예제 #1
0
 def addToon(self, toon, tX, tY):
     marker = NodePath('toon_marker-%i' % toon.doId)
     marker.reparentTo(self)
     self._getToonMarker(toon).copyTo(marker)
     marker.setColor(toon.style.getHeadColor())
     if toon.isLocal():
         marker.setScale(0.07)
     else:
         marker.setScale(0.05)
     marker.flattenStrong()
     marker.setPos(*self.gui2pos(*self.tile2gui(tX, tY)))
     self._toon2marker[toon] = marker
예제 #2
0
파일: MazeMapGui.py 프로젝트: z010155/c0d3
 def addToon(self, toon, tX, tY):
     marker = NodePath('toon_marker-%i' % toon.doId)
     marker.reparentTo(self)
     self._getToonMarker(toon).copyTo(marker)
     marker.setColor(toon.style.getHeadColor())
     if toon.isLocal():
         marker.setScale(0.07)
     else:
         marker.setScale(0.05)
     marker.flattenStrong()
     marker.setPos(*self.gui2pos(*self.tile2gui(tX, tY)))
     self._toon2marker[toon] = marker
 def addToon(self, toon):
     marker = NodePath('toon_marker-%i' % toon.doId)
     marker.reparentTo(self)
     self._getToonMarker(toon).copyTo(marker)
     marker.setColor(toon.style.getHeadColor())
     if toon.isLocal():
         marker.setScale(Globals.Gui.LocalMarkerScale)
         marker.setBin('fixed', 10)
     else:
         marker.setScale(Globals.Gui.MarkerScale)
         marker.setBin('fixed', 5)
     marker.flattenStrong()
     self._toonMarkers[toon] = marker
 def addToon(self, toon):
     marker = NodePath('toon_marker-%i' % toon.doId)
     marker.reparentTo(self)
     self._getToonMarker(toon).copyTo(marker)
     marker.setColor(toon.style.getHeadColor())
     if toon.isLocal():
         marker.setScale(Globals.Gui.LocalMarkerScale)
         marker.setBin('fixed', 10)
     else:
         marker.setScale(Globals.Gui.MarkerScale)
         marker.setBin('fixed', 5)
     marker.flattenStrong()
     self._toonMarkers[toon] = marker
예제 #5
0
    def __init__(self, cameraPos, heightfield, plantModelDict, numberOfTiles, sizeOfTile, usingLod):
        # storage for the nodepaths used by the plants
        self.tileDict = dict()

        self.plantClassNp = render.attachNewNode("plants-%i-%i" % (numberOfTiles, sizeOfTile))

        self.usingLod = usingLod
        # save camera position to create plants around it
        self.cameraPos = cameraPos
        # save a instance of the heightfield to access heightinformations of the ground
        self.heightfield = heightfield

        # dictionary with the models
        self.plantModelDict = plantModelDict
        # number of tiles around the camera
        self.numberOfTiles = numberOfTiles
        # size of one of these tiles
        self.sizeOfTile = sizeOfTile
        # sum up all distribution numbers of the plantmodelDict
        self.plantmodelDistributionSum = reduce(
            add, [self.plantModelDict[key][0] for key in self.plantModelDict.keys()]
        )

        # a dictionary to store the models which need to be faded in
        self.fadingNodepaths = dict()

        # convert the egg's to bam's
        for name, [c, modelName, minS, maxS, distF] in self.plantModelDict.items():
            try:
                tempModelRoot = loader.loadModel(modelName + ".egg")
                tempModelRoot.flattenStrong()
                modelRoot = NodePath("modelRoot-%s" % name)
                tempModelRoot.getChildren().reparentTo(modelRoot)
                modelRoot.flattenStrong()
                modelRoot.writeBamFile(modelName + ".bam")
                modelRoot.removeNode()
            # for models with different lod's
            except:
                for [maxLodDist, minLodDistance, modelName] in modelName:
                    tempModelRoot = loader.loadModel(modelName + ".egg")
                    tempModelRoot.flattenStrong()
                    modelRoot = NodePath("modelRoot-%s" % name)
                    tempModelRoot.getChildren().reparentTo(modelRoot)
                    modelRoot.flattenStrong()
                    modelRoot.writeBamFile(modelName + ".bam")
                    modelRoot.removeNode()

        # task to create the plants
        taskMgr.add(self.updatePlants, "updatePlants")
예제 #6
0
def setSky(directory, ext=".jpg"):
    """Sets up a skybox. 'directory' is the directory whitch contains 6
    pictures with the names right.ext, left.ext and so on (see template).
    ext is the extension the pictures have (with dot).
    """
    #TODO: accept all supported image file extensions without the need for an
    #      extra argument

    # remove the old sky first when loading a new one
    # TODO: get this working...
    #oldsky = render.find("*sky*")
    #print oldsky
    #for child in render.getChildren():
    #    child.remove()

    sky = NodePath().attachNewNode("sky")
    sides = {
        "right":  ( 1,  0,  0, -90,   0,  0),
        "left":   (-1,  0,  0,  90,   0,  0),
        "top":    ( 0,  0,  1,   0,  90,  0),
        "bottom": ( 0,  0, -1,  180,  -90,  0),
        "front":  ( 0,  1,  0,   0,   0,  0),
        "back":   ( 0, -1,  0, 180,   0,  0)
        }
    for name, poshpr in sides.iteritems():

        c = CardMaker(name)
        c.setFrame(-1, 1, -1, 1)
        card = c.generate()
        cardnode = sky.attachNewNode(card)
        cardnode.setPosHpr(*poshpr)
        tex = loader.loadTexture("skyboxes/" + directory + "/" + name + ext)
        tex.setWrapV(tex.WMClamp)
        tex.setMagfilter(tex.FTNearestMipmapNearest)
        tex.setMinfilter(tex.FTNearestMipmapNearest)
        cardnode.setTexture(tex)

    sky.flattenStrong()
    sky.setScale(10, 10, 10)
    sky.setCompass()
    sky.setBin('background', 0)
    sky.setDepthTest(False)
    sky.setDepthWrite(False)
    sky.setLightOff()
    sky.reparentTo(camera)

    geom = sky.getChild(0).node()
    geom.setName("cube")
예제 #7
0
 def redraw(self):
     if not self.dirty:
         return  # nothing has changed, no need to redraw
     container = NodePath(PandaNode(self.name + "container"))
     for i in range(TILE_GRP_SIZE):
         for j in range(TILE_GRP_SIZE):
             cur = self.textures[i][j]
             if cur:
                 node = container.attachNewNode(CARD_MAKER.generate())
                 node.setTexture(cur)
                 node.setTwoSided(True)
                 node.setPos(i * TILE_SIZE, 0, j * TILE_SIZE)
     container.flattenStrong()
     for child in self.nodepath.getChildren():
         child.removeNode()
     container.reparentTo(self.nodepath)
     self.dirty = False
class CogdoMazeFactory:

    def __init__(self, randomNumGen, width, height, frameWallThickness = Globals.FrameWallThickness, cogdoMazeData = CogdoMazeData):
        self._rng = RandomNumGen(randomNumGen)
        self.width = width
        self.height = height
        self.frameWallThickness = frameWallThickness
        self._cogdoMazeData = cogdoMazeData
        self.quadrantSize = self._cogdoMazeData.QuadrantSize
        self.cellWidth = self._cogdoMazeData.QuadrantCellWidth

    def getMazeData(self):
        if not hasattr(self, '_data'):
            self._generateMazeData()
        return self._data

    def createCogdoMaze(self, flattenModel = True):
        if not hasattr(self, '_maze'):
            self._loadAndBuildMazeModel(flatten=flattenModel)
        return CogdoMaze(self._model, self._data, self.cellWidth)

    def _gatherQuadrantData(self):
        self.openBarriers = []
        barrierItems = range(Globals.TotalBarriers)
        self._rng.shuffle(barrierItems)
        for i in barrierItems[0:len(barrierItems) - Globals.NumBarriers]:
            self.openBarriers.append(i)

        self.quadrantData = []
        quadrantKeys = self._cogdoMazeData.QuadrantCollisions.keys()
        self._rng.shuffle(quadrantKeys)
        i = 0
        for y in range(self.height):
            for x in range(self.width):
                key = quadrantKeys[i]
                collTable = self._cogdoMazeData.QuadrantCollisions[key]
                angle = self._cogdoMazeData.QuadrantAngles[self._rng.randint(0, len(self._cogdoMazeData.QuadrantAngles) - 1)]
                self.quadrantData.append((key, collTable[angle], angle))
                i += 1
                if x * y >= self._cogdoMazeData.NumQuadrants:
                    i = 0

    def _generateBarrierData(self):
        data = []
        for y in range(self.height):
            data.append([])
            for x in range(self.width):
                if x == self.width - 1:
                    ax = -1
                else:
                    ax = 1
                if y == self.height - 1:
                    ay = -1
                else:
                    ay = 1
                data[y].append([ax, ay])

        dirUp = 0
        dirDown = 1
        dirLeft = 2
        dirRight = 3

        def getAvailableDirections(ax, ay, ignore = None):
            dirs = []
            if ax - 1 >= 0 and data[ay][ax - 1][BARRIER_DATA_RIGHT] == 1 and (ax, ay) != ignore:
                dirs.append(dirLeft)
            if ax + 1 < self.width and data[ay][ax][BARRIER_DATA_RIGHT] == 1 and (ax, ay) != ignore:
                dirs.append(dirRight)
            if ay - 1 >= 0 and data[ay - 1][ax][BARRIER_DATA_TOP] == 1 and (ax, ay) != ignore:
                dirs.append(dirDown)
            if ay + 1 < self.height and data[ay][ax][BARRIER_DATA_TOP] == 1 and (ax, ay) != ignore:
                dirs.append(dirUp)
            return dirs

        visited = []

        def tryVisitNeighbor(ax, ay, ad):
            if ad == dirUp:
                if data[ay][ax] in visited:
                    return None
                visited.append(data[ay][ax])
                data[ay][ax][BARRIER_DATA_TOP] = 0
                ay += 1
            elif ad == dirDown:
                if data[ay - 1][ax] in visited:
                    return None
                visited.append(data[ay - 1][ax])
                data[ay - 1][ax][BARRIER_DATA_TOP] = 0
                ay -= 1
            elif ad == dirLeft:
                if data[ay][ax - 1] in visited:
                    return None
                visited.append(data[ay][ax - 1])
                data[ay][ax - 1][BARRIER_DATA_RIGHT] = 0
                ax -= 1
            elif ad == dirRight:
                if data[ay][ax] in visited:
                    return None
                visited.append(data[ay][ax])
                data[ay][ax][BARRIER_DATA_RIGHT] = 0
                ax += 1
            return ax, ay

        def openBarriers(x, y):
            dirs = getAvailableDirections(x, y)
            for dir in dirs:
                next = tryVisitNeighbor(x, y, dir)
                if next is not None:
                    openBarriers(*next)

        x = self._rng.randint(0, self.width - 1)
        y = self._rng.randint(0, self.height - 1)
        openBarriers(x, y)
        self._barrierData = data

    def _generateMazeData(self):
        if not hasattr(self, 'quadrantData'):
            self._gatherQuadrantData()
        self._data = {'width': (self.width + 1) * self.frameWallThickness + self.width * self.quadrantSize,
                      'height': (self.height + 1) * self.frameWallThickness + self.height * self.quadrantSize}
        self._data['originX'] = int(self._data['width'] / 2)
        self._data['originY'] = int(self._data['height'] / 2)
        collisionTable = []
        horizontalWall = [ 1 for x in range(self._data['width']) ]
        collisionTable.append(horizontalWall)
        for i in range(0, len(self.quadrantData), self.width):
            for y in range(self.quadrantSize):
                row = [1]
                for x in range(i, i + self.width):
                    if x == 1 and y < self.quadrantSize / 2 - 2:
                        newData = []
                        for j in self.quadrantData[x][1][y]:
                            if j == 0:
                                newData.append(2)
                            else:
                                newData.append(j + 0)

                        row += newData + [1]
                    else:
                        row += self.quadrantData[x][1][y] + [1]

                collisionTable.append(row)

            collisionTable.append(horizontalWall[:])

        barriers = Globals.MazeBarriers
        for i in range(len(barriers)):
            for coords in barriers[i]:
                collisionTable[coords[1]][coords[0]] = 0

        y = self._data['originY']
        for x in range(len(collisionTable[y])):
            if collisionTable[y][x] == 0:
                collisionTable[y][x] = 2

        x = self._data['originX']
        for y in range(len(collisionTable)):
            if collisionTable[y][x] == 0:
                collisionTable[y][x] = 2

        self._data['collisionTable'] = collisionTable

    def _loadAndBuildMazeModel(self, flatten = False):
        self.getMazeData()
        self._model = NodePath('CogdoMazeModel')
        levelModel = CogdoUtil.loadMazeModel('level')
        self.quadrants = []
        quadrantUnitSize = int(self.quadrantSize * self.cellWidth)
        frameActualSize = self.frameWallThickness * self.cellWidth
        size = quadrantUnitSize + frameActualSize
        halfWidth = int(self.width / 2)
        halfHeight = int(self.height / 2)
        i = 0
        for y in range(self.height):
            for x in range(self.width):
                ax = (x - halfWidth) * size
                ay = (y - halfHeight) * size
                extension = ''
                if hasattr(getBase(), 'air'):
                    extension = '.bam'
                filepath = self.quadrantData[i][0] + extension
                angle = self.quadrantData[i][2]
                m = self._createQuadrant(filepath, i, angle, quadrantUnitSize)
                m.setPos(ax, ay, 0)
                m.reparentTo(self._model)
                self.quadrants.append(m)
                i += 1

        quadrantHalfUnitSize = quadrantUnitSize * 0.5
        barrierModel = CogdoUtil.loadMazeModel('grouping_blockerDivider').find('**/divider')
        y = 3
        for x in range(self.width):
            if x == (self.width - 1) / 2:
                continue
            ax = (x - halfWidth) * size
            ay = (y - halfHeight) * size - quadrantHalfUnitSize - (self.cellWidth - 0.5)
            b = NodePath('barrier')
            barrierModel.instanceTo(b)
            b.setPos(ax, ay, 0)
            b.reparentTo(self._model)

        offset = self.cellWidth - 0.5
        for x in (0, 3):
            for y in range(self.height):
                ax = (x - halfWidth) * size - quadrantHalfUnitSize - frameActualSize + offset
                ay = (y - halfHeight) * size
                b = NodePath('barrier')
                barrierModel.instanceTo(b)
                b.setPos(ax, ay, 0)
                b.setH(90)
                b.reparentTo(self._model)

            offset -= 2.0

        barrierModel.removeNode()
        levelModel.getChildren().reparentTo(self._model)
        for np in self._model.findAllMatches('**/*lightCone*'):
            CogdoUtil.initializeLightCone(np, 'fixed', 3)

        if flatten:
            self._model.flattenStrong()
        return self._model

    def _createQuadrant(self, filepath, serialNum, angle, size):
        root = NodePath('QuadrantRoot-%i' % serialNum)
        quadrant = loader.loadModel(filepath)
        quadrant.getChildren().reparentTo(root)
        root.setH(angle)
        return root
def generateHullCache(modelClass):
    geom = loader.loadModel('models/shipparts/pir_m_shp_%s' %
                            HullDict[modelClass])
    stripPrefix(geom, 'model:')
    for node in geom.findAllMatches('**/omit'):
        parent = node.getParent()
        omit = parent.attachNewNode(ModelNode('omit'))
        node.reparentTo(omit)
        node.setName('geom')

    preFlatten(geom)
    logic = loader.loadModel('models/shipparts/pir_m_shp_%s_logic' %
                             HullDict[modelClass])
    locators = logic.find('**/locators')
    for side in ['left', 'right']:
        bad = locators.find('**/location_ropeLadder_0_%s' % side)
        if bad:
            bad.setName('location_ropeLadder_%s_0' % side)

        bad = locators.find('**/location_ropeLadder_1_%s' % side)
        if bad:
            bad.setName('location_ropeLadder_%s_1' % side)

        bad = locators.find('**/location_ropeLadder_1_%s1' % side)
        if bad:
            bad.setName('location_ropeLadder_%s_2' % side)

    collisions = logic.find('**/collisions')
    badPanel = collisions.find('**/collision_panel_3')
    if badPanel:
        badPanel.setName('collision_panel_2')
    collisions.find('**/collision_panel_0').setTag('Hull Code', '0')
    collisions.find('**/collision_panel_1').setTag('Hull Code', '1')
    collisions.find('**/collision_panel_2').setTag('Hull Code', '2')
    walls = collisions.find('**/collision_walls')
    if walls:
        walls.setTag('Hull Code', '255')
    else:
        collisions.attachNewNode('collision_walls')

    shipToShipCollide = collisions.find('**/collision_shiptoship')
    shipToShipCollide.setCollideMask(PiratesGlobals.ShipCollideBitmask)
    deck = collisions.find('**/collision_deck')
    if not deck:
        deck = collisions.attachNewNode('deck')

    mask = deck.getCollideMask()
    mask ^= PiratesGlobals.FloorBitmask
    mask |= PiratesGlobals.ShipFloorBitmask
    deck.setCollideMask(mask)
    floors = collisions.find('**/collision_floors')
    if not floors:
        floors = collisions.find('**/collision_floor')

    mask = floors.getCollideMask()
    mask ^= PiratesGlobals.FloorBitmask
    mask |= PiratesGlobals.ShipFloorBitmask
    floors.setCollideMask(mask)
    floors.setTag('Hull Code', str(255))
    geomHigh = geom.find('**/lod_high')
    geomMed = geom.find('**/lod_medium')
    if not geomMed:
        geomMed = geom.find('**/low_medium')
    if not geomMed:
        geomMed = geomHigh.copyTo(NodePath())
    geomLow = geom.find('**/lod_low')
    if not geomLow:
        geomLow = geomMed.copyTo(NodePath())
    geomSuperLow = geom.find('**/lod_superlow')
    if not geomSuperLow:
        geomSuperLow = geomLow.copyTo(NodePath())
    geomHigh.setName('high')
    geomMed.setName('med')
    geomLow.setName('low')
    geomSuperLow.setName('superlow')
    if modelClass in [21, 22, 23]:
        spike = loader.loadModel('models/shipparts/pir_m_shp_ram_spike')
        spikeTrans = locators.find('**/location_ram').getTransform(locators)
        spike.setTransform(spikeTrans)
        spike.flattenLight()
        spikeHi = spike.find('**/lod_high')
        spikeMed = spike.find('**/lod_medium')
        spikeLow = spike.find('**/lod_low')
        spikeHi.copyTo(geomHigh)
        spikeMed.copyTo(geomMed)
        spikeLow.copyTo(geomLow)
        spikeLow.copyTo(geomSuperLow)

    flipRoot = NodePath('root')
    collisions.reparentTo(flipRoot)
    locators.reparentTo(flipRoot)
    geomHigh.reparentTo(flipRoot)
    geomMed.reparentTo(flipRoot)
    geomLow.reparentTo(flipRoot)
    geomSuperLow.reparentTo(flipRoot)
    flipRoot.setH(180)
    flipRoot.flattenLight()
    omits = flipRoot.findAllMatches('**/omit')
    for node in omits:
        node.flattenStrong()

    for group in [
            'static', 'transparent', 'ropeLadder_*', 'stripeA', 'stripeB',
            'pattern'
    ]:
        for node in flipRoot.findAllMatches('**/%s' % group):
            name = node.getName()
            for subNode in node.findAllMatches('**/*'):
                subNode.setName(name)

            node.flattenStrong()
            node.setName(name)

    geomHigh.detachNode()
    geomMed.detachNode()
    geomLow.detachNode()
    geomSuperLow.detachNode()
    locators.detachNode()
    collisions.detachNode()
    genericGeoms = [geomHigh, geomMed, geomLow, geomSuperLow]

    customGeoms = [x.copyTo(NodePath()) for x in genericGeoms]
    for np in genericGeoms:
        trans = np.find('**/transparent')
        if trans:
            trans.stash()
        np.flattenLight()
        sails = np.findAllMatches('**/sails')
        sails.stash()
        omits = np.findAllMatches('**/omit')
        omits.stash()
        for node in omits:
            node.node().setPreserveTransform(node.node().PTDropNode)

        generic = NodePath('generic')
        np.findAllMatches('**/+GeomNode').wrtReparentTo(generic)
        np.findAllMatches('*').detach()
        generic.flattenStrong()
        generic.reparentTo(np)
        stripAttribs(generic, TextureAttrib)
        stripAttribs(generic, TransparencyAttrib)
        stripAttribs(generic, CullBinAttrib)
        generic.setBin('ground', 1)
        collapse(generic)
        sails.unstash()
        sails.reparentTo(np)
        for node in sails:
            node.node().setPreserveTransform(node.node().PTDropNode)

        if trans:
            trans.unstash()
            trans.flattenStrong()
            if trans.node().isOfType(ModelNode.getClassType()):
                trans.node().setPreserveTransform(ModelNode.PTDropNode)
        deck = np.find('**/=cam=shground')
        if deck:
            deck.setName('deck')
        omits.unstash()

    for np in customGeoms:
        collapse(np.find('**/static'))

    data = HullCache()
    data.root = NodePath('hull')
    data.genericGeoms = genericGeoms
    data.customGeoms = customGeoms
    data.collisions = collisions
    data.locators = locators
    return data
예제 #10
0
class CogdoMazeFactory:
    def __init__(self,
                 randomNumGen,
                 width,
                 height,
                 frameWallThickness=Globals.FrameWallThickness,
                 cogdoMazeData=CogdoMazeData):
        self._rng = RandomNumGen(randomNumGen)
        self.width = width
        self.height = height
        self.frameWallThickness = frameWallThickness
        self._cogdoMazeData = cogdoMazeData
        self.quadrantSize = self._cogdoMazeData.QuadrantSize
        self.cellWidth = self._cogdoMazeData.QuadrantCellWidth

    def getMazeData(self):
        if not hasattr(self, '_data'):
            self._generateMazeData()
        return self._data

    def createCogdoMaze(self, flattenModel=True):
        if not hasattr(self, '_maze'):
            self._loadAndBuildMazeModel(flatten=flattenModel)
        return CogdoMaze(self._model, self._data, self.cellWidth)

    def _gatherQuadrantData(self):
        self.openBarriers = []
        barrierItems = range(Globals.TotalBarriers)
        self._rng.shuffle(barrierItems)
        for i in barrierItems[0:len(barrierItems) - Globals.NumBarriers]:
            self.openBarriers.append(i)

        self.quadrantData = []
        quadrantKeys = self._cogdoMazeData.QuadrantCollisions.keys()
        self._rng.shuffle(quadrantKeys)
        i = 0
        for y in xrange(self.height):
            for x in xrange(self.width):
                key = quadrantKeys[i]
                collTable = self._cogdoMazeData.QuadrantCollisions[key]
                angle = self._cogdoMazeData.QuadrantAngles[self._rng.randint(
                    0,
                    len(self._cogdoMazeData.QuadrantAngles) - 1)]
                self.quadrantData.append((key, collTable[angle], angle))
                i += 1
                if x * y >= self._cogdoMazeData.NumQuadrants:
                    i = 0

    def _generateBarrierData(self):
        data = []
        for y in xrange(self.height):
            data.append([])
            for x in xrange(self.width):
                if x == self.width - 1:
                    ax = -1
                else:
                    ax = 1
                if y == self.height - 1:
                    ay = -1
                else:
                    ay = 1
                data[y].append([ax, ay])

        dirUp = 0
        dirDown = 1
        dirLeft = 2
        dirRight = 3

        def getAvailableDirections(ax, ay, ignore=None):
            dirs = []
            if ax - 1 >= 0 and data[ay][ax - 1][BARRIER_DATA_RIGHT] == 1 and (
                    ax, ay) != ignore:
                dirs.append(dirLeft)
            if ax + 1 < self.width and data[ay][ax][
                    BARRIER_DATA_RIGHT] == 1 and (ax, ay) != ignore:
                dirs.append(dirRight)
            if ay - 1 >= 0 and data[ay - 1][ax][BARRIER_DATA_TOP] == 1 and (
                    ax, ay) != ignore:
                dirs.append(dirDown)
            if ay + 1 < self.height and data[ay][ax][
                    BARRIER_DATA_TOP] == 1 and (ax, ay) != ignore:
                dirs.append(dirUp)
            return dirs

        visited = []

        def tryVisitNeighbor(ax, ay, ad):
            if ad == dirUp:
                if data[ay][ax] in visited:
                    return None
                visited.append(data[ay][ax])
                data[ay][ax][BARRIER_DATA_TOP] = 0
                ay += 1
            elif ad == dirDown:
                if data[ay - 1][ax] in visited:
                    return None
                visited.append(data[ay - 1][ax])
                data[ay - 1][ax][BARRIER_DATA_TOP] = 0
                ay -= 1
            elif ad == dirLeft:
                if data[ay][ax - 1] in visited:
                    return None
                visited.append(data[ay][ax - 1])
                data[ay][ax - 1][BARRIER_DATA_RIGHT] = 0
                ax -= 1
            elif ad == dirRight:
                if data[ay][ax] in visited:
                    return None
                visited.append(data[ay][ax])
                data[ay][ax][BARRIER_DATA_RIGHT] = 0
                ax += 1
            return (ax, ay)

        def openBarriers(x, y):
            dirs = getAvailableDirections(x, y)
            for dir in dirs:
                next = tryVisitNeighbor(x, y, dir)
                if next is not None:
                    openBarriers(*next)

            return

        x = self._rng.randint(0, self.width - 1)
        y = self._rng.randint(0, self.height - 1)
        openBarriers(x, y)
        self._barrierData = data

    def _generateMazeData(self):
        if not hasattr(self, 'quadrantData'):
            self._gatherQuadrantData()

        self._data = {}
        self._data['width'] = (
            self.width +
            1) * self.frameWallThickness + self.width * self.quadrantSize
        self._data['height'] = (
            self.height +
            1) * self.frameWallThickness + self.height * self.quadrantSize
        self._data['originX'] = int(self._data['width'] / 2)
        self._data['originY'] = int(self._data['height'] / 2)
        collisionTable = []
        horizontalWall = [1 for x in xrange(self._data['width'])]
        collisionTable.append(horizontalWall)
        for i in xrange(0, len(self.quadrantData), self.width):
            for y in xrange(self.quadrantSize):
                row = [1]
                for x in xrange(i, i + self.width):
                    if x == 1 and y < self.quadrantSize / 2 - 2:
                        newData = []
                        for j in self.quadrantData[x][1][y]:
                            if j == 0:
                                newData.append(2)
                            else:
                                newData.append(j + 0)

                        row += newData + [1]
                    else:
                        row += self.quadrantData[x][1][y] + [1]

                collisionTable.append(row)

            collisionTable.append(horizontalWall[:])

        barriers = Globals.MazeBarriers
        for i in xrange(len(barriers)):
            for coords in barriers[i]:
                collisionTable[coords[1]][coords[0]] = 0

        y = self._data['originY']
        for x in xrange(len(collisionTable[y])):
            if collisionTable[y][x] == 0:
                collisionTable[y][x] = 2

        x = self._data['originX']
        for y in xrange(len(collisionTable)):
            if collisionTable[y][x] == 0:
                collisionTable[y][x] = 2

        self._data['collisionTable'] = collisionTable

    def _loadAndBuildMazeModel(self, flatten=False):
        self.getMazeData()
        self._model = NodePath('CogdoMazeModel')
        levelModel = CogdoUtil.loadMazeModel('level')
        self.quadrants = []
        quadrantUnitSize = int(self.quadrantSize * self.cellWidth)
        frameActualSize = self.frameWallThickness * self.cellWidth
        size = quadrantUnitSize + frameActualSize
        halfWidth = int(self.width / 2)
        halfHeight = int(self.height / 2)
        i = 0
        for y in xrange(self.height):
            for x in xrange(self.width):
                ax = (x - halfWidth) * size
                ay = (y - halfHeight) * size
                extension = ''
                if hasattr(getBase(), 'air'):
                    extension = '.bam'
                filepath = self.quadrantData[i][0] + extension
                angle = self.quadrantData[i][2]
                m = self._createQuadrant(filepath, i, angle, quadrantUnitSize)
                m.setPos(ax, ay, 0)
                m.reparentTo(self._model)
                self.quadrants.append(m)
                i += 1

        quadrantHalfUnitSize = quadrantUnitSize * 0.5
        barrierModel = CogdoUtil.loadMazeModel('grouping_blockerDivider').find(
            '**/divider')
        y = 3
        for x in xrange(self.width):
            if x == (self.width - 1) / 2:
                continue
            ax = (x - halfWidth) * size
            ay = (y - halfHeight) * size - quadrantHalfUnitSize - (
                self.cellWidth - 0.5)
            b = NodePath('barrier')
            barrierModel.instanceTo(b)
            b.setPos(ax, ay, 0)
            b.reparentTo(self._model)

        offset = self.cellWidth - 0.5
        for x in (0, 3):
            for y in xrange(self.height):
                ax = (
                    x - halfWidth
                ) * size - quadrantHalfUnitSize - frameActualSize + offset
                ay = (y - halfHeight) * size
                b = NodePath('barrier')
                barrierModel.instanceTo(b)
                b.setPos(ax, ay, 0)
                b.setH(90)
                b.reparentTo(self._model)

            offset -= 2.0

        barrierModel.removeNode()
        levelModel.getChildren().reparentTo(self._model)
        for np in self._model.findAllMatches('**/*lightCone*'):
            CogdoUtil.initializeLightCone(np, 'fixed', 3)

        if flatten:
            self._model.flattenStrong()

        return self._model

    def _createQuadrant(self, filepath, serialNum, angle, size):
        root = NodePath('QuadrantRoot-%i' % serialNum)
        quadrant = loader.loadModel(filepath)
        quadrant.getChildren().reparentTo(root)
        root.setH(angle)
        return root
예제 #11
0
def generateHullCache(modelClass):
    geom = loader.loadModel("models/shipparts/pir_m_shp_%s" % HullDict[modelClass])
    stripPrefix(geom, "model:")
    for node in geom.findAllMatches("**/omit"):
        parent = node.getParent()
        omit = parent.attachNewNode(ModelNode("omit"))
        node.reparentTo(omit)
        node.setName("geom")

    preFlatten(geom)
    logic = loader.loadModel("models/shipparts/pir_m_shp_%s_logic" % HullDict[modelClass])
    locators = logic.find("**/locators")
    for side in ["left", "right"]:
        bad = locators.find("**/location_ropeLadder_0_%s" % side)
        if bad:
            bad.setName("location_ropeLadder_%s_0" % side)

        bad = locators.find("**/location_ropeLadder_1_%s" % side)
        if bad:
            bad.setName("location_ropeLadder_%s_1" % side)

        bad = locators.find("**/location_ropeLadder_1_%s1" % side)
        if bad:
            bad.setName("location_ropeLadder_%s_2" % side)
            continue

    collisions = logic.find("**/collisions")
    badPanel = collisions.find("**/collision_panel_3")
    if badPanel:
        badPanel.setName("collision_panel_2")

    collisions.find("**/collision_panel_0").setTag("Hull Code", "0")
    collisions.find("**/collision_panel_1").setTag("Hull Code", "1")
    collisions.find("**/collision_panel_2").setTag("Hull Code", "2")
    walls = collisions.find("**/collision_walls")
    if walls:
        walls.setTag("Hull Code", "255")
    else:
        collisions.attachNewNode("collision_walls")
    shipToShipCollide = collisions.find("**/collision_shiptoship")
    shipToShipCollide.setCollideMask(PiratesGlobals.ShipCollideBitmask)
    deck = collisions.find("**/collision_deck")
    if not deck:
        deck = collisions.attachNewNode("deck")

    mask = deck.getCollideMask()
    mask ^= PiratesGlobals.FloorBitmask
    mask |= PiratesGlobals.ShipFloorBitmask
    deck.setCollideMask(mask)
    floors = collisions.find("**/collision_floors")
    if not floors:
        floors = collisions.find("**/collision_floor")

    mask = floors.getCollideMask()
    mask ^= PiratesGlobals.FloorBitmask
    mask |= PiratesGlobals.ShipFloorBitmask
    floors.setCollideMask(mask)
    floors.setTag("Hull Code", str(255))
    geomHigh = geom.find("**/lod_high")
    geomMed = geom.find("**/lod_medium")
    if not geomMed:
        geomMed = geom.find("**/low_medium")

    if not geomMed:
        geomMed = geomHigh.copyTo(NodePath())

    geomLow = geom.find("**/lod_low")
    if not geomLow:
        geomLow = geomMed.copyTo(NodePath())

    geomSuperLow = geom.find("**/lod_superlow")
    if not geomSuperLow:
        geomSuperLow = geomLow.copyTo(NodePath())

    geomHigh.setName("high")
    geomMed.setName("med")
    geomLow.setName("low")
    geomSuperLow.setName("superlow")
    if modelClass in [21, 22, 23]:
        spike = loader.loadModel("models/shipparts/pir_m_shp_ram_spike")
        spikeTrans = locators.find("**/location_ram").getTransform(locators)
        spike.setTransform(spikeTrans)
        spike.flattenLight()
        spikeHi = spike.find("**/lod_high")
        spikeMed = spike.find("**/lod_medium")
        spikeLow = spike.find("**/lod_low")
        spikeHi.copyTo(geomHigh)
        spikeMed.copyTo(geomMed)
        spikeLow.copyTo(geomLow)
        spikeLow.copyTo(geomSuperLow)

    flipRoot = NodePath("root")
    collisions.reparentTo(flipRoot)
    locators.reparentTo(flipRoot)
    geomHigh.reparentTo(flipRoot)
    geomMed.reparentTo(flipRoot)
    geomLow.reparentTo(flipRoot)
    geomSuperLow.reparentTo(flipRoot)
    flipRoot.setH(180)
    flipRoot.flattenLight()
    omits = flipRoot.findAllMatches("**/omit")
    for node in omits:
        node.flattenStrong()

    for group in ["static", "transparent", "ropeLadder_*", "stripeA", "stripeB", "pattern"]:
        for node in flipRoot.findAllMatches("**/%s" % group):
            name = node.getName()
            for subNode in node.findAllMatches("**/*"):
                subNode.setName(name)

            node.flattenStrong()
            node.setName(name)

    geomHigh.detachNode()
    geomMed.detachNode()
    geomLow.detachNode()
    geomSuperLow.detachNode()
    locators.detachNode()
    collisions.detachNode()
    genericGeoms = [geomHigh, geomMed, geomLow, geomSuperLow]
    customGeoms = [x.copyTo(NodePath()) for x in genericGeoms]
    for np in genericGeoms:
        trans = np.find("**/transparent")
        if trans:
            trans.stash()

        np.flattenLight()
        sails = np.findAllMatches("**/sails")
        sails.stash()
        omits = np.findAllMatches("**/omit")
        omits.stash()
        for node in omits:
            node.node().setPreserveTransform(node.node().PTDropNode)

        generic = NodePath("generic")
        np.findAllMatches("**/+GeomNode").wrtReparentTo(generic)
        np.findAllMatches("*").detach()
        generic.flattenStrong()
        generic.reparentTo(np)
        stripAttribs(generic, TextureAttrib)
        stripAttribs(generic, TransparencyAttrib)
        stripAttribs(generic, CullBinAttrib)
        generic.setBin("ground", 1)
        collapse(generic)
        sails.unstash()
        sails.reparentTo(np)
        for node in sails:
            node.node().setPreserveTransform(node.node().PTDropNode)

        if trans:
            trans.unstash()
            trans.flattenStrong()
            if trans.node().isOfType(ModelNode.getClassType()):
                trans.node().setPreserveTransform(ModelNode.PTDropNode)

        deck = np.find("**/=cam=shground")
        if deck:
            deck.setName("deck")

        omits.unstash()

    for np in customGeoms:
        collapse(np.find("**/static"))

    data = HullCache()
    data.root = NodePath("hull")
    data.genericGeoms = genericGeoms
    data.customGeoms = customGeoms
    data.collisions = collisions
    data.locators = locators
    return data
예제 #12
0
class ForestNode(NodePath):
    def __init__(self, config, world):
        NodePath.__init__(self, 'ForestNode')
        self.config = config
        self.world = world
        self.added = []
        self.trees = {}
        self.trees_in_node = 10
        self.mutex = self.world.mutex_repaint
        self.flatten_node = NodePath('flatten_nodes')

    def add_trees(self, chunk):
        # level
        if chunk not in self.added:
            self.added.append(chunk)
        else:
            return

        size2 = chunk[1] / 2
        x = chunk[0][0]
        y = chunk[0][1]
        sx = x - size2
        sy = y - size2
        ex = x + size2
        ey = y + size2

        t = time.time()
        trees = self.world.treeland[sx, sy, ex, ey]
        for tree in trees:
            if not self.trees.has_key(tree):
                self.trees[tree] = []
            self.trees[tree] = self.trees[tree] + trees[tree]

    def clear(self):
        self.flatten_node.detachNode()
        self.flatten_node.removeNode()
        self.flatten_node = NodePath('flatten_nodes')

    def show_forest(self, DX, DY, char_far, far, charpos, Force=False):
        """Set to new X

        center X - self.size/2 - DX
        """

        tmp_node = NodePath('tmp')
        self.flatten_node.copyTo(tmp_node)
        self.mutex.acquire()
        tmp_node.reparentTo(self)
        self.flatten_node.removeNode()
        self.mutex.release()
        self.tree_nodes = []
        self.flatten_node = NodePath('flatten_nodes')

        t = time.time()
        count_trees = 0
        for tree_n in self.trees:
            # create or attach
            for coord in self.trees[tree_n]:
                #length_cam_2d = VBase2.length(Vec2(coord[0], coord[1]) - Vec2(charpos[0], charpos[1]))
                length_cam_3d = VBase3.length(Vec3(coord) - Vec3(charpos))
                if char_far >= length_cam_3d <= far:
                    tree = self.world.trees[tree_n]
                    self.tree_nodes.append(NodePath('TreeNode'))
                    tree.copyTo(self.tree_nodes[count_trees])
                    x, y, z = coord
                    self.tree_nodes[count_trees].setPos(x - DX, y - DY, z - 1)
                    count_trees += 1

        print 'Attach detach loop: ', time.time() - t

        if count_trees == 0:
            self.mutex.acquire()
            tmp_node.removeNode()
            self.mutex.release()
            return

        t = time.time()

        self.count_f_nodes = (count_trees / self.trees_in_node) + 1
        self.flatten_nodes = [
            NodePath('flatten_node') for i in xrange(self.count_f_nodes)
        ]
        s = 0
        e = self.trees_in_node
        added = 0
        for node in self.flatten_nodes:
            t_nodes = self.tree_nodes[s:e]
            s += self.trees_in_node
            e += self.trees_in_node
            for t_node in t_nodes:
                t_node.reparentTo(node)
                added += 1
            node.flattenStrong()
            if not Force:
                time.sleep(self.config.tree_sleep)
            node.reparentTo(self.flatten_node)
            if added == count_trees:
                break

        print 'Added: ', added, time.time() - t

        t = time.time()
        self.flatten_node.flattenStrong()
        self.mutex.acquire()
        self.flatten_node.reparentTo(self)
        tmp_node.removeNode()
        self.mutex.release()
        print 'flatten all trees: ', time.time() - t
def generateHullCache(modelClass):
    geom = loader.loadModel('models/shipparts/pir_m_shp_%s' % HullDict[modelClass])
    stripPrefix(geom, 'model:')
    for node in geom.findAllMatches('**/omit'):
        parent = node.getParent()
        omit = parent.attachNewNode(ModelNode('omit'))
        node.reparentTo(omit)
        node.setName('geom')

    preFlatten(geom)
    logic = loader.loadModel('models/shipparts/pir_m_shp_%s_logic' % HullDict[modelClass])
    locators = logic.find('**/locators')
    for side in [
        'left',
        'right']:
        bad = locators.find('**/location_ropeLadder_0_%s' % side)
        if bad:
            bad.setName('location_ropeLadder_%s_0' % side)

        bad = locators.find('**/location_ropeLadder_1_%s' % side)
        if bad:
            bad.setName('location_ropeLadder_%s_1' % side)

        bad = locators.find('**/location_ropeLadder_1_%s1' % side)
        if bad:
            bad.setName('location_ropeLadder_%s_2' % side)
            continue

    collisions = logic.find('**/collisions')
    badPanel = collisions.find('**/collision_panel_3')
    if badPanel:
        badPanel.setName('collision_panel_2')

    collisions.find('**/collision_panel_0').setTag('Hull Code', '0')
    collisions.find('**/collision_panel_1').setTag('Hull Code', '1')
    collisions.find('**/collision_panel_2').setTag('Hull Code', '2')
    walls = collisions.find('**/collision_walls')
    if walls:
        walls.setTag('Hull Code', '255')
    else:
        collisions.attachNewNode('collision_walls')
    shipToShipCollide = collisions.find('**/collision_shiptoship')
    shipToShipCollide.setCollideMask(PiratesGlobals.ShipCollideBitmask)
    deck = collisions.find('**/collision_deck')
    if not deck:
        deck = collisions.attachNewNode('deck')

    mask = deck.getCollideMask()
    mask ^= PiratesGlobals.FloorBitmask
    mask |= PiratesGlobals.ShipFloorBitmask
    deck.setCollideMask(mask)
    floors = collisions.find('**/collision_floors')
    if not floors:
        floors = collisions.find('**/collision_floor')

    mask = floors.getCollideMask()
    mask ^= PiratesGlobals.FloorBitmask
    mask |= PiratesGlobals.ShipFloorBitmask
    floors.setCollideMask(mask)
    floors.setTag('Hull Code', str(255))
    geomHigh = geom.find('**/lod_high')
    geomMed = geom.find('**/lod_medium')
    if not geomMed:
        geomMed = geom.find('**/low_medium')

    if not geomMed:
        geomMed = geomHigh.copyTo(NodePath())

    geomLow = geom.find('**/lod_low')
    if not geomLow:
        geomLow = geomMed.copyTo(NodePath())

    geomSuperLow = geom.find('**/lod_superlow')
    if not geomSuperLow:
        geomSuperLow = geomLow.copyTo(NodePath())

    geomHigh.setName('high')
    geomMed.setName('med')
    geomLow.setName('low')
    geomSuperLow.setName('superlow')
    if modelClass in [
        21,
        22,
        23]:
        spike = loader.loadModel('models/shipparts/pir_m_shp_ram_spike')
        spikeTrans = locators.find('**/location_ram').getTransform(locators)
        spike.setTransform(spikeTrans)
        spike.flattenLight()
        spikeHi = spike.find('**/lod_high')
        spikeMed = spike.find('**/lod_medium')
        spikeLow = spike.find('**/lod_low')
        spikeHi.copyTo(geomHigh)
        spikeMed.copyTo(geomMed)
        spikeLow.copyTo(geomLow)
        spikeLow.copyTo(geomSuperLow)

    flipRoot = NodePath('root')
    collisions.reparentTo(flipRoot)
    locators.reparentTo(flipRoot)
    geomHigh.reparentTo(flipRoot)
    geomMed.reparentTo(flipRoot)
    geomLow.reparentTo(flipRoot)
    geomSuperLow.reparentTo(flipRoot)
    flipRoot.setH(180)
    flipRoot.flattenLight()
    omits = flipRoot.findAllMatches('**/omit')
    for node in omits:
        node.flattenStrong()

    for group in [
        'static',
        'transparent',
        'ropeLadder_*',
        'stripeA',
        'stripeB',
        'pattern']:
        for node in flipRoot.findAllMatches('**/%s' % group):
            name = node.getName()
            for subNode in node.findAllMatches('**/*'):
                subNode.setName(name)

            node.flattenStrong()
            node.setName(name)


    geomHigh.detachNode()
    geomMed.detachNode()
    geomLow.detachNode()
    geomSuperLow.detachNode()
    locators.detachNode()
    collisions.detachNode()
    genericGeoms = [
        geomHigh,
        geomMed,
        geomLow,
        geomSuperLow]
    customGeoms = [ x.copyTo(NodePath()) for x in genericGeoms ]
    for np in genericGeoms:
        trans = np.find('**/transparent')
        if trans:
            trans.stash()

        np.flattenLight()
        sails = np.findAllMatches('**/sails')
        sails.stash()
        omits = np.findAllMatches('**/omit')
        omits.stash()
        for node in omits:
            node.node().setPreserveTransform(node.node().PTDropNode)

        generic = NodePath('generic')
        np.findAllMatches('**/+GeomNode').wrtReparentTo(generic)
        np.findAllMatches('*').detach()
        generic.flattenStrong()
        generic.reparentTo(np)
        stripAttribs(generic, TextureAttrib)
        collapse(generic)
        sails.unstash()
        sails.reparentTo(np)
        for node in sails:
            node.node().setPreserveTransform(node.node().PTDropNode)

        if trans:
            trans.unstash()
            trans.flattenStrong()
            if trans.node().isOfType(ModelNode.getClassType()):
                trans.node().setPreserveTransform(ModelNode.PTDropNode)


        deck = np.find('**/=cam=shground')
        if deck:
            deck.setName('deck')

        omits.unstash()

    for np in customGeoms:
        collapse(np.find('**/static'))

    data = HullCache()
    data.root = NodePath('hull')
    data.genericGeoms = genericGeoms
    data.customGeoms = customGeoms
    data.collisions = collisions
    data.locators = locators
    return data
예제 #14
0
파일: Grid.py 프로젝트: crempp/psg
class Grid(object):
	'''The grid object draws a bunch of lines and flattens them into a single
	   object.'''
	def __init__(self, parent, boardRad, gridInt):
		Event.Dispatcher().register(self, 'E_Key_GridUp', self.gridMove)
		Event.Dispatcher().register(self, 'E_Key_GridDown', self.gridMove)
		
		self.currZ = 0
		self.gridInt = gridInt
		self.boardRad = boardRad
		
		if((boardRad*2) % gridInt is not 0):
			print("ERROR: gridInt can not fit in universeRadius")
			Event.Dispatcher().broadcast(Event.Event('E_ExitGame', src=self))
		
		self.gridNP = NodePath("Grid Node Parent")
		self.squareNP = NodePath("Squares Node Parent")
		
		'''
		#Since we are using collision detection to do picking, we set it up like
		#any other collision detection system with a traverser and a handler
		self.picker = CollisionTraverser()            #Make a traverser
		self.pq     = CollisionHandlerQueue()         #Make a handler
		#Make a collision node for our picker ray
		self.pickerNode = CollisionNode('mouseRay')
		#Attach that node to the camera since the ray will need to be positioned
		#relative to it
		self.pickerNP = camera.attachNewNode(self.pickerNode)
		#Everything to be picked will use bit 1. This way if we were doing other
		#collision we could seperate it
		self.pickerNode.setFromCollideMask(BitMask32.bit(1))
		self.pickerRay = CollisionRay()               #Make our ray
		self.pickerNode.addSolid(self.pickerRay)      #Add it to the collision node
		#Register the ray as something that can cause collisions
		self.picker.addCollider(self.pickerNP, self.pq)
		#self.picker.showCollisions(render)
		'''
			
		# Draw centered lines
		self.drawLine(self.gridNP, Vec3(0, -boardRad, self.currZ), Vec3(0, boardRad, self.currZ))
		self.drawLine(self.gridNP, Vec3(-boardRad, 0, self.currZ), Vec3(boardRad, 0, self.currZ))
		# Draw lines in y-axis direction
		for x in frange(gridInt, (boardRad + gridInt), gridInt):
			self.drawLine(self.gridNP, Vec3(x, -boardRad, self.currZ), Vec3(x, boardRad, self.currZ))
			self.drawLine(self.gridNP, Vec3(-x, -boardRad, self.currZ), Vec3(-x, boardRad, self.currZ))
		# Draw lines in x-axis direction
		for y in frange(gridInt, (boardRad + gridInt), gridInt):
			self.drawLine(self.gridNP, Vec3(-boardRad, y, self.currZ), Vec3(boardRad, y, self.currZ))
			self.drawLine(self.gridNP, Vec3(-boardRad, -y, self.currZ), Vec3(boardRad, -y, self.currZ))
			
		self.gridNP.flattenStrong()
		# Start with grids turned off
		#self.gridNP.hide()
		
		self.gridNP.reparentTo(parent)
		
	# drawLine
	# Draws a line from source to target and parents to parent
	def drawLine(self, parent, source, target):
		line = LineSegs()
		line.setThickness(LINETHICKNESS)
		line.reset()
		line.setColor(*GRIDCOLOR)
		line.moveTo(source)
		line.drawTo(target)
		node = line.create()
		lineSegNP = NodePath(node).reparentTo(parent)
	
	# drawSquare
	# Draws a square from ll (x1, y2, z1) to ur (x2, y2, z2) returns a node path
	def drawSquare(self, x1,y1,z1, x2,y2,z2):
		format=GeomVertexFormat.getV3n3cpt2()
		vdata=GeomVertexData('square', format, Geom.UHStatic)
		
		vertex=GeomVertexWriter(vdata, 'vertex')
		normal=GeomVertexWriter(vdata, 'normal')
		color=GeomVertexWriter(vdata, 'color')
		texcoord=GeomVertexWriter(vdata, 'texcoord')
		
		#make sure we draw the sqaure in the right plane
		#if x1!=x2:
		vertex.addData3f(x1, y1, z1)
		vertex.addData3f(x2, y1, z1)
		vertex.addData3f(x2, y2, z2)
		vertex.addData3f(x1, y2, z2)

		normal.addData3f(self.myNormalize(Vec3(2*x1-1, 2*y1-1, 2*z1-1)))
		normal.addData3f(self.myNormalize(Vec3(2*x2-1, 2*y1-1, 2*z1-1)))
		normal.addData3f(self.myNormalize(Vec3(2*x2-1, 2*y2-1, 2*z2-1)))
		normal.addData3f(self.myNormalize(Vec3(2*x1-1, 2*y2-1, 2*z2-1)))
		
		#adding different colors to the vertex for visibility
		color.addData4f(0.0,0.5,0.0,0.5)
		color.addData4f(0.0,0.5,0.0,0.5)
		color.addData4f(0.0,0.5,0.0,0.5)
		color.addData4f(0.0,0.5,0.0,0.5)
		
		texcoord.addData2f(0.0, 1.0)
		texcoord.addData2f(0.0, 0.0)
		texcoord.addData2f(1.0, 0.0)
		texcoord.addData2f(1.0, 1.0)

		#quads arent directly supported by the Geom interface
		#you might be interested in the CardMaker class if you are
		#interested in rectangle though
		tri1=GeomTriangles(Geom.UHStatic)
		tri2=GeomTriangles(Geom.UHStatic)
		
		tri1.addVertex(0)
		tri1.addVertex(1)
		tri1.addVertex(3)
		
		tri2.addConsecutiveVertices(1,3)
		
		tri1.closePrimitive()
		tri2.closePrimitive()
		
		square=Geom(vdata)
		square.addPrimitive(tri1)
		square.addPrimitive(tri2)
		#square.setIntoCollideMask(BitMask32.bit(1))
		
		squareNP = NodePath(GeomNode('square gnode')) 
		squareNP.node().addGeom(square)
		squareNP.setTransparency(1) 
		squareNP.setAlphaScale(.5) 
		squareNP.setTwoSided(True)
		squareNP.setCollideMask(BitMask32.bit(1))
		return squareNP
	
	# myNormalize
	# Calculates a normal (How?)
	def myNormalize(self, myVec):
		myVec.normalize()
		return myVec
	
	def gridMove(self, event):
		print("moving grid")
		if event.type == 'E_Key_GridUp':
			self.gridNP.setPos(self.gridNP.getX(), self.gridNP.getY(), self.currZ + self.gridInt)
		if event.type == 'E_Key_GridDown':
			self.gridNP.setPos(self.gridNP.getX(), self.gridNP.getY(), self.currZ - self.gridInt)
	
	# toggleState
	# Toggles between grid layers and grid off
	def toggleState(self):
		if (S.currLayer == 0):
			S.currLayer = 1
			self.gridNPList[0].show()
		elif(S.currLayer == universeLayers):
			self.gridNPList[S.currLayer-1].hide()
			S.currLayer = 0
		else:
			self.gridNPList[S.currLayer-1].hide()
			S.currLayer = S.currLayer + 1
			self.gridNPList[S.currLayer-1].show()