Exemplo n.º 1
0
def layout_padding(plots, renderer):
    """
    Pads Nones in a list of lists of plots with empty plots.
    """
    widths, heights = defaultdict(int), defaultdict(int)
    for r, row in enumerate(plots):
        for c, p in enumerate(row):
            if p is not None:
                width, height = renderer.get_size(p)
                widths[c] = max(widths[c], width)
                heights[r] = max(heights[r], height)

    expanded_plots = []
    for r, row in enumerate(plots):
        expanded_plots.append([])
        for c, p in enumerate(row):
            if p is None:
                x_range = Range1d(start=0, end=1)
                y_range = Range1d(start=0, end=1)
                p = Figure(plot_width=widths[c],
                           plot_height=heights[r],
                           x_range=x_range,
                           y_range=y_range)
                p.xaxis.visible = False
                p.yaxis.visible = False
                p.outline_line_alpha = 0
                p.grid.grid_line_alpha = 0
            expanded_plots[r].append(p)
    return expanded_plots
Exemplo n.º 2
0
def empty_plot(width, height):
    """
    Creates an empty and invisible plot of the specified size.
    """
    x_range = Range1d(start=0, end=1)
    y_range = Range1d(start=0, end=1)
    p = Figure(plot_width=width, plot_height=height,
               x_range=x_range, y_range=y_range)
    p.xaxis.visible = False
    p.yaxis.visible = False
    p.outline_line_alpha = 0
    p.grid.grid_line_alpha = 0
    return p
Exemplo n.º 3
0
def empty_plot(width, height):
    """
    Creates an empty and invisible plot of the specified size.
    """
    x_range = Range1d(start=0, end=1)
    y_range = Range1d(start=0, end=1)
    p = Figure(plot_width=width, plot_height=height,
               x_range=x_range, y_range=y_range)
    p.xaxis.visible = False
    p.yaxis.visible = False
    p.outline_line_alpha = 0
    p.grid.grid_line_alpha = 0
    return p
Exemplo n.º 4
0
def style_snapshot(figure: Figure) -> Figure:
    """Style a bokeh figure as a configuration snapshot.

    This is collection of style changes to make the output of a snapshot consistent and
    nice. Primarily it removes all the extra stuff which isn't helpful in defining the
    configuration like the axes, and the interactive tools.

    """
    figure.axis.visible = False
    figure.xgrid.visible = False
    figure.ygrid.visible = False
    figure.toolbar_location = None
    figure.toolbar.logo = None
    figure.outline_line_width = 0
    figure.outline_line_alpha = 0

    return figure
Exemplo n.º 5
0
def make_axis(axis,
              size,
              factors,
              dim,
              flip=False,
              rotation=0,
              label_size=None,
              tick_size=None,
              axis_height=35):
    factors = list(map(dim.pprint_value, factors))
    nchars = np.max([len(f) for f in factors])
    ranges = FactorRange(factors=factors)
    ranges2 = Range1d(start=0, end=1)
    axis_label = dim_axis_label(dim)
    reset = "range.setv({start: 0, end: range.factors.length})"
    ranges.callback = CustomJS(args=dict(range=ranges), code=reset)

    axis_props = {}
    if label_size:
        axis_props['axis_label_text_font_size'] = value(label_size)
    if tick_size:
        axis_props['major_label_text_font_size'] = value(tick_size)

    tick_px = font_size_to_pixels(tick_size)
    if tick_px is None:
        tick_px = 8
    label_px = font_size_to_pixels(label_size)
    if label_px is None:
        label_px = 10

    rotation = np.radians(rotation)
    if axis == 'x':
        align = 'center'
        # Adjust height to compensate for label rotation
        height = int(axis_height + np.abs(np.sin(rotation)) *
                     ((nchars * tick_px) * 0.82)) + tick_px + label_px
        opts = dict(x_axis_type='auto',
                    x_axis_label=axis_label,
                    x_range=ranges,
                    y_range=ranges2,
                    plot_height=height,
                    plot_width=size)
    else:
        # Adjust width to compensate for label rotation
        align = 'left' if flip else 'right'
        width = int(axis_height + np.abs(np.cos(rotation)) *
                    ((nchars * tick_px) * 0.82)) + tick_px + label_px
        opts = dict(y_axis_label=axis_label,
                    x_range=ranges2,
                    y_range=ranges,
                    plot_width=width,
                    plot_height=size)

    p = Figure(toolbar_location=None, **opts)
    p.outline_line_alpha = 0
    p.grid.grid_line_alpha = 0

    if axis == 'x':
        p.yaxis.visible = False
        axis = p.xaxis[0]
        if flip:
            p.above = p.below
            p.below = []
            p.xaxis[:] = p.above
    else:
        p.xaxis.visible = False
        axis = p.yaxis[0]
        if flip:
            p.right = p.left
            p.left = []
            p.yaxis[:] = p.right
    axis.major_label_orientation = rotation
    axis.major_label_text_align = align
    axis.major_label_text_baseline = 'middle'
    axis.update(**axis_props)
    return p
Exemplo n.º 6
0
def importance_plot(dates, ratings, importance, reviews, bad_words):
    """This plot generates the figure seen on the YelpHelp website. It plots a review history, in which potential
    tipping point reviews are plotted with inflated circles. It also defines a hover-tool tip allowing one to
    visualize the full text of the review by mousing over a point, as well as the keywords the model found important
    contained within the review."""

    min_size = 8
    max_growth = 32

    importance = np.round((max_growth * importance) + min_size)

    source = ColumnDataSource(
        data=dict(
            desc=reviews,
            bad=bad_words,
            ratings_source=np.zeros(len(ratings))
        )
    )

    # Create the figure!
    title_string = 'Review History'
    review_plot = Figure(plot_width=600, plot_height=600, x_axis_type="datetime", tools=[], responsive=True,
                         toolbar_location=None,webgl=True,title=title_string)

    cr = review_plot.circle(dates, ratings, size=importance,
                            color="navy", hover_fill_color="firebrick",
                            fill_alpha=0.9, hover_alpha=0.9,
                            line_color=None, hover_line_color="white", source=source)

    hover = HoverTool(

        tooltips="""
        <link href="../static/css/bootstrap.min.css" rel="stylesheet">
        <div>

            <div style="font-family: verdana; width : 550px; position: fixed; left: 650px; top: 180px; padding: 10px">

                <span style="font-size: 17px;"> <b>Review: </b> @desc</span>
            </div>
            <div style="font-family: verdana; width : 550px; position: fixed; left: 650px; top: 120px; padding: 10px">
                <span style="font-size: 14px; font-weight: bold;"> Keywords: @bad</span>
            </div>
        </div>""",
        renderers=[cr]
    )

    review_plot.add_tools(hover)

    newdate = pd.date_range(dates.max(), periods=5, freq='120D')

    projected_mean = 0  # estimated_switch[-1]
    projection_uncertainty = 20  # np.round(estimated_sigma * 2 * 10)

    review_plot.xaxis.axis_label = "Date"
    review_plot.xaxis.axis_line_width = 3
    review_plot.xaxis.axis_label_text_font_style = "bold"
    review_plot.xaxis.axis_label_text_font_size = '20pt'
    review_plot.xaxis.major_label_text_font_size = '16pt'

    review_plot.yaxis.axis_line_width = 3
    review_plot.yaxis.axis_label_text_font_style = "bold"
    review_plot.yaxis.axis_label_text_font_size = '20pt'
    review_plot.yaxis.ticker = FixedTicker(ticks=[-3, -2, -1, 0, 1, 2, 3])
    review_plot.yaxis.major_label_text_font_size = '16pt'
    review_plot.xgrid.visible = False
    review_plot.ygrid.visible = False
    review_plot.outline_line_alpha = 0

    review_plot.xaxis.axis_label = 'Date Posted'
    review_plot.yaxis.axis_label = 'Rating (Normed to User Average)'

    review_plot.title.text_font_size = '16pt'
    review_plot.title.align='center'

    #rolling_ratings, edited_dates, interp_ratings, samplerange = rolling_average_rating(business_reviews, 100)

    # show the results
    return review_plot
button.on_click(button_fun)
rbutton.on_click(init)
init()
create_orig(orig)
ps = 0.3
plot = Figure(tools = "",title="Maxwell",title_location = "above", x_range=(0.1-ps,0.8+ps), y_range=(0.0,1.0))
plot.line(x='x', y='y', source=orig.pts, color='Black',line_width=3)
plot.line(x='x', y='y', source=f1.pts, color="#808080",line_width=5)
plot.line(x='x', y='y', source=f2.pts, color="#E37222",line_width=5)
plot.line(x='x', y='y', source=t_line, color="Black",line_width=5)
plot.triangle(x='x', y='y', size = 'size', source= f1.tri,color="#808080", line_width=2)
plot.triangle(x='x', y='y', size = 'size', source= f2.tri,color="#E37222", line_width=2)
plot.axis.visible = False
plot.outline_line_width = 7
plot.outline_line_alpha = 0.3
plot.outline_line_color = "Black"
plot.title.text_color = "black"
plot.title.text_font_style = "bold"
plot.title.align = "center"


labels1 = LabelSet(x='x', y='y', text='name', level='glyph',
              x_offset=0, y_offset=0, source=f1.label, render_mode='canvas')
labels2 = LabelSet(x='x', y='y', text='name', level='glyph',
              x_offset=0, y_offset=0, source=f2.label, render_mode='canvas')

#P arrow:
p1_arrow_glyph = Arrow(end=NormalHead(line_color="#0065BD",line_width= 4, size=10),
    x_start='xS', y_start='yS', x_end='xE', y_end='yE',line_width= "lW", source=f1.arrow_source,line_color="#0065BD")
p2_arrow_glyph = Arrow(end=NormalHead(line_color="#E37222",line_width= 4, size=10),
Exemplo n.º 8
0
def make_axis(axis, size, factors, dim, flip=False, rotation=0,
              label_size=None, tick_size=None, axis_height=35):
    factors = list(map(dim.pprint_value, factors))
    nchars = np.max([len(f) for f in factors])
    ranges = FactorRange(factors=factors)
    ranges2 = Range1d(start=0, end=1)
    axis_label = dim_axis_label(dim)
    reset = "range.setv({start: 0, end: range.factors.length})"
    ranges.callback = CustomJS(args=dict(range=ranges), code=reset)

    axis_props = {}
    if label_size:
        axis_props['axis_label_text_font_size'] = value(label_size)
    if tick_size:
        axis_props['major_label_text_font_size'] = value(tick_size)

    tick_px = font_size_to_pixels(tick_size)
    if tick_px is None:
        tick_px = 8
    label_px = font_size_to_pixels(label_size)
    if label_px is None:
        label_px = 10

    rotation = np.radians(rotation)
    if axis == 'x':
        align = 'center'
        # Adjust height to compensate for label rotation
        height = int(axis_height + np.abs(np.sin(rotation)) *
                     ((nchars*tick_px)*0.82)) + tick_px + label_px
        opts = dict(x_axis_type='auto', x_axis_label=axis_label,
                    x_range=ranges, y_range=ranges2, plot_height=height,
                    plot_width=size)
    else:
        # Adjust width to compensate for label rotation
        align = 'left' if flip else 'right'
        width = int(axis_height + np.abs(np.cos(rotation)) *
                    ((nchars*tick_px)*0.82)) + tick_px + label_px
        opts = dict(y_axis_label=axis_label, x_range=ranges2,
                    y_range=ranges, plot_width=width, plot_height=size)

    p = Figure(toolbar_location=None, tools=[], **opts)
    p.outline_line_alpha = 0
    p.grid.grid_line_alpha = 0

    if axis == 'x':
        p.yaxis.visible = False
        axis = p.xaxis[0]
        if flip:
            p.above = p.below
            p.below = []
            p.xaxis[:] = p.above
    else:
        p.xaxis.visible = False
        axis = p.yaxis[0]
        if flip:
            p.right = p.left
            p.left = []
            p.yaxis[:] = p.right
    axis.major_label_orientation = rotation
    axis.major_label_text_align = align
    axis.major_label_text_baseline = 'middle'
    axis.update(**axis_props)
    return p