Exemplo n.º 1
0
def histogram_plot(states,
                   height,
                   width,
                   data_top,
                   data_source,
                   n_ticks,
                   n_minor_ticks=0,
                   fill_color=None):
    '''Create a bokeh histogram using quad shapes'''
    from bokeh.plotting import Figure

    # Create histogram object
    hist_obj = Figure(plot_height=height,
                      plot_width=width,
                      title="",
                      toolbar_location=None)

    # Data top is string of var name from data_source
    fill_color = '#f0f5f5' if fill_color == None else fill_color
    hist_obj.quad(top=data_top,
                  bottom=0,
                  source=data_source,
                  left="left",
                  right="right",
                  fill_color=fill_color,
                  line_color='black')

    # set number of major and minor ticks
    hist_obj.xaxis[0].ticker.desired_num_ticks = n_ticks
    hist_obj.xaxis[0].ticker.num_minor_ticks = n_minor_ticks

    hist_obj.y_range = Range1d(0, 1)
    hist_obj.x_range = Range1d(states[0] - 0.5, states[-1] + 0.5)

    return hist_obj
Exemplo n.º 2
0
def render_global_percent_resource_usage(
    figure: Figure,
    source: ColumnDataSource,
    report: ClusterReport,
    hostnames: List[str],
):
    node_count = len(hostnames)
    figure.y_range = Range1d(0, node_count + 1)
    figure.yaxis.axis_label = "Usage (%)"

    # Draw resource usage
    colors = select_colors(hostnames)
    figure.vbar_stack(
        hostnames,
        x="x_start",
        width=1000.0,
        color=colors,
        line_color="black",
        legend_label=[get_node_description(report, hostname) for hostname in hostnames],
        source=source,
    )

    # Draw ceiling
    figure.line(
        source.data["x"],
        [node_count] * len(source.data["x"]),
        color="red",
        line_width=2,
    )
Exemplo n.º 3
0
def render_bytes_sent_received(
    figure: Figure, df: pd.DataFrame, label: str, read_col: str, write_col: str
):
    time = df[DATETIME_KEY]

    def accumulate(column):
        values = df[column]
        values = values - values.min()
        return resample(values, time)

    read = accumulate(read_col)
    write = accumulate(write_col)

    data = ColumnDataSource(
        dict(rx=read, rx_kb=read / 1024, tx=write, tx_kb=write / 1024, x=read.index)
    )
    tooltips = [("RX", "@rx_kb KiB"), ("TX", "@tx_kb KiB")]

    figure.add_tools(HoverTool(tooltips=tooltips))
    figure.yaxis[0].formatter = NumeralTickFormatter(format="0.0b")

    y_max = max(max(data.data["rx"]), max(data.data["tx"]))
    figure.y_range = Range1d(0, y_max + 0.01)

    figure.line(
        x="x", y="rx", color="blue", legend_label="{} RX".format(label), source=data
    )
    figure.line(
        x="x", y="tx", color="red", legend_label="{} TX".format(label), source=data
    )
Exemplo n.º 4
0
def make_precipitation_plot(source):
    plot = Figure(x_axis_type="datetime",
                  plot_width=1000,
                  plot_height=125,
                  min_border_left=50,
                  min_border_right=50,
                  min_border_top=0,
                  min_border_bottom=0,
                  toolbar_location=None)
    plot.title = None

    plot.quad(top='actual_precipitation',
              bottom=0,
              left='left',
              right='right',
              color=Greens4[1],
              source=source)

    # fixed attributes
    plot.border_fill_color = "whitesmoke"
    plot.yaxis.axis_label = "Precipitation (in)"
    plot.axis.major_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_style = "bold"
    plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.y_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.grid.grid_line_alpha = 0.3
    plot.grid[0].ticker.desired_num_ticks = 12

    return plot
Exemplo n.º 5
0
def render_node_network_connections(figure: Figure, df: pd.DataFrame):
    connections_series = df[NETWORK_CONNECTIONS_KEY]
    connections = resample(connections_series, df[DATETIME_KEY])
    figure.y_range = Range1d(0, connections_series.max() + 10)

    figure.add_tools(HoverTool(tooltips=[("Connection count", "@count")]))
    data = ColumnDataSource(dict(count=connections, x=connections.index))
    figure.line(x="x", y="count", legend_label="Network connections", source=data)
Exemplo n.º 6
0
def render_node_mem_pct_utilization(figure: Figure, df: pd.DataFrame):
    mem = resample(df[MEM_KEY], df[DATETIME_KEY])
    figure.yaxis[0].formatter = NumeralTickFormatter(format="0 %")
    figure.y_range = Range1d(0, 1)

    figure.add_tools(HoverTool(tooltips=[("Memory", "@mem")]))

    data = ColumnDataSource(dict(mem=mem / 100.0, x=mem.index))
    figure.line(x="x", y="mem", color="red", legend_label="Memory", source=data)
Exemplo n.º 7
0
def createPlots():
    ######################################## BS Pressure Plot ########################################
    sourceBuySell, sourceVolume = requestHoseData()
    pBuySell = Figure(plot_width=PLOT_WIDTH, plot_height=BUYSELL_PLOT_HEIGHT, name="pltBuySell")
    pBuySell.xaxis.ticker = [8.75, 9, 9.5, 10, 10.5, 11, 11.5, 13, 13.5, 14, 14.5, 14.75]
    pBuySell.xaxis.major_label_overrides = {
        8.5: "8:30", 8.75: "8:45", 9: "9:00", 9.5: "9:30", 10: "10:00",
        10.5: "10:30", 11: "11:00", 11.5: "11:30", 13: "13:00",
        13.5: "13:30", 14: "14:00", 14.5: "14:30", 14.75: "14:45"}
    pBuySell.line(x='index', y='buyPressure', source=sourceBuySell, color='green',
                  legend_label="Tổng đặt mua", name="glyphSellPressure")
    pBuySell.line(x='index', y='sellPressure', source=sourceBuySell, color='red',
                  legend_label="Tổng đặt bán", name="glyphBuyPressure")
    wz = WheelZoomTool(dimensions="width"); pBuySell.add_tools(wz); pBuySell.toolbar.active_scroll = wz
    pBuySell.toolbar.logo = None
    pBuySell.axis[0].visible = False
    pBuySell.legend.location = "top_left"
    pBuySell.legend.click_policy = "hide"
    pBuySell.legend.background_fill_alpha = 0.0

    ######################################## Volume Plot ########################################
    pVolume = Figure(width=PLOT_WIDTH, height=VOLUME_PLOT_HEIGHT, tools="pan, reset",
                     name="pltVolume")
    pVolume.toolbar.logo = None
    wz = WheelZoomTool(dimensions="height"); pVolume.add_tools(wz); pVolume.toolbar.active_scroll = wz
    pVolume.vbar(x='index', top='totalValue', width=1 /60, color='blue',
           source=sourceVolume, fill_alpha=LIQUIDITY_ALPHA, line_alpha=LIQUIDITY_ALPHA,
                 name="glyphTotalValue", legend_label="Thanh khoản toàn tt")
    pVolume.vbar(x='index', top='nnBuy', width=1/1.2/60, color='green', source=sourceVolume
           ,name="glyphNNBuy",  legend_label="NN mua",)
    pVolume.vbar(x='index', top='nnSell', width=1/1.2/60, color='red', source=sourceVolume
           ,name="glyphNNSell", legend_label="NN bán",)
    pVolume.x_range  = pBuySell.x_range
    pVolume.y_range=Range1d(-10, 45)
    pVolume.legend.location = "top_left"
    pVolume.legend.click_policy = "hide"
    pVolume.legend.background_fill_alpha = 0.0

    ######################################### OHLC plot #########################################
    orders, source, pressure = requestPSData()
    plotOhlc = createOhlcPlot(source)
    pCandle, divCandle = hookupFigure(plotOhlc) # "divCustomJS" "pltOHLC" "glyphOHLCSegment"
    pDebug = Paragraph(text=f"""["num_ps_orders": "{len(orders['index'])}"]\n"""
                             """""",
                       width=DIV_TEXT_WIDTH, height=100, name="pDebug")

    ################################# Putting all plots together ################################
    def activation_function():
        pBuySell._document.add_periodic_callback(lambda: updateDoc(pBuySell._document), 500)
        print("Document activated !")

    return pCandle, pBuySell, pVolume, divCandle , activation_function, sourceBuySell, sourceVolume, pDebug
Exemplo n.º 8
0
def make_plot():
    plot = Figure(
        plot_height=400,
        plot_width=800,
        responsive=True,
        tools="xpan,xwheel_zoom,xbox_zoom,reset",
        x_axis_type='datetime'
    )
    plot.x_range.follow = "end"
    plot.x_range.follow_interval = 120 * 24 * 60 * 60 * 1000
    plot.x_range.range_padding = 0
    plot.y_range = Range1d(0, 12)
    return plot
Exemplo n.º 9
0
def render_node_per_cpu_pct_utilization(figure: Figure, df: pd.DataFrame):
    time = df[DATETIME_KEY]
    cpu_series = df[CPU_KEY]

    cpu_count = len(cpu_series.iloc[0])
    cpus = [
        resample(cpu_series.apply(lambda res: res[i]), time) for i in range(cpu_count)
    ]
    cpu_mean = resample(cpu_series.apply(lambda res: average(res)), time)

    figure.yaxis[0].formatter = NumeralTickFormatter(format="0 %")
    figure.y_range = Range1d(0, 1)

    data = {}
    tooltips = []

    for (i, cpu) in enumerate(cpus):
        key = f"cpu_{i}"
        data[key] = cpu / 100.0
        data[f"{key}_x"] = cpu.index
        tooltips.append((f"CPU #{i}", f"@{key}"))

    data["cpu_mean"] = cpu_mean / 100.0
    data["cpu_mean_x"] = cpu_mean.index
    tooltips.append(("CPU avg.", "@cpu_mean"))

    figure.add_tools(HoverTool(tooltips=tooltips))

    data = ColumnDataSource(data)

    colors = select_colors(cpus)
    for (i, color) in enumerate(colors):
        figure.line(
            x=f"cpu_{i}_x",
            y=f"cpu_{i}",
            color=color,
            legend_label=f"CPU #{i}",
            source=data,
        )

    figure.line(
        x="cpu_mean_x",
        y="cpu_mean",
        color="red",
        legend_label="Average CPU",
        line_dash="dashed",
        line_width=5,
        source=data,
    )
Exemplo n.º 10
0
def utilization_bar(max_y):
    plot = Figure(
        plot_width=
        150,  # this is more for the ratio, because we have auto-width scaling
        plot_height=150,
        tools=[],  # no tools needed for this one
        title='Utilization')
    plot.toolbar.logo = None  # hides logo
    plot.x_range = Range1d(0, 1)
    plot.y_range = Range1d(
        0,
        max_y)  # sometimes you want it to be way less than 1, to see it move
    plot.xaxis.visible = False  # hide x axis
    # Add input buffer
    manager = Manager()
    plot._input_buffer = manager.dict()
    return plot
Exemplo n.º 11
0
def make_precipitation_plot(source):
    plot = Figure(x_axis_type="datetime", plot_width=1000, plot_height=125, min_border_left=50, min_border_right=50, min_border_top=0, min_border_bottom=0, toolbar_location=None)
    plot.title = None

    plot.quad(top='actual_precipitation', bottom=0, left='left', right='right', color=Greens4[1], source=source)

    # fixed attributes
    plot.border_fill_color = "whitesmoke"
    plot.yaxis.axis_label = "Precipitation (in)"
    plot.axis.major_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_style = "bold"
    plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.y_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.grid.grid_line_alpha = 0.3
    plot.grid[0].ticker.desired_num_ticks = 12

    return plot
Exemplo n.º 12
0
def histogram_plot(states, height, width, data_top, data_source, n_ticks,
        n_minor_ticks=0, fill_color=None):
    '''Create a bokeh histogram using quad shapes'''
    from bokeh.plotting import Figure

    # Create histogram object
    hist_obj = Figure(plot_height=height, plot_width=width, title="",
                      toolbar_location=None)

    # Data top is string of var name from data_source
    fill_color = '#f0f5f5' if fill_color==None else fill_color
    hist_obj.quad(top=data_top, bottom=0, source=data_source, left="left",
                  right="right", fill_color=fill_color, line_color='black')

    # set number of major and minor ticks
    hist_obj.xaxis[0].ticker.desired_num_ticks = n_ticks
    hist_obj.xaxis[0].ticker.num_minor_ticks = n_minor_ticks

    hist_obj.y_range = Range1d(0, 1)
    hist_obj.x_range = Range1d(states[0]-0.5, states[-1]+0.5)

    return hist_obj
Exemplo n.º 13
0
def make_plot():
    plot = Figure(
        plot_height=400,
        plot_width=800,
        responsive=True,
        tools="xpan,xwheel_zoom,xbox_zoom,reset",
        x_axis_type='datetime',
        min_border_top=10,
        min_border_right=0,
        min_border_bottom=0,
        min_border_left=30,
        outline_line_color=None,
    )
    plot.x_range.follow = "end"
    plot.x_range.follow_interval = 120 * 24 * 60 * 60 * 1000
    plot.x_range.range_padding = 0
    plot.y_range = Range1d(0, 12)
    plot.xgrid.grid_line_color = None
    plot.ygrid.grid_line_color = None
    plot.yaxis.bounds = (0, 9)
    plot.yaxis.minor_tick_line_color = None
    plot.yaxis.ticker = FixedTicker(ticks=[0, 3, 6, 9])
    return plot
Exemplo n.º 14
0
grate5=ColumnDataSource(dict(x=londf.values[:,0]-kgx,y=londf.values[:,2]))
grate6=ColumnDataSource(dict(x=londf.values[:,0]+kgx,y=londf.values[:,2]))
grate7=ColumnDataSource(dict(x=londf.values[:,0],y=londf.values[:,2]+kgy))
grate8=ColumnDataSource(dict(x=londf.values[:,0],y=londf.values[:,2]-kgy))

p.line(x='x',y='y',source=grate1, color="red",line_width=5)
p.line(x='x',y='y',source=grate2, color="red",line_width=5)
p.line(x='x',y='y',source=grate3, color="red",line_width=5)
p.line(x='x',y='y',source=grate4, color="red",line_width=5)
p.line(x='x',y='y',source=grate5, color="red",line_width=5)
p.line(x='x',y='y',source=grate6, color="red",line_width=5)
p.line(x='x',y='y',source=grate7, color="red",line_width=5)
p.line(x='x',y='y',source=grate8, color="red",line_width=5)

p.x_range=Range1d(-1 , 1)
p.y_range=Range1d(-1 , 1)

def update():

    tilt=float(tiltin.value)*np.pi/180
    wl=2.997e4/float(freqin.value)
    wlout.text='Wavelength = '+str(wl)+' cm'
    kgy=wl/float(dyin.value)
    if lattice.value=='Triangular':
        kgx=2*wl/float(dxin.value)
        kmult=0.5
    else:
        kgx=wl/float(dxin.value)
        kmult=1
    kgxout.text='kgx = '+str(kgx)
    kgyout.text='kgy = '+str(kgy)
Exemplo n.º 15
0
         line_width=0)
p1.patch([0.003, 0.04, 0.04, 0.003, 0.003], [100, 100, 30000., 30000., 10000.],
         alpha=0.6,
         fill_color='lightblue',
         line_width=0)
p1.patch([3, 3000, 3000, 30, 3], [300, 300, 30000., 30000., 300.],
         alpha=0.6,
         fill_color='purple',
         line_width=0)
p1.yaxis.axis_label = 'Planet Mass / Earth'
p1.xaxis.axis_label = 'Semi-major Axis / Snow Line'
p1.xaxis.axis_label_text_font_style = 'bold'
p1.yaxis.axis_label_text_font_style = 'bold'
p1.xaxis[0].formatter = NumeralTickFormatter(format="0.00")
p1.x_range = Range1d(0.003, 3000, bounds=(0.003, 3000))
p1.y_range = Range1d(0.01, 30000, bounds=(0.01, 30000))

techniques = [
    'RV', 'Space Transits', 'Ground Transits', 'Microlensing', 'Direct Imaging'
]

checkbox_button_group = CheckboxGroup(
    labels=["RV", "Transits", "Microlensing", "Direct Imaging"],
    active=[0, 1, 2, 3])

# transits - ground
tground = Table.read(
    '/Users/tumlinson/Dropbox/LUVOIR_STDT/luvoir_simtools/planetspace/transit_ground.dat',
    format='ascii',
    names=['name', 'msini', 'semi', 'mstar'])
a_rad = 2.7 * tground['mstar']
Exemplo n.º 16
0
orig_ztf_r = ColumnDataSource(data=dict(x=ztf_rmjd, y=ztf_rmag, 
                                        lower=ztf_rlow, upper=ztf_rupp))
orig_lco_g = ColumnDataSource(data=dict(x=lco_gmjd, y=lco_gmag, 
                                        lower=lco_glow, upper=lco_gupp))
orig_lco_r = ColumnDataSource(data=dict(x=lco_rmjd, y=lco_rmag, 
                                        lower=lco_rlow, upper=lco_rupp))


# Initialize Light Curve Plot
fig_lc = Figure(plot_height=320, plot_width=750,sizing_mode='scale_both',
                tools="pan,wheel_zoom,box_zoom,tap,reset",
                toolbar_location="above", border_fill_color="whitesmoke")
fig_lc.toolbar.logo = None
fig_lc.yaxis.axis_label = 'Mag'
fig_lc.xaxis.axis_label = 'MJD'
fig_lc.y_range = Range1d(start=yupp, end=ylow)


# Choose plotting colors
c_ztfg = "cornflowerblue"
c_ztfr = "firebrick"
c_lcog = "forestgreen"
c_lcor = "darkorange"

# Choose plotting alphas
a_ztfg = 1.0
a_ztfr = 1.0
a_lcog = 1.0
a_lcor = 1.0

Exemplo n.º 17
0
    return results

########################################################################

# Construct basic plot architecture
results = DataFrame({'day': 1, 'S': 0, 'N': 0, 'O': 0, 'V': 1e9, 'Z': 5.},
                    dtype=float, index=get_timestep_index())
source = ColumnDataSource(results)

# Create a new plot and add a renderer
top = Figure(tools=tools, title=None, x_range=day_range,
             **figure_style_kws)
top.line('day', 'S', source=source,
         line_color=colors[0], line_width=3, line_cap='round')
top.y_range = Range1d(0., 40.)
top.yaxis.axis_label = "Salinity (g/kg)"
top.xaxis.axis_label_text_font_size = label_fontsize
top.yaxis.axis_label_text_font_size = label_fontsize

# overlay volume level chart to salinity
tc = "MediumBlue"  # tide color
tide_range = Range1d(start=0, end=15)
tide_axis = LinearAxis(y_range_name="Z")
tide_axis.axis_label = "Tidal Height (m)"
tide_axis.axis_label_text_color = tc
tide_axis.axis_label_text_font_size = label_fontsize
tide_axis.major_tick_line_color = tc
tide_axis.major_label_text_color = tc
tide_axis.minor_tick_line_alpha = 0.
Exemplo n.º 18
0
box_select = BoxSelectTool()
plot1 = Figure(plot_height=500,
               plot_width=770,
               x_axis_type=None,
               y_axis_type=None,
               tools=["pan,reset,tap,wheel_zoom,save", box_select],
               x_range=[-75, 75],
               y_range=[-50, 50],
               toolbar_location='left')
plot1.image_url(url=["http://luvoir.stsci.edu/M83.jpeg"],
                x=[-75],
                y=[50],
                w=150,
                h=100)
plot1.x_range = Range1d(-75, 75, bounds=(-75, 75))
plot1.y_range = Range1d(-50, 50, bounds=(-50, 50))
shutters = plot1.square('x',
                        'y',
                        source=shutter_positions,
                        fill_color='yellow',
                        fill_alpha=0.2,
                        line_color=None,
                        size=20,
                        name="my_shutters")
shutters.selection_glyph = Square(fill_alpha=0.5,
                                  fill_color="green",
                                  line_color='green',
                                  line_width=3)
shutters.nonselection_glyph = Square(fill_alpha=0.2,
                                     fill_color="yellow",
                                     line_color=None)
Exemplo n.º 19
0

# initialize the plot data
update_source_data(True)

# make the plot responsive to slider changes
standard_deviation_slider.on_change(
    'value', lambda attr, old_value, new_value: update_source_data(True))
cutoff_slider.on_change(
    'value', lambda attr, old_value, new_value: update_source_data(False))

# create the figure

p = Figure(title='Normal Distribution')

p.scatter(source=source,
          x='x',
          y='y',
          color='green',
          alpha='alpha',
          radius=0.1)

p.x_range = Range1d(start=-8, end=8)
p.y_range = Range1d(start=-8, end=8)

content = column(standard_deviation_slider, cutoff_slider, p)

# register the figure

curdoc().add_root(content)
curdoc().title = 'Normal Distribution'
                                    alpha_p0=alpha_P0,
                                    alpha_p1=alpha_P1,
                                    alpha_p2=alpha_P2,
                                    beta_p0=beta_P0,
                                    beta_p1=beta_P1,
                                    beta_p2=beta_P2,
                                    sarah_p0=sarah_P0,
                                    sarah_p1=sarah_P1,
                                    sarah_p2=sarah_P2))

p = Figure(tools='', toolbar_location=None, height=800, width=850)
p.grid.grid_line_color = None
p.axis.visible = False
p.grid.grid_line_color = None
p.axis.visible = False
p.y_range = Range1d(-.25, 1.35)
p.x_range = Range1d(-.15, 1.55)

# plot simplex
left_corner = [0.0, 0.0]
right_corner = [np.sqrt(2), 0.0]
top_corner = [np.sqrt(2) / 2.0, np.sqrt(6) / 2.0]

p.line([left_corner[0], top_corner[0]], [left_corner[1], top_corner[1]],
       color='black',
       line_width=2)
p.line([right_corner[0], top_corner[0]], [right_corner[1], top_corner[1]],
       color='black',
       line_width=2)
p.line([left_corner[0], right_corner[0]], [left_corner[1], right_corner[1]],
       color='black',
Exemplo n.º 21
0
    def construct_total_pnl_figure(self, x, y, t):
        str_total_pnl = "Total Pnl " + POUND_SYMBOL
        # workaround to format date in the hover tool at the moment bokeh does not supported in the tool tips
        time = [e.strftime('%d %b %Y') for e in x]
        source_total_pnl = ColumnDataSource(data=dict(x=x, y=y, time=time))

        tooltips_total_pnl = [
                ("Date", "@time"),
                ("Total Pnl", "@y{0.00}"),
            ]

        tooltips_capital = [
                ("Date", "@time"),
                ("Capital", "@y{0.00}"),
            ]

        # create a new pnl plot
        p2 = Figure(x_axis_type="datetime", title="Total Pnl/Capital Allocated " + POUND_SYMBOL,
                    toolbar_location="above", tools=['box_zoom, box_select, crosshair, resize, reset, save,  wheel_zoom'])
        # add renderers
        r1 = p2.circle(x, y, size=8, color='black', alpha=0.2, legend=str_total_pnl, source=source_total_pnl)
        r11 = p2.line(x, y, color='navy', legend=str_total_pnl, source=source_total_pnl)

        # add renderers to the HoverTool instead of to the figure so we can have different tooltips for each glyph
        p2.add_tools(HoverTool(renderers=[r1, r11], tooltips=tooltips_total_pnl))

        max_total_pnl = max(y)
        min_total_pnl = min(y)

        # offset to adjust the plot so the max and min ranges are visible
        offset = (max(abs(max_total_pnl), abs(min_total_pnl))) * 0.10
        p2.y_range = Range1d(min_total_pnl - offset, max_total_pnl + offset)

        # NEW: customize by setting attributes
        # p2.title = "Total Pnl/Capital Allocated " + POUND_SYMBOL
        p2.legend.location = "top_left"
        p2.grid.grid_line_alpha = 0
        p2.xaxis.axis_label = 'Date'
        p2.yaxis.axis_label = str_total_pnl
        p2.ygrid.band_fill_color = "olive"
        p2.ygrid.band_fill_alpha = 0.1
        p2.xaxis.formatter = DatetimeTickFormatter(formats={'days': ['%d %b'], 'months': ['%b %Y']})
        # formatter without exponential notation
        p2.yaxis.formatter = PrintfTickFormatter(format="%.0f")

        # secondary axis
        max_capital = max(t)
        min_capital = min(t)
        # offset to adjust the plot so the max and min ranges are visible
        offset = (max(abs(max_capital), abs(min_capital))) * 0.10
        p2.extra_y_ranges = {"capital": Range1d(start=min_capital - offset, end=max_capital + offset)}

        # formatter without exponential notation
        formatter = PrintfTickFormatter()
        formatter.format = "%.0f"

        # formatter=NumeralTickFormatter(format="0,0"))
        p2.add_layout(LinearAxis(y_range_name="capital", axis_label="Capital allocated " + POUND_SYMBOL,
                                 formatter=formatter), 'right')

        # create plot for capital series
        source_capital = ColumnDataSource(data=dict(x=x, t=t, time=time))
        r2 = p2.square(x, t, size=8, color='green', alpha=0.2, legend="Capital " + POUND_SYMBOL, y_range_name="capital",
                  source=source_capital)
        r22 = p2.line(x, t, color='green', legend="Capital " + POUND_SYMBOL, y_range_name="capital", source=source_capital)

        # add renderers to the HoverTool instead of to the figure so we can have different tooltips for each glyph
        p2.add_tools(HoverTool(renderers=[r2, r22], tooltips=tooltips_capital))

        return p2
Exemplo n.º 22
0
signal_to_noise = simulate_exposure(luvoir, lumos, spec_dict[template_to_start_with].wave, spec_dict[template_to_start_with].flux, 1.0) 

flux_cut = spec_dict[template_to_start_with].flux 
flux_cut[spec_dict[template_to_start_with].wave < lumos.lambda_range[0]] = -999.  
flux_cut[spec_dict[template_to_start_with].wave > lumos.lambda_range[0]] = -999.  

spectrum_template = ColumnDataSource(data=dict(w=spec_dict[template_to_start_with].wave, f=spec_dict[template_to_start_with].flux, \
                                   w0=spec_dict[template_to_start_with].wave, f0=spec_dict[template_to_start_with].flux, \
                                   flux_cut=flux_cut, sn=signal_to_noise)) 

# set up the flux plot 
flux_plot = Figure(plot_height=400, plot_width=800, 
              tools="crosshair,hover,pan,reset,resize,save,box_zoom,wheel_zoom", outline_line_color='black', 
              x_range=[900, 2000], y_range=[0, 4e-16], toolbar_location='right') 
flux_plot.x_range=Range1d(900,2000,bounds=(900,2000)) 
flux_plot.y_range=Range1d(0,4e-16,bounds=(0,None)) 
flux_plot.background_fill_color = "beige"
flux_plot.background_fill_alpha = 0.5 
flux_plot.yaxis.axis_label = 'Flux' 
flux_plot.xaxis.axis_label = 'Wavelength' 
flux_plot.line('w', 'f', source=spectrum_template, line_width=3, line_color='firebrick', line_alpha=0.7, legend='Source Flux')
flux_plot.line(lumos.wave, lumos.bef, line_width=3, line_color='darksalmon', line_alpha=0.7, legend='Background')




# set up the flux plot 
sn_plot = Figure(plot_height=400, plot_width=800, 
              tools="crosshair,hover,pan,reset,resize,save,box_zoom,wheel_zoom", outline_line_color='black', 
              x_range=[900, 2000], y_range=[0, 40], toolbar_location='right')
sn_plot.x_range=Range1d(900,2000,bounds=(900,2000)) 
Exemplo n.º 23
0
# Calculate 1-sigma errors
sig= Cratio/SNR
# Add gaussian noise to flux ratio
spec = Cratio + np.random.randn(len(Cratio))*sig

planet = ColumnDataSource(data=dict(lam=lam, cratio=Cratio*1e9, spec=spec*1e9, downerr=(spec-sig)*1e9, uperr=(spec+sig)*1e9))

################################
# BOKEH PLOTTING
################################

snr_plot = Figure(plot_height=400, plot_width=750, 
              tools="crosshair,pan,reset,resize,save,box_zoom,wheel_zoom",
              x_range=[0.3, 2.7], y_range=[0, 1], toolbar_location='right')
snr_plot.x_range = Range1d(0.3, 2.7, bounds=(0.3, 2.7)) 
snr_plot.y_range = Range1d(0.0, 1.2, bounds=(0.3, 5.0)) 
snr_plot.background_fill_color = "beige"
snr_plot.background_fill_alpha = 0.5
snr_plot.yaxis.axis_label='F_p/F_s (x10^9)' 
snr_plot.xaxis.axis_label='Wavelength [micron]' 

snr_plot.line('lam','cratio',source=planet,line_width=2.0, color="green", alpha=0.7)
snr_plot.circle('lam', 'spec', source=planet, fill_color='red', line_color='black', size=8) 
snr_plot.segment('lam', 'downerr', 'lam', 'uperr', source=planet, line_width=1, line_color='grey', line_alpha=0.5) 

def change_filename(attrname, old, new): 
   format_button_group.active = None 


instruction0 = Div(text="""Choose a file rootname here 
                           (no special characters):""", width=300, height=15)
Exemplo n.º 24
0
# tags [debut, fin, pas, timer (en microseconde), type = "add, mul"]

anim=[1, 40, 1, 300, "add", 1]

# dessin
p = Figure(x_range = especes, title="Evolution", plot_width=800, plot_height=500,toolbar_location = None)
p.title.text_font_size = "25px"
p.xaxis[0].axis_label = 'Espèces'
if data['unite'] == 1:
    p.yaxis[0].axis_label = 'Quantités (mol)'
else:
    p.yaxis[0].axis_label = 'Masses (g)'

# Calcul longueur axe
max = max(max(quantites), max(reste))*1.2
p.y_range = Range1d(start=0, end=max)

# définition de la source
source = [ColumnDataSource(data=dict(x=data_x[i], top=data_top[i], grow = data_grow[i])) for i in range(len(especes))]

for i in range(len(especes)):
    p.vbar(x='x', top='top', width = width, bottom = bottom, color = color[i],
    source = source[i], legend_label = labels[i])

p.legend.orientation = "horizontal"
p.legend.location = "top_center"
p.legend.click_policy = "hide"
p.legend.glyph_width = 60

# création du bouton
bt = Button(label = "Lance", id = '1', button_type = "success")
# définition de la source
source = ColumnDataSource(
    data=dict(x=data_x, top=data_top, color=color, grow=data_grow))

# dessin
p = Figure(title="graph bar",
           x_range=data_x,
           y_range=(0, 100),
           plot_height=400,
           toolbar_location=None)
p.title.text_font_size = "25px"
p.yaxis[0].axis_label = 'Quantité'
p.xaxis[0].axis_label = 'Espèces'

p.y_range = Range1d(start=0, end=100)

p.vbar(x='x',
       top='top',
       width=width,
       bottom=bottom,
       color='color',
       source=source,
       legend_field='x')
p.legend.orientation = "horizontal"
p.legend.location = "top_center"

# création du bouton
bt = Button(label="Lance", button_type="success")

# fonction de callback
Exemplo n.º 26
0
                                    spec=spec * 1e9,
                                    downerr=(spec - sig) * 1e9,
                                    uperr=(spec + sig) * 1e9))

################################
# BOKEH PLOTTING
################################

snr_plot = Figure(plot_height=400,
                  plot_width=750,
                  tools="crosshair,pan,reset,resize,save,box_zoom,wheel_zoom",
                  x_range=[0.3, 2.7],
                  y_range=[0, 1],
                  toolbar_location='right')
snr_plot.x_range = Range1d(0.3, 2.7, bounds=(0.3, 2.7))
snr_plot.y_range = Range1d(0.0, 1.2, bounds=(0.3, 5.0))
snr_plot.background_fill_color = "beige"
snr_plot.background_fill_alpha = 0.5
snr_plot.yaxis.axis_label = 'F_p/F_s (x10^9)'
snr_plot.xaxis.axis_label = 'Wavelength [micron]'

snr_plot.line('lam',
              'cratio',
              source=planet,
              line_width=2.0,
              color="green",
              alpha=0.7)
snr_plot.circle('lam',
                'spec',
                source=planet,
                fill_color='red',