0.015
distance_to_sample = 1.855

chopper_to_sample = -34.3
monitor_to_sample = -0.178

in16b = MantidGeom(instrument_name, comment=comment, valid_from=valid_from)
in16b.addSnsDefaults(default_view='3D', axis_view_3d='z-', theta_sign_axis="x")

in16b.addComment("Sample position")
in16b.addSamplePosition()

in16b.addComment("Chopper position")
in16b.addModerator(distance=chopper_to_sample, name="chopper")

in16b.addComment("MONITOR")
in16b.addMonitors(names=["monitor"], distance=[monitor_to_sample])
in16b.addDummyMonitor(0.001, 0.001)
in16b.addMonitorIds([0])

in16b.addComment("Detector")
in16b.addComponentILL("detector", 0, 0, 0)
detector = in16b.makeTypeElement("detector")

# create tubes id lists
for i in range(number_of_tubes):
    in16b.addDetectorIds("tube_{0}_ids".format(i + 1),
                         [pixel_per_tube * i + 1, pixel_per_tube * (i + 1), 1])
예제 #21
0
if __name__ == "__main__":
    inst_name = "PG3"
    xml_outfile = inst_name+"_Definition.xml"
    authors = ["Stuart Campbell",
               "Vickie Lynch",
               "Peter Peterson",
               "Janik Zikovsky"]

    # boiler plate stuff
    instr = MantidGeom(inst_name,
                       comment="Created by " + ", ".join(authors),
                       valid_from="2013-08-01 00:00:01")
    instr.addComment("DEFAULTS")
    instr.addSnsDefaults()
    instr.addComment("SOURCE")
    instr.addModerator(L1)
    instr.addComment("SAMPLE")
    instr.addSamplePosition()

    # monitors
    instr.addComment("MONITORS")
    instr.addMonitors([-1.], ["monitor1"])
    #instr.addMonitors([L1+59., L1+62.5, L1+64], ["monitor1", "monitor2", "monitor3"])

    # choppers - copied verbatium from TS-geometry
    """
    chopper1 = Component("chopper1", "NXchopper")
    chopper1.setComment("CHOPPERS")
    chopper1.setHelper("ParameterCopy")
    chopper1.addParameter("distance", "6.647418", units="metre")
    instrument.addComponent(chopper1)
예제 #22
0
        
    # Set header information
    comment = "Created by Andrei Savici"
    # Time needs to be in UTC?
    valid_from = "2017-08-07 10:00:00"

    # Get geometry information file
    inst_name = "CNCS"
    detinfo = readFile(geom_input_file)
    num_dets = len(detinfo.values()[0])
    xml_outfile = inst_name+"_Definition.xml"
 
    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults()
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-36.262)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1", "monitor2", "monitor3"],
                    distance=["-29.949", "-28.706", "-1.416"])

    label = "detectors"
    det.addComponent(label, label)
    doc_handle = det.makeTypeElement(label)
    for i in range(num_dets):
        detname = BANKFMT % (i+1)
        roty = float(detinfo["BankAngle"][i]) + FLIPY
        xpos = convert(detinfo["Bank_xpos"][i])
        ypos = convert(detinfo["Bank_ypos"][i])
        zpos = convert(detinfo["Bank_zpos"][i])
        det.addComponent(detname, root=doc_handle)
예제 #23
0
'''

if __name__ == '__main__':
    valid_from = '2021-02-01 00:00:00'
    filename = 'MANDI_Definition_{}.xml'.format(valid_from.split()[0])

    # read in the detector calibration
    detcal = DetCal('SNS/MANDI/MaNDi-February2021.DetCal')

    # write the instrument geometry
    instr = MantidGeom('MANDI', valid_from=valid_from)
    instr.addComment('DEFAULTS')
    instr.addSnsDefaults(default_view='spherical_y')

    instr.addComment("SOURCE")
    instr.addModerator(detcal.l1)
    instr.addComment("SAMPLE")
    instr.addSamplePosition()

    instr.addComment("MONITORS")
    instr.addMonitors(distance=[-2.935, -0.898, 1.042],
                      names=["monitor1", 'monitor2', 'monitor3'])

    # add banks here
    for bank in detcal.banks:
        bank.addToXml(instr)

    # shape for detector pixels - ignored by required
    instr.addComment(' Pixel for Detectors')
    delta = 0.000309
    instr.addCuboidPixel("pixel", [-delta, -delta, 0.0], [-delta, delta, 0.0],
예제 #24
0
def generate_reflection_file(reflection_key):
    r"""

    Parameters
    ----------
    reflection_key: str

    Returns
    -------

    """
    refl = reflections[reflection_key]
    if not os.path.exists(refl['nexus']):
        message = '{} not found. Not creating geometry'.format(refl['nexus'])
        raise FileExistsError(message)
    inst_name = "BASIS"
    # Set header information
    comment = "Created by Michael Reuter and Jose Borreguero"
    # Time needs to be in UTC?
    valid_from = "2014-01-01 00:00:00"

    xml_outfile = '{}_Definition_Si{}.xml'.format(inst_name, reflection_key)
    nfile = h5py.File(refl['nexus'], 'r')

    det = MantidGeom(inst_name, comment=comment, valid_from=valid_from)
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-84.0)
    det.addSamplePosition()
    det.addComment("MONITORS")
    det.addMonitors(names=["monitor1"], distance=["-0.23368"], neutronic=True)

    # Create the inelastic banks information
    det.addComment('INELASTIC DECTECTORS')
    det.addComponent('silicon')
    handle_silicon = det.makeTypeElement("silicon")
    # Slicer for removing ghosts. Due to the mapping, the ghost tubes sit
    # on the same sides of the arrays for all banks.
    remove_ghosts = slice(-INELASTIC_TUBES_NGHOST)

    for i in range(n_inelastic_banks):
        bank_id = "bank%d" % (i+1)
        pixel_id = nfile["/entry/instrument/bank%d/pixel_id" % (i+1)].value[remove_ghosts]
        distance = nfile["/entry/instrument/bank%d/distance" % (i+1)].value[remove_ghosts]
        # theta or polar_angle: angle from the Z-axis towards the X-axis
        polar_angle = nfile["/entry/instrument/bank%d/polar_angle" % (i+1)].value[remove_ghosts]
        polar_angle *= (180.0/math.pi)
        # phi or azimuthal_angle: angle in the XY-plane
        azimuthal_angle = nfile["/entry/instrument/bank%d/azimuthal_angle" % (i+1)].value[remove_ghosts]
        azimuthal_angle *= (180.0/math.pi)

        analyser_wavelength = nfile["/entry/instrument/analyzer%d/wavelength" % (i+1)].value[remove_ghosts]
        analyser_wavelength *= refl['ratio_to_irreducible_hkl']
        analyser_energy = 81.8042051/analyser_wavelength**2

        det.addComponent(bank_id, idlist=bank_id, root=handle_silicon)

        xbank, ybank, zbank = pixels_physical_xyz(i)
        det.addDetectorPixels(bank_id, x=xbank, y=ybank, z=zbank,
                              names=pixel_id, energy=analyser_energy,
                              nr=distance, ntheta=polar_angle,
                              nphi=azimuthal_angle,
                              output_efixed=refl['efixed'])

        det.addDetectorPixelsIdList(bank_id, r=distance, names=pixel_id,
                                    elg="multiple_ranges")


    # Create the diffraction bank information
    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []

    detector_z = [-2.1474825, -1.704594, -1.108373, -0.4135165, 0.3181,
                  1.0218315, 1.6330115, 2.0993535, 2.376999]
    detector_x = [1.1649855, 1.7484015, 2.175541, 2.408594, 2.422933,
                  2.216378, 1.8142005, 1.247867, 0.5687435]
    detector_y = [-0.001807, -0.001801, -0.0011845, -0.0006885, -0.0013145,
                  -0.001626, -0.001397, 0.0003465, -0.0001125]

    for i in range(ELASTIC_BANK_START, ELASTIC_BANK_END+1):
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)

        k = i - ELASTIC_BANK_START

        x_coord = detector_x[k]
        y_coord = detector_y[k]
        z_coord = detector_z[k]

        det.addDetector(x_coord, y_coord, z_coord, 0.0, 0., 90.,
                        bank_name, "tube-elastic", facingSample=True)

        idlist.append(ELASTIC_DETECTORID_START +
                      ELASTIC_TUBE_NPIXELS*(i-ELASTIC_BANK_START))
        idlist.append(ELASTIC_DETECTORID_START +
                      ELASTIC_TUBE_NPIXELS*(i-ELASTIC_BANK_START) +
                      ELASTIC_TUBE_NPIXELS-1)
        idlist.append(None)

    # Diffraction tube information
    det.addComment("ELASTIC TUBE (90 degrees)")
    det.addPixelatedTube("tube-elastic", ELASTIC_TUBE_NPIXELS,
                         ELASTIC_TUBE_LENGTH, "pixel-elastic-tube",
                         neutronic=True, neutronicIsPhysical=True)

    # Set the diffraction pixel Ids
    det.addDetectorIds("elastic", idlist)

    # Creating diffraction pixel
    det.addComment("PIXEL FOR DIFFRACTION TUBES")
    det.addCylinderPixel("pixel-elastic-tube",
                         (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                         (ELASTIC_TUBE_WIDTH/2.0),
                         (ELASTIC_TUBE_LENGTH/ELASTIC_TUBE_NPIXELS))

    det.addComment("PIXEL FOR INELASTIC TUBES")
    det.addCylinderPixel("pixel", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                        INELASTIC_TUBE_WIDTH * (1.0-INELASTIC_PIXEL_RADIUS_GAP_RATIO) / 2.0,
                        INELASTIC_TUBE_LENGTH * (1.0-INELASTIC_PIXEL_HEIGHT_GAP_RATIO) / INELASTIC_TUBE_NPIXEL,
                        is_type="detector", algebra="cyl-approx")

    det.addComment("MONITOR SHAPE")
    det.addComment("FIXME: Do something real here.")
    det.addDummyMonitor(0.01, 0.03)

    det.addComment("MONITOR IDs")
    det.addMonitorIds(["-1"])

    det.writeGeom(xml_outfile)

    # Always clean after yourself
    nfile.close()
예제 #25
0
            continue
        positions[i] = Vector(x_i, y_i, z_i)
    return positions

if __name__ == "__main__":
    inst_name = "NOMAD"
    xml_outfile = inst_name+"_Definition.xml"

    # boiler plate stuff
    instr = MantidGeom(inst_name,
                       comment=" Created by Peter Peterson",
                       valid_from="2017-06-05 00:00:01")
    instr.addComment("DEFAULTS")
    instr.addSnsDefaults()
    instr.addComment("SOURCE")
    instr.addModerator(-19.5)
    instr.addComment("SAMPLE")
    instr.addSamplePosition()

    # monitors
    instr.addComment("MONITORS")
    instr.addMonitorIds([-1,-2])
    instr.addMonitors([-0.879475,5.748782], ["monitor1", "monitor2"])
    instr.addComment("Shape for monitors")
    instr.addComment("TODO: Update to real shape")
    instr.addDummyMonitor(0.01, .03)


    # TODO choppers and slits could go here

예제 #26
0
def main():
    from helper import MantidGeom
    
    inst_name = "VISION"
    
    xml_outfile = inst_name+"_Definition.xml"
    
    det = MantidGeom(inst_name, comment=" Created by Stuart Campbell ")
    det.addSnsDefaults(indirect=True)
    det.addComment("SOURCE AND SAMPLE POSITION")
    det.addModerator(-16.0)
    det.addSamplePosition()

    # Backscattering Banks are 21-100

    BACKSCATTERING_NTUBES = 80

    det.addComponent("elastic-backscattering", "elastic-backscattering")
    handle = det.makeTypeElement("elastic-backscattering")

    idlist = []

    for k in range(BACKSCATTERING_NTUBES):
        id_start = 26624+(256*k)
        id_end = 26624 + (256*k) + 255
        angle = -(2.25 + 4.5*k)
        bankid = 21 + k
        bank_name = "bank%d" % bankid

        det.addComponent(bank_name, root=handle)

        z_coord = -0.998

        if k%2 == 0:
            # Even tube number (long)
            centre_offset = BS_ELASTIC_LONG_TUBE_INNER_RADIUS + (BS_ELASTIC_LONG_TUBE_LENGTH/2.0)
            #centre_offset = BS_ELASTIC_LONG_TUBE_INNER_RADIUS
            component_name = "tube-long-bs-elastic"
        else:
            # Odd tube number (short)
            centre_offset = BS_ELASTIC_SHORT_TUBE_INNER_RADIUS + (BS_ELASTIC_SHORT_TUBE_LENGTH/2.0)
            component_name = "tube-short-bs-elastic"

        x_coord = centre_offset * math.cos(math.radians(90-angle))
        y_coord = centre_offset * math.sin(math.radians(90-angle))

        det.addDetector(x_coord, y_coord, z_coord, 0, 0, -angle, bank_name, component_name)

        idlist.append(id_start)
        idlist.append(id_end)
        idlist.append(None)

    det.addDetectorIds("elastic-backscattering", idlist)


    # 90 elastic banks

    elastic_banklist = [3,6,9,12,15,18]
    elastic_bank_start = [2048,6144,10240,14336,18432,22528]
    elastic_angle = [22.5,-22.5,-67.5,-112.5,-157.5,157.5]

    sample_elastic_distance = 0.635

    det.addComponent("elastic", "elastic")
    handle = det.makeTypeElement("elastic")

    idlist = []
    elastic_index = 0

    for i in elastic_banklist:
        bank_name = "bank%d" % i
        det.addComponent(bank_name, root=handle)

        z_coord = 0.0
        x_coord = sample_elastic_distance * math.cos(math.radians(elastic_angle[elastic_index]))
        y_coord = sample_elastic_distance * math.sin(math.radians(elastic_angle[elastic_index]))

        det.addDetector(x_coord, y_coord, z_coord, -90.0, 0, 0., bank_name, "eightpack-elastic", facingSample=True)

        idlist.append(elastic_bank_start[elastic_index])
        idlist.append(elastic_bank_start[elastic_index]+2047)
        idlist.append(None)

        elastic_index += 1


    det.addDetectorIds("elastic", idlist)

    # Inelastic
    inelastic_banklist = [1,2,4,5,7,8,10,11,13,14,16,17,19,20]
    inelastic_bank_start=[0,1024,4096,5120,8192,9216,12288,13312,16384,17408,20480,21504,24576,25600]
    inelastic_angle = [45.0,45.0,0.0,0.0,-45.0,-45.0,-90.0,-90.0,-135.0,-135.0,180.0,180.0,135.0,135.0]
    inelastic_angle_for_rotation = [-45.0,-45.0,180.0,180.0,-135.0,-135.0,-90.0,-90.0,-225.0,-225.0,0.0,0.0,45.0,45.0]

    sample_inelastic_distance = 0.5174

    det.addComponent("inelastic", "inelastic")
    handle = det.makeTypeElement("inelastic")

    idlist = []
    inelastic_index = 0

    for i in inelastic_banklist:
        bank_name = "bank%d" % i
        bank_comp = det.addComponent(bank_name, root=handle, blank_location=True)
#        location_element = le.SubElement(bank_comp, "location")
#        le.SubElement(location_element, "rot", **{"val":"90", "axis-x":"0",
#                                              "axis-y":"0", "axis-z":"1"})

        # Neutronic Positions
        z_coord_neutronic = sample_inelastic_distance * math.tan(math.radians(45.0))

        if inelastic_index % 2 == 0:
            # Facing Downstream
            z_coord = 0.01
        else:
            # Facing to Moderator
            z_coord = -0.01
            z_coord_neutronic = -z_coord_neutronic

            # Physical Positions
        x_coord = sample_inelastic_distance * math.cos(math.radians(inelastic_angle[inelastic_index]))
        y_coord = sample_inelastic_distance * math.sin(math.radians(inelastic_angle[inelastic_index]))

        det.addDetector(-x_coord, y_coord, z_coord, 0, 0, inelastic_angle_for_rotation[inelastic_index]-90.0, bank_name,
            "eightpack-inelastic", neutronic=True, nx=-x_coord, ny=y_coord, nz=z_coord_neutronic)

        efixed = ("Efixed", "3.64", "meV")
        det.addDetectorParameters(bank_name, efixed )

        idlist.append(inelastic_bank_start[inelastic_index])
        idlist.append(inelastic_bank_start[inelastic_index]+1023)
        idlist.append(None)

        inelastic_index += 1


    det.addDetectorIds("inelastic", idlist)


    # 8 packs
    
    det.addComment("INELASTIC 8-PACK")
    det.addNPack("eightpack-inelastic", INELASTIC_TUBES_PER_BANK, INELASTIC_TUBE_WIDTH, 
                 INELASTIC_AIR_GAP, "tube-inelastic", neutronic=True)
    
    det.addComment("ELASTIC 8-PACK")
    det.addNPack("eightpack-elastic", ELASTIC_TUBES_PER_BANK, ELASTIC_TUBE_WIDTH, 
                 ELASTIC_AIR_GAP, "tube-elastic", neutronic=True, neutronicIsPhysical=True)
 
    # TUBES
    det.addComment("INELASTIC TUBE")
    det.addPixelatedTube("tube-inelastic", INELASTIC_TUBE_NPIXELS, 
                         INELASTIC_TUBE_LENGTH, "pixel-inelastic-tube", neutronic=True)
    
    det.addComment("BACKSCATTERING LONG TUBE")
    det.addPixelatedTube("tube-long-bs-elastic", BS_ELASTIC_LONG_TUBE_NPIXELS,
        BS_ELASTIC_LONG_TUBE_LENGTH, "pixel-bs-elastic-long-tube",
        neutronic=True, neutronicIsPhysical=True)
    det.addComment("BACKSCATTERING SHORT TUBE")
    det.addPixelatedTube("tube-short-bs-elastic", BS_ELASTIC_SHORT_TUBE_NPIXELS, 
        BS_ELASTIC_SHORT_TUBE_LENGTH, "pixel-bs-elastic-short-tube",
        neutronic=True, neutronicIsPhysical=True)

    det.addComment("ELASTIC TUBE (90 degrees)")
    det.addPixelatedTube("tube-elastic", ELASTIC_TUBE_NPIXELS, 
                         ELASTIC_TUBE_LENGTH, "pixel-elastic-tube", neutronic=True, neutronicIsPhysical=True)

    # PIXELS
    
    det.addComment("PIXEL FOR INELASTIC TUBES")
    det.addCylinderPixel("pixel-inelastic-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                         (INELASTIC_TUBE_WIDTH/2.0), 
                         (INELASTIC_TUBE_LENGTH/INELASTIC_TUBE_NPIXELS))
    
    det.addComment("PIXEL FOR BACKSCATTERING ELASTIC TUBES (LONG)")
    det.addCylinderPixel("pixel-bs-elastic-long-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0), 
                         (BS_ELASTIC_LONG_TUBE_WIDTH/2.0), 
                         (BS_ELASTIC_LONG_TUBE_LENGTH/BS_ELASTIC_LONG_TUBE_NPIXELS))

    det.addComment("PIXEL FOR BACKSCATTERING ELASTIC TUBES (SHORT)")
    det.addCylinderPixel("pixel-bs-elastic-short-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                         (BS_ELASTIC_SHORT_TUBE_WIDTH/2.0), 
                         (BS_ELASTIC_SHORT_TUBE_LENGTH/BS_ELASTIC_SHORT_TUBE_NPIXELS))
    
    det.addComment("PIXEL FOR ELASTIC TUBES (90 degrees)")
    det.addCylinderPixel("pixel-elastic-tube", (0.0, 0.0, 0.0), (0.0, 1.0, 0.0),
                         (ELASTIC_TUBE_WIDTH/2.0), 
                         (ELASTIC_TUBE_LENGTH/ELASTIC_TUBE_NPIXELS))


    det.addComment(" ##### MONITORS ##### ")
    det.addMonitors(names=["monitor1"], distance=["-6.71625"], neutronic=True)

    # MONITORS

    det.addComment("MONITOR SHAPE")
    det.addComment("FIXME: Do something real here.")
    det.addDummyMonitor(0.01, 0.03)

    det.addComment("MONITOR IDs")
    det.addMonitorIds(["-1"])


    det.showGeom()
    det.writeGeom(xml_outfile)