Exemplo n.º 1
0
def histogram_plot(states,
                   height,
                   width,
                   data_top,
                   data_source,
                   n_ticks,
                   n_minor_ticks=0,
                   fill_color=None):
    '''Create a bokeh histogram using quad shapes'''
    from bokeh.plotting import Figure

    # Create histogram object
    hist_obj = Figure(plot_height=height,
                      plot_width=width,
                      title="",
                      toolbar_location=None)

    # Data top is string of var name from data_source
    fill_color = '#f0f5f5' if fill_color == None else fill_color
    hist_obj.quad(top=data_top,
                  bottom=0,
                  source=data_source,
                  left="left",
                  right="right",
                  fill_color=fill_color,
                  line_color='black')

    # set number of major and minor ticks
    hist_obj.xaxis[0].ticker.desired_num_ticks = n_ticks
    hist_obj.xaxis[0].ticker.num_minor_ticks = n_minor_ticks

    hist_obj.y_range = Range1d(0, 1)
    hist_obj.x_range = Range1d(states[0] - 0.5, states[-1] + 0.5)

    return hist_obj
Exemplo n.º 2
0
    def plt(self):
        source_normal = ColumnDataSource(data=get_normal(0, 1, 10000))
        plot_normal = Figure(plot_width=450,
                             plot_height=450,
                             x_range=(-6, 6),
                             title='Normal')
        plot_normal.quad(top='hist',
                         bottom=0,
                         left='left_edges',
                         right='right_edges',
                         source=source_normal,
                         fill_color="navy")

        def update_plot_normal(attrname, old, new):
            source_normal.data = get_normal(mu_slider.value,
                                            sigma_slider.value, 10000)

        mu_slider = Slider(start=-5, end=5, value=0, step=0.2, title='Mean')
        mu_slider.on_change('value', update_plot_normal)

        sigma_slider = Slider(start=0.1,
                              end=5,
                              value=1,
                              step=0.2,
                              title='Std_Dev')
        sigma_slider.on_change('value', update_plot_normal)
        layout = row(plot_normal, column(mu_slider, sigma_slider))
Exemplo n.º 3
0
def landscape_plot(landscape, states, timesteps, height, width, patch_colors):
    '''Plot fitness landscape'''
    from bokeh.plotting import Figure

    # Append extra state and timestep for index bounds of quad objects
    states = numpy.append(states, states[-1]+1)
    timesteps = numpy.append(timesteps, timesteps[-1]+1)

    # Create points for each cell of grid
    tops = list()
    bottoms = list()
    lefts = list()
    rights = list()
    for top, bottom in zip(states[1:], states[:-1]):
        for left, right in zip(timesteps[:-1], timesteps[1:]):
            tops.append(top)
            bottoms.append(bottom)
            lefts.append(left)
            rights.append(right)

    # Create array of color values corresponding to each cell's assoc. patch
    grid_colors = list()
    for i in range(len(tops)):
        idx = (landscape['state']==bottoms[i]) & (landscape['t']==lefts[i])
        patch = int(landscape[idx]['patch'])
        grid_colors.append(patch_colors[patch])

    # Create landscape object
    grid_obj = Figure(plot_height=height, plot_width=width, title="", toolbar_location=None)
    grid_obj.quad(top=tops, bottom=bottoms, left=lefts, right=rights, line_color='black',
            fill_color=grid_colors)

    return grid_obj
Exemplo n.º 4
0
def make_precipitation_plot(source):
    plot = Figure(x_axis_type="datetime",
                  plot_width=1000,
                  plot_height=125,
                  min_border_left=50,
                  min_border_right=50,
                  min_border_top=0,
                  min_border_bottom=0,
                  toolbar_location=None)
    plot.title = None

    plot.quad(top='actual_precipitation',
              bottom=0,
              left='left',
              right='right',
              color=Greens4[1],
              source=source)

    # fixed attributes
    plot.border_fill_color = "whitesmoke"
    plot.yaxis.axis_label = "Precipitation (in)"
    plot.axis.major_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_style = "bold"
    plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.y_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.grid.grid_line_alpha = 0.3
    plot.grid[0].ticker.desired_num_ticks = 12

    return plot
Exemplo n.º 5
0
 def __plot_histogram(self):
     plot = Figure(plot_height=500, plot_width=300)
     plot.title.text = 'Histogram'
     hist_data = self.calc_histogram_data(self.__values)
     plot.toolbar.logo = None
     plot.quad(top='hist', bottom=0, left='edges_left', right='edges_right',
               source=hist_data,
               fill_color="#036564", line_color="#033649")
     return plot
Exemplo n.º 6
0
def Main():
    parser = argparse.ArgumentParser()
    parser.add_argument("-st", dest="stationId", nargs='*')
    parser.add_argument("-ct", dest="cityName", nargs='*')
    parser.add_argument("-pr", dest="percentage", nargs='*')
    parser.add_argument("-tc1", dest="taskColor1", nargs='*')
    args = parser.parse_args()
    for i in range(len(args.stationId)):
        Data, Date, Max, Min = prepareCSVData(args.cityName[i])
        plotDate = Data['right']
        source = ColumnDataSource(data=Data)
        AverageTemp = []
        for index in range(len(Min)):
            Average = (Min[index] + Max[index]) / 2
            AverageTemp.append(Average)
        plot_graph = Figure(x_axis_type="datetime",
                            plot_width=1000,
                            title="2016 Daily Growing Degree Days- " +
                            args.cityName[i],
                            toolbar_location=None)
        color = "#ADD8E6"
        for j in range(len(args.percentage)):
            minPer, MaxPer = getComputePercentage(Min, Max, args.percentage[j])
            plot_graph.quad(top=MaxPer,
                            bottom=minPer,
                            left='left',
                            right='right',
                            source=source,
                            color=color,
                            legend="percentile " + str(args.percentage[j]) +
                            "-" + str(100 - int(args.percentage[j])))
            color = "#D2B48C"
        plot_graph.circle(Max,
                          Min,
                          alpha=0.9,
                          color="#0000FF",
                          fill_alpha=0.2,
                          size=10,
                          source=source,
                          legend='2016')
        plot_graph.line(plotDate,
                        AverageTemp,
                        source=source,
                        line_color='Red',
                        line_width=0.5,
                        legend='Average')
        plot_graph.xaxis.axis_label = "MONTHS"
        plot_graph.yaxis.axis_label = "Daily Accumulation Celcius"
        plot_graph.grid[0].ticker.desired_num_ticks = 12

        output_file("./plots/secTask-1" + args.cityName[i] + ".html",
                    title="2016 Daily Growing Degree Days-(" +
                    args.cityName[i] + ")")
        save(plot_graph)
Exemplo n.º 7
0
def make_plot(source, AverageTemp, Parcentile_5_Min, Parcentile_5_Max,
              Parcentile_25_Min, Parcentile_25_Max, MinTemp, MaxTemp, plotDate,
              cityName):
    plot = Figure(title='Optional Task # 1 : Growing Degree-day for ' +
                  cityName,
                  x_axis_type="datetime",
                  plot_width=1000,
                  title_text_font_size='12pt',
                  tools="",
                  toolbar_location=None)
    colors = Blues4[0:3]

    plot.circle(MaxTemp,
                MinTemp,
                alpha=0.9,
                color="#66ff33",
                fill_alpha=0.2,
                size=10,
                source=source,
                legend='2015')
    plot.quad(top=Parcentile_5_Max,
              bottom=Parcentile_5_Min,
              left='left',
              right='right',
              source=source,
              color="#e67300",
              legend="Percentile 5-95")
    plot.quad(top=Parcentile_25_Max,
              bottom=Parcentile_25_Min,
              left='left',
              right='right',
              source=source,
              color="#66ccff",
              legend="percentile 25-75")
    plot.line(plotDate,
              AverageTemp,
              source=source,
              line_color='Red',
              line_width=0.75,
              legend='AverageTemp')

    plot.border_fill_color = "whitesmoke"
    plot.xaxis.axis_label = "Months"
    plot.yaxis.axis_label = "Temperature (C)"
    plot.axis.major_label_text_font_size = "10pt"
    plot.axis.axis_label_text_font_size = "12pt"
    plot.axis.axis_label_text_font_style = "bold"
    plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.grid.grid_line_alpha = 0.3
    plot.grid[0].ticker.desired_num_ticks = 12
    return plot
Exemplo n.º 8
0
def hist_viz(
    df: pd.DataFrame,
    miss_pct: float,
    col: str,
    yscale: str,
    plot_width: int,
    plot_height: int,
    show_yaxis: bool,
) -> Figure:
    """
    Render a histogram
    """
    # pylint: disable=too-many-arguments
    title = f"{col} ({miss_pct}% missing)" if miss_pct > 0 else f"{col}"
    tooltips = [
        ("Bin", "@intervals"),
        ("Frequency", "@freq"),
        ("Percent", "@pct{0.2f}%"),
    ]
    fig = Figure(
        plot_width=plot_width,
        plot_height=plot_height,
        toolbar_location=None,
        title=title,
        tools=[],
        y_axis_type=yscale,
    )
    bottom = 0 if yscale == "linear" or df.empty else df["freq"].min() / 2
    fig.quad(
        source=df,
        left="left",
        right="right",
        bottom=bottom,
        alpha=0.5,
        top="freq",
        fill_color="#6baed6",
    )
    hover = HoverTool(
        tooltips=tooltips,
        mode="vline",
    )
    fig.add_tools(hover)
    tweak_figure(fig, "hist", show_yaxis)
    fig.yaxis.axis_label = "Frequency"
    if not df.empty:
        _format_axis(fig, df.iloc[0]["left"], df.iloc[-1]["right"], "x")
    if show_yaxis and yscale == "linear":
        _format_axis(fig, 0, df["freq"].max(), "y")

    return fig
Exemplo n.º 9
0
def createPlot(df, boundaryDF):
    p = Figure(plot_height=900, plot_width=PLOT_WIDTH, title="", y_range=[], title_text_font_size=TITLE_FONT_SIZE)
    p.xgrid.grid_line_color = None
    p.ygrid.grid_line_color = None

    quad = p.quad(
        top="top",
        bottom="bottom",
        left="left",
        right="right",
        source=blockSource,
        fill_color="grey",
        hover_fill_color="firebrick",
        fill_alpha=0.05,
        hover_alpha=0.3,
        line_color=None,
        hover_line_color="white",
    )
    p.multi_line(xs="xs", ys="ys", source=blockSource, color="black", line_width=2, line_alpha=0.4, line_dash="dotted")
    p.multi_line(xs="xs", ys="ys", source=source, color="color", line_width="width", line_alpha="line_alpha")

    p.add_tools(
        HoverTool(
            tooltips=[("chromosome", "@chromosome"), ("exon", "@exon"), ("start", "@start"), ("end", "@end")],
            renderers=[quad],
        )
    )
    return p
Exemplo n.º 10
0
class ColorBar(object):
    def __init__(self):
        self.map_colorbar = Figure(tools="", toolbar_location=None,
                              min_border=0, min_border_right=0,
                              plot_width=80, plot_height=650,
                              x_range=(0., 1.), y_range=conso_bounds)
        self.map_colorbar.xaxis.visible = None
        self.map_colorbar.grid.grid_line_color = None
        colorbar_ys = np.linspace(conso_bounds[0], conso_bounds[1], 12)
        colorbar_colors = scales_to_hex(np.linspace(0., 1., 11))
        self.map_colorbar.quad(bottom=colorbar_ys[:-1], top=colorbar_ys[1:],
                          left=0., right=1.,
                          fill_color=colorbar_colors, line_color=None,
                          alpha=0.9)
    
    def get_plot(self):
        return self.map_colorbar
Exemplo n.º 11
0
def make_precipitation_plot(source):
    plot = Figure(x_axis_type="datetime", plot_width=1000, plot_height=125, min_border_left=50, min_border_right=50, min_border_top=0, min_border_bottom=0, toolbar_location=None)
    plot.title = None

    plot.quad(top='actual_precipitation', bottom=0, left='left', right='right', color=Greens4[1], source=source)

    # fixed attributes
    plot.border_fill_color = "whitesmoke"
    plot.yaxis.axis_label = "Precipitation (in)"
    plot.axis.major_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_style = "bold"
    plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.y_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.grid.grid_line_alpha = 0.3
    plot.grid[0].ticker.desired_num_ticks = 12

    return plot
Exemplo n.º 12
0
def scoredistplots(preds):
    """Score distribution plots"""

    from bokeh.models import Range1d,GridPlot
    from bokeh.plotting import Figure
    plots=[]
    for p in preds:
        pred=preds[p]
        key=pred.scorekey
        data = pred.data[key]
        hist, edges = np.histogram(data, density=True, bins=30)
        p = Figure(title=p,plot_height=250,tools='')
        p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
               fill_color="#036564", line_color="#033649")
        p.xgrid.grid_line_color = None
        p.ygrid.grid_line_color = None
        plots.append(p)
    plot = GridPlot(children=[plots],title='test')
    js,html = embedPlot(plot)
    return html
Exemplo n.º 13
0
def hist_kde_viz(
    df: pd.DataFrame,
    pts_rng: np.ndarray,
    pdf: np.ndarray,
    col: str,
    yscale: str,
    plot_width: int,
    plot_height: int,
) -> Panel:
    """
    Render histogram with overlayed kde
    """
    # pylint: disable=too-many-arguments
    fig = Figure(
        plot_width=plot_width,
        plot_height=plot_height,
        title=f"{col}",
        tools=[],
        toolbar_location=None,
        y_axis_type=yscale,
    )
    bottom = 0 if yscale == "linear" or df.empty else df["freq"].min() / 2
    hist = fig.quad(
        source=df,
        left="left",
        right="right",
        bottom=bottom,
        alpha=0.5,
        top="freq",
        fill_color="#6baed6",
    )
    hover_hist = HoverTool(
        renderers=[hist],
        tooltips=[("Bin", "@intervals"), ("Density", "@freq")],
        mode="vline",
    )
    line = fig.line(  # pylint: disable=too-many-function-args
        pts_rng,
        pdf,
        line_color="#9467bd",
        line_width=2,
        alpha=0.5)
    hover_dist = HoverTool(renderers=[line],
                           tooltips=[("x", "@x"), ("y", "@y")])
    fig.add_tools(hover_hist)
    fig.add_tools(hover_dist)
    tweak_figure(fig, "kde")
    fig.yaxis.axis_label = "Density"
    fig.xaxis.axis_label = col
    _format_axis(fig, df.iloc[0]["left"], df.iloc[-1]["right"], "x")
    if yscale == "linear":
        _format_axis(fig, 0, df["freq"].max(), "y")
    return Panel(child=fig, title="KDE plot")
Exemplo n.º 14
0
def make_plot(source,AverageTemp,Parcentile_5_Min,Parcentile_5_Max,Parcentile_25_Min,Parcentile_25_Max,MinTemp,MaxTemp,plotDate,cityName):
    plot = Figure(title='Optional Task # 1 : Growing Degree-day for '+cityName, x_axis_type="datetime", plot_width=1000, title_text_font_size='12pt', tools="", toolbar_location=None)
    colors = Blues4[0:3]
    
    plot.circle(MaxTemp,MinTemp, alpha=0.9, color="#66ff33", fill_alpha=0.2, size=10,source=source,legend ='2015')
    plot.quad(top=Parcentile_5_Max, bottom=Parcentile_5_Min, left='left',right='right',
              source=source,color="#e67300", legend="Percentile 5-95")
    plot.quad(top=Parcentile_25_Max, bottom=Parcentile_25_Min,left='left',right='right',
              source=source,color="#66ccff",legend="percentile 25-75")
    plot.line(plotDate,AverageTemp,source=source,line_color='Red', line_width=0.75, legend='AverageTemp')

    plot.border_fill_color = "whitesmoke"
    plot.xaxis.axis_label = "Months"
    plot.yaxis.axis_label = "Temperature (C)"
    plot.axis.major_label_text_font_size = "10pt"
    plot.axis.axis_label_text_font_size = "12pt"
    plot.axis.axis_label_text_font_style = "bold"
    plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.grid.grid_line_alpha = 0.3
    plot.grid[0].ticker.desired_num_ticks = 12
    return plot
Exemplo n.º 15
0
def landscape_plot(landscape, states, timesteps, height, width, patch_colors):
    '''Plot fitness landscape'''
    from bokeh.plotting import Figure

    # Append extra state and timestep for index bounds of quad objects
    states = numpy.append(states, states[-1] + 1)
    timesteps = numpy.append(timesteps, timesteps[-1] + 1)

    # Create points for each cell of grid
    tops = list()
    bottoms = list()
    lefts = list()
    rights = list()
    for top, bottom in zip(states[1:], states[:-1]):
        for left, right in zip(timesteps[:-1], timesteps[1:]):
            tops.append(top)
            bottoms.append(bottom)
            lefts.append(left)
            rights.append(right)

    # Create array of color values corresponding to each cell's assoc. patch
    grid_colors = list()
    for i in range(len(tops)):
        idx = (landscape['state'] == bottoms[i]) & (landscape['t'] == lefts[i])
        patch = int(landscape[idx]['patch'])
        grid_colors.append(patch_colors[patch])

    # Create landscape object
    grid_obj = Figure(plot_height=height,
                      plot_width=width,
                      title="",
                      toolbar_location=None)
    grid_obj.quad(top=tops,
                  bottom=bottoms,
                  left=lefts,
                  right=rights,
                  line_color='black',
                  fill_color=grid_colors)

    return grid_obj
Exemplo n.º 16
0
def histogram_plot(states, height, width, data_top, data_source, n_ticks,
        n_minor_ticks=0, fill_color=None):
    '''Create a bokeh histogram using quad shapes'''
    from bokeh.plotting import Figure

    # Create histogram object
    hist_obj = Figure(plot_height=height, plot_width=width, title="",
                      toolbar_location=None)

    # Data top is string of var name from data_source
    fill_color = '#f0f5f5' if fill_color==None else fill_color
    hist_obj.quad(top=data_top, bottom=0, source=data_source, left="left",
                  right="right", fill_color=fill_color, line_color='black')

    # set number of major and minor ticks
    hist_obj.xaxis[0].ticker.desired_num_ticks = n_ticks
    hist_obj.xaxis[0].ticker.num_minor_ticks = n_minor_ticks

    hist_obj.y_range = Range1d(0, 1)
    hist_obj.x_range = Range1d(states[0]-0.5, states[-1]+0.5)

    return hist_obj
Exemplo n.º 17
0
    def make_plot(source, title):
        print("make plot")
        plot = Figure(x_axis_type="datetime",
                      plot_width=1000,
                      tools="",
                      toolbar_location=None)
        plot.title = title
        colors = Blues4[0:3]

        plot.quad(top='record_max_temp',
                  bottom='record_min_temp',
                  left='left',
                  right='right',
                  color=colors[2],
                  source=source,
                  legend="Record")
        plot.quad(top='average_max_temp',
                  bottom='average_min_temp',
                  left='left',
                  right='right',
                  color=colors[1],
                  source=source,
                  legend="Average")
        plot.quad(top='actual_max_temp',
                  bottom='actual_min_temp',
                  left='left',
                  right='right',
                  color=colors[0],
                  alpha=0.5,
                  line_color="black",
                  source=source,
                  legend="Actual")

        # fixed attributes
        plot.border_fill_color = "whitesmoke"
        plot.xaxis.axis_label = None
        plot.yaxis.axis_label = "Temperature (F)"
        plot.axis.major_label_text_font_size = "8pt"
        plot.axis.axis_label_text_font_size = "8pt"
        plot.axis.axis_label_text_font_style = "bold"
        plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
        plot.grid.grid_line_alpha = 0.3
        plot.grid[0].ticker.desired_num_ticks = 12

        return plot
Exemplo n.º 18
0
Arquivo: main.py Projeto: 0-T-0/bokeh
def make_plot(source, title):
    plot = Figure(x_axis_type="datetime", plot_width=1000, tools="", toolbar_location=None)
    plot.title = title
    colors = Blues4[0:3]

    plot.quad(top='record_max_temp', bottom='record_min_temp', left='left', right='right', color=colors[2], source=source, legend="Record")
    plot.quad(top='average_max_temp', bottom='average_min_temp', left='left', right='right', color=colors[1], source=source, legend="Average")
    plot.quad(top='actual_max_temp', bottom='actual_min_temp', left='left', right='right', color=colors[0], alpha=0.5, line_color="black", source=source, legend="Actual")

    # fixed attributes
    plot.border_fill_color = "whitesmoke"
    plot.xaxis.axis_label = None
    plot.yaxis.axis_label = "Temperature (F)"
    plot.axis.major_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_size = "8pt"
    plot.axis.axis_label_text_font_style = "bold"
    plot.x_range = DataRange1d(range_padding=0.0, bounds=None)
    plot.grid.grid_line_alpha = 0.3
    plot.grid[0].ticker.desired_num_ticks = 12

    return plot
Exemplo n.º 19
0
class Plot2d:
    def __init__(self,
                 x_range=None,
                 y_range=None,
                 x_label="",
                 y_label="",
                 tooltip=None,
                 title="",
                 width=600,
                 height=400,
                 yscale="auto",
                 font_size="1vw",
                 hover_mode="mouse"):
        hover = HoverTool(tooltips=tooltip, mode=hover_mode)

        if y_range == None:
            self.plot = Figure(
                tools=[hover, "pan,wheel_zoom,box_zoom,reset,crosshair,tap"],
                plot_width=width,
                active_drag="box_zoom",
                plot_height=height,
                background_fill_color="white",
                x_axis_type="auto",
                y_axis_type=yscale)
        else:
            self.plot = Figure(
                tools=[hover, "pan,wheel_zoom,box_zoom,reset,crosshair,tap"],
                plot_width=width,
                active_drag="box_zoom",
                plot_height=height,
                background_fill_color="white",
                x_axis_type="auto",
                y_axis_type=yscale,
                y_range=y_range,
                x_range=x_range)

        self.plot.xaxis.axis_label = x_label
        self.plot.yaxis.axis_label = y_label

        self.plot.xaxis.major_label_text_font_size = font_size
        self.plot.yaxis.major_label_text_font_size = font_size
        self.plot.xaxis.axis_label_text_font_size = font_size
        self.plot.yaxis.axis_label_text_font_size = font_size
        self.plot.legend.label_text_font_size = font_size
        self.plot.title.text_font_size = font_size
        self.plot.title.text = title

    def vbar(self, source, y="y", x="x", line_width=0.01):
        self.plot.vbar(top=y,
                       x=x,
                       width=0.8,
                       source=source,
                       fill_color="dodgerblue",
                       line_color="black",
                       line_width=line_width,
                       alpha=0.8,
                       hover_fill_color='red',
                       hover_line_color='red',
                       hover_alpha=0.8)
        return self.plot

    def quad(self,
             source,
             top,
             bottom='bottom',
             left='left',
             right='right',
             name='data',
             line_width=0.1):
        self.plot.quad(top=top,
                       bottom=bottom,
                       left=left,
                       right=right,
                       name=name,
                       source=source,
                       fill_color="dodgerblue",
                       line_color="black",
                       line_width=line_width,
                       alpha=0.8,
                       hover_fill_color='red',
                       hover_line_color='red',
                       hover_alpha=0.8)
        return self.plot

    def line(self,
             source,
             x='x',
             y='y',
             color="black",
             line_width=1.5,
             line_alpha=0.9):
        self.plot.line(x=x,
                       y=y,
                       source=source,
                       color=color,
                       line_width=line_width,
                       line_alpha=line_alpha)
        return self

    def circle(self,
               source,
               x='x',
               y='y',
               color="blue",
               size=8,
               line_color='black',
               alpha=0.7,
               hover_color="blue",
               hover_alpha=1,
               hover_line_color='red',
               radius=0.0165,
               fill_color='lightgray',
               line_width=0.3,
               hover_fill_color=None):
        self.plot.circle(
            x=x,
            y=y,
            source=source,
            color=color,
            size=size,
            line_color=line_color,
            alpha=alpha,
            hover_color=hover_color,
            hover_alpha=hover_alpha,
            hover_line_color=hover_line_color,
            fill_color=fill_color,
            hover_fill_color=hover_fill_color,
        )
        return self

    def set_colorbar(self, z_value):
        ''' Setup for colorbar
        '''
        dz = z_value

        # removing NaN in ranges
        dz_valid = [x if x > -999 else np.nan for x in dz]
        dzmax, dzmin = np.nanmax(dz_valid), np.nanmin(dz_valid)

        if np.log10(dzmax) > 4 or np.log10(dzmin) < -3:
            ztext = ['{:4.2e}'.format(i) for i in dz_valid]
            cbarformat = "%2.1e"
        elif np.log10(dzmin) > 0:
            ztext = ['{:5.2f}'.format(i) for i in dz_valid]
            cbarformat = "%4.2f"
        else:
            ztext = ['{:6.2f}'.format(i) for i in dz_valid]
            cbarformat = "%5.2f"
        return ztext, cbarformat

    def colorbar(self, mapper, title='(Val - Ref)'):
        formatter = PrintfTickFormatter(format="%4.2f")

        color_bar = ColorBar(color_mapper=mapper,
                             label_standoff=16,
                             title=title,
                             major_label_text_font_style='bold',
                             padding=26,
                             major_label_text_align='left',
                             major_label_text_font_size="10pt",
                             formatter=formatter,
                             title_text_baseline='alphabetic',
                             location=(0, 0))
        self.plot.add_layout(color_bar, 'right')
        return self

    def wedge(self,
              source,
              field=None,
              x="x",
              y="y",
              mapper=None,
              radius=0.0165,
              colorbar_title='counts'):

        if mapper:
            self.plot = self.circle(
                source,
                y=y,
                x=x,
                radius=radius,
                fill_color={
                    'field': field,
                    'transform': mapper
                },
                line_color='black',
                line_width=0.3,
            ).circle(source,
                     y=y,
                     x=x,
                     radius=radius + 0.005,
                     fill_color=None,
                     line_color=None,
                     line_width=3,
                     hover_fill_color={
                         'field': field,
                         'transform': mapper
                     },
                     hover_line_color='red').colorbar(
                         mapper, title=colorbar_title).plot
        elif field:
            self.plot = self.circle(
                source,
                y=y,
                x=x,
                radius=radius,
                hover_fill_color='lightgrey',
                fill_color={
                    'field': 'color'
                },
                line_color='black',
                line_width=0.3,
            ).plot
        else:
            self.plot = self.circle(
                source,
                y=y,
                x=x,
                radius=radius,
                hover_fill_color='lightgrey',
                fill_color='darkgrey',
                line_color='black',
                line_width=0.3,
            ).plot

        return self

    def segment(self,
                source,
                x0='segx0',
                x1='segx1',
                y0='segy0',
                y1='segy1',
                line_width=2,
                line_color='#1e90ff'):
        seg = Segment(x0=x0,
                      x1=x1,
                      y0=y0,
                      y1=y1,
                      line_width=line_width,
                      line_color=line_color)

        self.plot.add_glyph(source, seg)

        self.plot.yaxis.ticker = FixedTicker(ticks=[0, 1])
        self.plot.yaxis.major_label_overrides = {'0': 'bad', '1': 'good'}
        return self
Exemplo n.º 20
0
DYNAMIC_EVENTS = {"Acceleration Score": "Accel Best Time",
                  "Skid Pad Score": "Skid Pad Best Time",
                  "Autocross Score": "AutoX Best Time",
                  "Efficiency Score": "Endurance Adjusted Time",
                  "Endurance Score": "Endurance Adjusted Time"}

# Read in the FSAEM data
compdata = pd.read_excel('FSAEM_summarized_results.xlsx')
source = ColumnDataSource(data=dict())

# Initialize the plot
plot = Figure(plot_width=800, plot_height=500, toolbar_location='right',
              tools="pan,wheel_zoom,box_zoom,reset,resize")

freq_bars = plot.quad(top='hist', bottom=0, left='left_edge', right='right_edge',
                      source=source, fill_color=YlOrBr3[0], line_color='#000000')

plot.xaxis.axis_label = "Total Score"
plot.xaxis.axis_line_color = None
plot.xaxis.minor_tick_line_color = None

plot.yaxis.axis_label = "Frequency"
plot.yaxis.axis_line_color = None
plot.yaxis.major_tick_line_color = None
plot.yaxis.minor_tick_line_color = None

plot.xgrid.grid_line_color = None
plot.ygrid.grid_line_color = None

plot.outline_line_color = None
Exemplo n.º 21
0
        'left': edges_low[:-1],
        'right': edges_low[1:]
    })

phi = Figure(title='NBINSHI',
             tools=[hover, "pan,wheel_zoom,box_zoom,reset"],
             y_axis_label='Frequency',
             x_axis_label='COUNTBINS',
             background_fill_color="white")

phi.quad(top='hist',
         bottom='bottom',
         left='left',
         right='right',
         source=source_hi,
         fill_color="dodgerblue",
         line_color="black",
         alpha=0.8,
         hover_fill_color='blue',
         hover_line_color='black',
         hover_alpha=0.8)

pmed = Figure(title='NBINSMED',
              tools=[hover2, "pan,wheel_zoom,box_zoom,reset"],
              y_axis_label='Frequency',
              x_axis_label='COUNTBINS',
              background_fill_color="white")

pmed.quad(top='hist',
          bottom='bottom',
          left='left',
Exemplo n.º 22
0
selected_year = Slider(title="Year",
                       start=1900,
                       end=current_year,
                       value=2008,
                       step=1)
station_IDs_str = TextInput(title="Station ID", value='6551')

# Create Figure and Plot
hover = HoverTool(tooltips=[("Date", "@date_str"), ("Station ID",
                                                    "@station_id")])
p = Figure(x_axis_type="datetime", plot_width=800, tools=[hover])
p.quad(top='max_t',
       bottom='min_t',
       left='timel',
       right='timer',
       source=source,
       alpha=0.5,
       color='RoyalBlue',
       line_color="black",
       line_alpha=0.5,
       legend='Min/Max')
p.line(x='time',
       y='mean_t',
       source=source,
       color='red',
       line_width=1.5,
       alpha=0.8,
       legend='Average')
p.x_range = DataRange1d(range_padding=0, bounds=None)
p.yaxis.axis_label = "Temperature (C)"
p.xaxis.axis_label = 'Month'
Exemplo n.º 23
0
def plot(width, height):
######################################################################################################################
    source_normal = ColumnDataSource(data = get_normal(0,1,10000))
    plot_normal = Figure(plot_width = width, plot_height = height, x_range = (-6,6), title = 'Normal')
    plot_normal.quad(top='hist', bottom=0, left='left_edges', right='right_edges',
                     source= source_normal, fill_color="navy")
    
    def update_plot_normal(attrname, old , new):
        source_normal.data = get_normal(mu_slider.value, sigma_slider.value, 100000)
    
    mu_slider = Slider(start = -5, end = 5, value = 0, step = 0.2, title = 'Mean')
    mu_slider.on_change('value', update_plot_normal)
    
    sigma_slider = Slider(start = 0.1, end = 5, value = 1, step = 0.2, title = 'Std_Dev')
    sigma_slider.on_change('value', update_plot_normal)

######################################################################################################################
    source_weibull = ColumnDataSource(data = get_weibull(1.5, 1, 10000))
    plot_weibull = Figure(plot_width = width, plot_height = height, x_range = (0,6), title = 'Weibull')
    plot_weibull.quad(top='hist', bottom=0, left='left_edges', right='right_edges', 
                      source= source_weibull, fill_color="navy")
    
    def update_plot_weibull(attrname, old , new):
        source_weibull.data = get_weibull(shape_slider.value,lambda_slider.value,100000)
    
    shape_slider = Slider(start = 0.4, end = 5, value = 1.5, step = 0.1, title = 'Shape a')
    shape_slider.on_change('value', update_plot_weibull)
    
    lambda_slider = Slider(start = 0.5, end = 3, value = 1, step = 0.5, title = 'Lambda')
    lambda_slider.on_change('value', update_plot_weibull)
    
######################################################################################################################
    source_lognormal = ColumnDataSource(data = get_lognormal(0.9, 0.16, 10000))
    plot_lognormal = Figure(plot_width = width, plot_height = height, title = 'Lognormal', 
                            y_range=(0,2), x_range = (0,10))
    plot_lognormal.quad(top='hist', bottom=0, left='left_edges', right='right_edges', 
                        source= source_lognormal, fill_color="navy")
    
    def update_plot_lognormal(attrname, old , new):
        source_lognormal.data = get_lognormal(mean_slider_lognormal.value, sigma_slider_lognormal.value,100000)
    
    mean_slider_lognormal = Slider(start = 0, end = 5, value =0.9, step = 0.1, title = 'Mean')
    mean_slider_lognormal.on_change('value', update_plot_lognormal)
    
    sigma_slider_lognormal = Slider(start = 0.01, end = 1, value = 0.16, step = 0.01, title = 'Std_dev')
    sigma_slider_lognormal.on_change('value', update_plot_lognormal)
######################################################################################################################
    source_exponential = ColumnDataSource(data = get_exponential(3, 1000))
    plot_exponential = Figure(plot_width = width, plot_height = height, title = 'Exponential',
                              x_range=(0,50), y_range =(0,1) )
    plot_exponential.quad(top='hist', bottom=0, left='left_edges', right='right_edges', 
                          source= source_exponential, fill_color="green")
    
    def update_plot_exponential(attrname, old , new):
        source_exponential.data = get_exponential(scale_slider_exponential.value, 10000)
    
    scale_slider_exponential = Slider(start = 0.1, end = 10, value = 3, step = 0.1, title = 'Scale')
    scale_slider_exponential.on_change('value', update_plot_exponential)

    layout1 = column(plot_normal, column(mu_slider, sigma_slider))
    layout2 = column(plot_weibull, column(shape_slider, lambda_slider))
    layout3 = column(plot_lognormal, column(mean_slider_lognormal, sigma_slider_lognormal))
    layout4 = column(plot_exponential, scale_slider_exponential)
    top = row(layout1, layout2)
    bottom = row(layout3, layout4)
    return (row(top, bottom))
def plot_dispersion_bokeh(filename, period_array, curve_data_array, boundary_data, style_parameter):
    '''
    Plot dispersion maps and curves using bokeh
    
    Input:
        filename is the filename of the resulting html file
        period_array is a list of period
        curve_data_array is a list of dispersion curves
        boundary_data is a list of boundaries
        style_parameter contains plotting parameters 
    
    Output:
        None
        
    '''
    xlabel_fontsize = style_parameter['xlabel_fontsize']
    # ==============================
    # prepare data
    map_data_all_slices_velocity = []
    map_data_all_slices_period = []
    map_data_all_slices_color = []
    colorbar_data_all_left = []
    colorbar_data_all_right = []
    nperiod = len(period_array)
    ncurve = len(curve_data_array)
    ncolor = len(palette)
    palette_r = palette[::-1]
    colorbar_top = [0.1 for i in range(ncolor)]
    colorbar_bottom = [0 for i in range(ncolor)]
    for iperiod in range(nperiod):
        one_slice_lat_list = []
        one_slice_lon_list = []
        one_slice_vel_list = []
        
        map_period = period_array[iperiod]
        for icurve in range(ncurve):
            acurve = curve_data_array[icurve]
            curve_lat = acurve['latitude']
            curve_lon = acurve['longitude']
            curve_vel = acurve['velocity']
            curve_period = acurve['period']
            one_slice_lat_list.append(curve_lat)
            one_slice_lon_list.append(curve_lon)
            if map_period in curve_period:
                curve_period_index = curve_period.index(map_period)
                one_slice_vel_list.append(curve_vel[curve_period_index])
            else:
                one_slice_vel_list.append(style_parameter['nan_value'])
        # get color for dispersion values
        one_slice_vel_mean = np.nanmean(one_slice_vel_list)
        one_slice_vel_std = np.nanstd(one_slice_vel_list)
        
        color_min = one_slice_vel_mean - one_slice_vel_std * style_parameter['spread_factor']
        color_max = one_slice_vel_mean + one_slice_vel_std * style_parameter['spread_factor']
        color_step = (color_max - color_min)*1./ncolor
        one_slice_color_list = get_color_list(one_slice_vel_list,color_min,color_max,palette_r,\
                                             style_parameter['nan_value'],style_parameter['nan_color'])
        colorbar_left = np.linspace(color_min,color_max-color_step,ncolor)
        colorbar_right = np.linspace(color_min+color_step,color_max,ncolor)
        if one_slice_lat_list:
            map_data_all_slices_velocity.append(one_slice_vel_list)
            map_data_all_slices_period.append('Period: {0:6.1f} s'.format(map_period))
            map_data_all_slices_color.append(one_slice_color_list)
            colorbar_data_all_left.append(colorbar_left)
            colorbar_data_all_right.append(colorbar_right)
    # get location for all points
    map_lat_list, map_lon_list = [], []
    map_lat_label_list, map_lon_label_list = [], []
    for i in range(ncurve):
        acurve = curve_data_array[i]
        map_lat_list.append(acurve['latitude'])
        map_lon_list.append(acurve['longitude'])
        map_lat_label_list.append('Lat: {0:12.3f}'.format(acurve['latitude']))
        map_lon_label_list.append('Lon: {0:12.3f}'.format(acurve['longitude']))
    # data for the map view plot
    map_view_label_lon = style_parameter['map_view_period_label_lon']
    map_view_label_lat = style_parameter['map_view_period_label_lat']

    map_data_one_slice = map_data_all_slices_color[style_parameter['map_view_default_index']]
    map_data_one_slice_period = map_data_all_slices_period[style_parameter['map_view_default_index']]
    map_data_one_slice_bokeh = ColumnDataSource(data=dict(map_lat_list=map_lat_list,\
                                                          map_lon_list=map_lon_list,\
                                                          map_data_one_slice=map_data_one_slice))
    map_data_one_slice_period_bokeh = ColumnDataSource(data=dict(lat=[map_view_label_lat], lon=[map_view_label_lon],
                                                       map_period=[map_data_one_slice_period]))
    map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices_color=map_data_all_slices_color,\
                                                          map_data_all_slices_period=map_data_all_slices_period))

    # data for the colorbar
    colorbar_data_one_slice = {}
    colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[style_parameter['map_view_default_index']]
    colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[style_parameter['map_view_default_index']]
    colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom,
                                                               colorbar_left=colorbar_data_one_slice['colorbar_left'],\
                                                               colorbar_right=colorbar_data_one_slice['colorbar_right'],\
                                                               palette_r=palette_r))
    colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\
                                                                colorbar_data_all_right=colorbar_data_all_right))
    # data for dispersion curves
    curve_default_index = style_parameter['curve_default_index']
    selected_dot_on_map_bokeh = ColumnDataSource(data=dict(lat=[map_lat_list[curve_default_index]],\
                                                     lon=[map_lon_list[curve_default_index]],\
                                                     color=[map_data_one_slice[curve_default_index]],\
                                                     index=[curve_default_index]))
    selected_curve_data = curve_data_array[curve_default_index]
    selected_curve_data_bokeh = ColumnDataSource(data=dict(curve_period=selected_curve_data['period'],\
                                                          curve_velocity=selected_curve_data['velocity']))

    period_all = []
    velocity_all = []
    for acurve in curve_data_array:
        period_all.append(acurve['period'])
        velocity_all.append(acurve['velocity'])
    curve_data_all_bokeh = ColumnDataSource(data=dict(period_all=period_all, velocity_all=velocity_all))
    
    selected_curve_lat_label_bokeh = ColumnDataSource(data=dict(x=[style_parameter['curve_lat_label_x']], \
                                                                y=[style_parameter['curve_lat_label_y']],\
                                                                lat_label=[map_lat_label_list[curve_default_index]]))
    selected_curve_lon_label_bokeh = ColumnDataSource(data=dict(x=[style_parameter['curve_lon_label_x']], \
                                                                y=[style_parameter['curve_lon_label_y']],\
                                                                lon_label=[map_lon_label_list[curve_default_index]]))
    all_curve_lat_label_bokeh = ColumnDataSource(data=dict(map_lat_label_list=map_lat_label_list))
    all_curve_lon_label_bokeh = ColumnDataSource(data=dict(map_lon_label_list=map_lon_label_list))
    # ==============================
    map_view = Figure(plot_width=style_parameter['map_view_plot_width'], \
                      plot_height=style_parameter['map_view_plot_height'], \
                      y_range=[style_parameter['map_view_lat_min'],\
                    style_parameter['map_view_lat_max']], x_range=[style_parameter['map_view_lon_min'],\
                    style_parameter['map_view_lon_max']], tools=style_parameter['map_view_tools'],\
                    title=style_parameter['map_view_title'])
    # ------------------------------
    # add boundaries to map view
    # country boundaries
    map_view.multi_line(boundary_data['country']['longitude'],\
                        boundary_data['country']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # marine boundaries
    map_view.multi_line(boundary_data['marine']['longitude'],\
                        boundary_data['marine']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # shoreline boundaries
    map_view.multi_line(boundary_data['shoreline']['longitude'],\
                        boundary_data['shoreline']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # state boundaries
    map_view.multi_line(boundary_data['state']['longitude'],\
                        boundary_data['state']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # ------------------------------
    # add period label
    map_view.rect(style_parameter['map_view_period_box_lon'], style_parameter['map_view_period_box_lat'], \
                  width=style_parameter['map_view_period_box_width'], height=style_parameter['map_view_period_box_height'], \
                  width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay')
    map_view.text('lon', 'lat', 'map_period', source=map_data_one_slice_period_bokeh,\
                  text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay')
    # ------------------------------
    # plot dots
    map_view.circle('map_lon_list', 'map_lat_list', color='map_data_one_slice', \
                    source=map_data_one_slice_bokeh, size=style_parameter['marker_size'],\
                    line_width=0.2, line_color='black', alpha=1.0,\
                    selection_color='map_data_one_slice', selection_line_color='black',\
                    selection_fill_alpha=1.0,\
                    nonselection_fill_alpha=1.0, nonselection_fill_color='map_data_one_slice',\
                    nonselection_line_color='black', nonselection_line_alpha=1.0)
    map_view.circle('lon', 'lat', color='color', source=selected_dot_on_map_bokeh, \
                    line_color='#00ff00', line_width=4.0, alpha=1.0, \
                    size=style_parameter['selected_marker_size'])
    # ------------------------------
    # change style
    map_view.title.text_font_size = style_parameter['title_font_size']
    map_view.title.align = 'center'
    map_view.title.text_font_style = 'normal'
    map_view.xaxis.axis_label = style_parameter['map_view_xlabel']
    map_view.xaxis.axis_label_text_font_style = 'normal'
    map_view.xaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.xaxis.major_label_text_font_size = xlabel_fontsize
    map_view.yaxis.axis_label = style_parameter['map_view_ylabel']
    map_view.yaxis.axis_label_text_font_style = 'normal'
    map_view.yaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.yaxis.major_label_text_font_size = xlabel_fontsize
    map_view.xgrid.grid_line_color = None
    map_view.ygrid.grid_line_color = None
    map_view.toolbar.logo = None
    map_view.toolbar_location = 'above'
    map_view.toolbar_sticky = False
    # ==============================
    # plot colorbar
    colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \
                          plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title'])
    colorbar_fig.toolbar_location=None
    colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\
                      fill_color='palette_r',source=colorbar_data_one_slice_bokeh)
    colorbar_fig.yaxis[0].ticker=FixedTicker(ticks=[])
    colorbar_fig.xgrid.grid_line_color = None
    colorbar_fig.ygrid.grid_line_color = None
    colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f")
    colorbar_fig.title.text_font_size = xlabel_fontsize
    colorbar_fig.title.align = 'center'
    colorbar_fig.title.text_font_style = 'normal'
    # ==============================
    curve_fig = Figure(plot_width=style_parameter['curve_plot_width'], plot_height=style_parameter['curve_plot_height'], \
                       y_range=(style_parameter['curve_y_min'],style_parameter['curve_y_max']), \
                       x_range=(style_parameter['curve_x_min'],style_parameter['curve_x_max']),x_axis_type='log',\
                        tools=['save','box_zoom','wheel_zoom','reset','crosshair','pan'],
                        title=style_parameter['curve_title'])
    # ------------------------------
    curve_fig.rect([style_parameter['curve_label_box_x']], [style_parameter['curve_label_box_y']], \
                   width=style_parameter['curve_label_box_width'], height=style_parameter['curve_label_box_height'], \
                   width_units='screen', height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay')
    curve_fig.text('x', 'y', \
                   'lat_label', source=selected_curve_lat_label_bokeh)
    curve_fig.text('x', 'y', \
                   'lon_label', source=selected_curve_lon_label_bokeh)
    # ------------------------------
    curve_fig.line('curve_period', 'curve_velocity', source=selected_curve_data_bokeh, color='black')
    curve_fig.circle('curve_period', 'curve_velocity', source=selected_curve_data_bokeh, size=5, color='black')
    # ------------------------------
    curve_fig.title.text_font_size = style_parameter['title_font_size']
    curve_fig.title.align = 'center'
    curve_fig.title.text_font_style = 'normal'
    curve_fig.xaxis.axis_label = style_parameter['curve_xlabel']
    curve_fig.xaxis.axis_label_text_font_style = 'normal'
    curve_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig.yaxis.axis_label = style_parameter['curve_ylabel']
    curve_fig.yaxis.axis_label_text_font_style = 'normal'
    curve_fig.yaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig.yaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig.xgrid.grid_line_dash = [4, 2]
    curve_fig.ygrid.grid_line_dash = [4, 2]
    curve_fig.xaxis[0].formatter = PrintfTickFormatter(format="%4.0f")
    curve_fig.toolbar.logo = None
    curve_fig.toolbar_location = 'above'
    curve_fig.toolbar_sticky = False
    # ==============================
    map_data_one_slice_bokeh.callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                                          map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                                          selected_curve_data_bokeh=selected_curve_data_bokeh,\
                                                          curve_data_all_bokeh=curve_data_all_bokeh,\
                                                          selected_curve_lat_label_bokeh=selected_curve_lat_label_bokeh,\
                                                          selected_curve_lon_label_bokeh=selected_curve_lon_label_bokeh,\
                                                          all_curve_lat_label_bokeh=all_curve_lat_label_bokeh,\
                                                          all_curve_lon_label_bokeh=all_curve_lon_label_bokeh), code="""
    
    var inds = Math.round(cb_obj.selected['1d'].indices)
    
    selected_dot_on_map_bokeh.data['index'] = [inds]
    
    var new_slice = map_data_one_slice_bokeh.data
    
    selected_dot_on_map_bokeh.data['lat'] = [new_slice['map_lat_list'][inds]]
    selected_dot_on_map_bokeh.data['lon'] = [new_slice['map_lon_list'][inds]]
    selected_dot_on_map_bokeh.data['color'] = [new_slice['map_data_one_slice'][inds]]
    
    selected_dot_on_map_bokeh.change.emit()
    
    selected_curve_data_bokeh.data['curve_period'] = curve_data_all_bokeh.data['period_all'][inds]
    selected_curve_data_bokeh.data['curve_velocity'] = curve_data_all_bokeh.data['velocity_all'][inds]
    
    selected_curve_data_bokeh.change.emit()
    
    var all_lat_labels = all_curve_lat_label_bokeh.data['map_lat_label_list']
    var all_lon_labels = all_curve_lon_label_bokeh.data['map_lon_label_list']
    
    selected_curve_lat_label_bokeh.data['lat_label'] = [all_lat_labels[inds]]
    selected_curve_lon_label_bokeh.data['lon_label'] = [all_lon_labels[inds]]
    
    selected_curve_lat_label_bokeh.change.emit()
    selected_curve_lon_label_bokeh.change.emit()
    """)
    # ==============================
    period_slider_callback = CustomJS(args=dict(map_data_all_slices_bokeh=map_data_all_slices_bokeh,\
                                  map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                  colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh, \
                                  colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\
                                  selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                  map_data_one_slice_period_bokeh=map_data_one_slice_period_bokeh),\
                       code="""
    var p_index = Math.round(cb_obj.value)
    var map_data_all_slices = map_data_all_slices_bokeh.data
    
    
    var map_data_new_slice = map_data_all_slices['map_data_all_slices_color'][p_index]
    map_data_one_slice_bokeh.data['map_data_one_slice'] = map_data_new_slice
    map_data_one_slice_bokeh.change.emit()
    
    var color_data_all_slices = colorbar_data_all_slices_bokeh.data
    colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][p_index]
    colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][p_index]
    colorbar_data_one_slice_bokeh.change.emit()
    
    var selected_index = selected_dot_on_map_bokeh.data['index']
    selected_dot_on_map_bokeh.data['color'] = [map_data_new_slice[selected_index]]
    selected_dot_on_map_bokeh.change.emit()
    
    map_data_one_slice_period_bokeh.data['map_period'] = [map_data_all_slices['map_data_all_slices_period'][p_index]]
    map_data_one_slice_period_bokeh.change.emit()
    """)
    period_slider = Slider(start=0, end=nperiod-1, value=style_parameter['map_view_default_index'], \
                           step=1, title=style_parameter['period_slider_title'], \
                           width=style_parameter['period_slider_plot_width'],\
                           height=50, callback=period_slider_callback)
    
    # ==============================
    curve_slider_callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                              map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                              selected_curve_data_bokeh=selected_curve_data_bokeh,\
                                              curve_data_all_bokeh=curve_data_all_bokeh,\
                                              selected_curve_lat_label_bokeh=selected_curve_lat_label_bokeh,\
                                              selected_curve_lon_label_bokeh=selected_curve_lon_label_bokeh,\
                                              all_curve_lat_label_bokeh=all_curve_lat_label_bokeh,\
                                              all_curve_lon_label_bokeh=all_curve_lon_label_bokeh),\
                                    code="""
    var c_index = Math.round(cb_obj.value)
    
    var one_slice = map_data_one_slice_bokeh.data
    
    selected_dot_on_map_bokeh.data['index'] = [c_index]
    selected_dot_on_map_bokeh.data['lat'] = [one_slice['map_lat_list'][c_index]]
    selected_dot_on_map_bokeh.data['lon'] = [one_slice['map_lon_list'][c_index]]
    selected_dot_on_map_bokeh.data['color'] = [one_slice['map_data_one_slice'][c_index]]
    
    selected_dot_on_map_bokeh.change.emit()
    
    selected_curve_data_bokeh.data['curve_period'] = curve_data_all_bokeh.data['period_all'][c_index]
    selected_curve_data_bokeh.data['curve_velocity'] = curve_data_all_bokeh.data['velocity_all'][c_index]
    
    selected_curve_data_bokeh.change.emit()
    
    var all_lat_labels = all_curve_lat_label_bokeh.data['map_lat_label_list']
    var all_lon_labels = all_curve_lon_label_bokeh.data['map_lon_label_list']
    
    selected_curve_lat_label_bokeh.data['lat_label'] = [all_lat_labels[c_index]]
    selected_curve_lon_label_bokeh.data['lon_label'] = [all_lon_labels[c_index]]
    
    selected_curve_lat_label_bokeh.change.emit()
    selected_curve_lon_label_bokeh.change.emit()
    """)
    curve_slider = Slider(start=0, end=ncurve-1, value=style_parameter['curve_default_index'], \
                          step=1, title=style_parameter['curve_slider_title'], width=style_parameter['curve_plot_width'],\
                          height=50, callback=curve_slider_callback)
    
    # ==============================
    # annotating text
    annotating_fig01 = Div(text=style_parameter['annotating_html01'], \
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    annotating_fig02 = Div(text=style_parameter['annotating_html02'],\
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    # ==============================
    output_file(filename,title=style_parameter['html_title'],mode=style_parameter['library_source'])
    left_fig = Column(period_slider, map_view, colorbar_fig, annotating_fig01,\
                    width=style_parameter['left_column_width'] )
    right_fig = Column(curve_slider, curve_fig, annotating_fig02, \
                    width=style_parameter['right_column_width'] )
    layout = Row(left_fig, right_fig)
    save(layout)
Exemplo n.º 25
0
def createPlot(height=600, width=1200):
    """
    Create and return a plot for visualizing transcripts.
    """
    TOOLS = "pan, wheel_zoom, save, reset, tap"
    p = Figure(title="",
               y_range=[],
               webgl=True,
               tools=TOOLS,
               toolbar_location="above",
               plot_height=height,
               plot_width=width)
    # This causes title to overlap plot substantially:
    #p.title.text_font_size = TITLE_FONT_SIZE
    p.xgrid.grid_line_color = None  # get rid of the grid in bokeh
    p.ygrid.grid_line_color = None
    # the block of exons, there's mouse hover effect on that
    quad = p.quad(top="top",
                  bottom="bottom",
                  left="left",
                  right="right",
                  source=blockSource,
                  fill_alpha=0,
                  line_dash="dotted",
                  line_alpha=0.4,
                  line_color='black',
                  hover_fill_color="red",
                  hover_alpha=0.3,
                  hover_line_color="white",
                  nonselection_fill_alpha=0,
                  nonselection_line_alpha=0.4,
                  nonselection_line_color='black')
    # the block of each vertical transcript, each one can be selected
    p.quad(top="top",
           bottom="bottom",
           right="right",
           left="left",
           source=tranSource,
           fill_alpha=0,
           line_alpha=0,
           nonselection_fill_alpha=0,
           nonselection_line_alpha=0)
    # what exons really is
    # Cannot use line_width="height" because it is broken.
    p.multi_line(xs="xs",
                 ys="ys",
                 line_width=opt.height,
                 color="color",
                 line_alpha="line_alpha",
                 source=source)
    # the start/stop codon
    p.inverted_triangle(x="x",
                        y="y",
                        color="color",
                        source=codonSource,
                        size='size',
                        alpha=0.5)
    # mouse hover on the block
    p.add_tools(
        HoverTool(tooltips=[("chromosome", "@chromosome"), ("exon", "@exon"),
                            ("start", "@start"), ("end", "@end")],
                  renderers=[quad]))
    return p
Exemplo n.º 26
0
plot.scatter('x', 'y', source=source, color='black')

# create the horizontal histogram
x1 = np.random.normal(loc=5.0, size=400) * 100
hhist, hedges = np.histogram(np.array(data['x']).astype(float), bins=20)
hzeros = np.zeros(len(hedges)-1)
hmax = max(hhist)*1.1

LINE_ARGS = dict(color="#3A5785", line_color=None)

ph = Figure(toolbar_location=None, plot_width=plot.plot_width, plot_height=200, x_range=plot.x_range,
            y_range=(-hmax, hmax), title=None, min_border=10, min_border_left=50)
ph.xgrid.grid_line_color = None

ph.quad(bottom=0, left=hedges[:-1], right=hedges[1:], top=hhist, color="white", line_color="#3A5785")
hh1 = ph.quad(bottom=0, left=hedges[:-1], right=hedges[1:], top=hzeros, alpha=0.5, **LINE_ARGS)
hh2 = ph.quad(bottom=0, left=hedges[:-1], right=hedges[1:], top=hzeros, alpha=0.1, **LINE_ARGS)


axis_map = {
    "[Fe/H]": "feh_cannon",
    "[a/Fe]": "alpha_fe_cannon",
    "Ca": "ca_abund_sme",
    "Mg": "mg_abund_sme",
}



# Set up widgets
text = TextInput(title="title", value='my abundance plot')
Exemplo n.º 27
0
def plot_3DModel_bokeh(filename, map_data_all_slices, map_depth_all_slices, \
                       color_range_all_slices, profile_data_all, boundary_data, \
                       style_parameter):
    '''
    Plot shear velocity maps and velocity profiles using bokeh

    Input:
        filename is the filename of the resulting html file
        map_data_all_slices contains the velocity model parameters saved for map view plots
        map_depth_all_slices is a list of depths
        color_range_all_slices is a list of color ranges
        profile_data_all constains the velocity model parameters saved for profile plots
        boundary_data is a list of boundaries
        style_parameter contains plotting parameters

    Output:
        None
    
    '''
    xlabel_fontsize = style_parameter['xlabel_fontsize']
    #
    colorbar_data_all_left = []
    colorbar_data_all_right = []
    map_view_ndepth = style_parameter['map_view_ndepth']
    ncolor = len(palette)
    colorbar_top = [0.1 for i in range(ncolor)]
    colorbar_bottom = [0 for i in range(ncolor)]
    map_data_all_slices_depth = []
    for idepth in range(map_view_ndepth):
        color_min = color_range_all_slices[idepth][0]
        color_max = color_range_all_slices[idepth][1]
        color_step = (color_max - color_min) * 1. / ncolor
        colorbar_left = np.linspace(color_min, color_max - color_step, ncolor)
        colorbar_right = np.linspace(color_min + color_step, color_max, ncolor)
        colorbar_data_all_left.append(colorbar_left)
        colorbar_data_all_right.append(colorbar_right)
        map_depth = map_depth_all_slices[idepth]
        map_data_all_slices_depth.append(
            'Depth: {0:8.1f} km'.format(map_depth))
    #
    palette_r = palette[::-1]
    # data for the colorbar
    colorbar_data_one_slice = {}
    colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[
        style_parameter['map_view_default_index']]
    colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[
        style_parameter['map_view_default_index']]
    colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom,\
                                                               colorbar_left=colorbar_data_one_slice['colorbar_left'],\
                                                               colorbar_right=colorbar_data_one_slice['colorbar_right'],\
                                                               palette_r=palette_r))
    colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\
                                                                colorbar_data_all_right=colorbar_data_all_right))
    #
    map_view_label_lon = style_parameter['map_view_depth_label_lon']
    map_view_label_lat = style_parameter['map_view_depth_label_lat']
    map_data_one_slice_depth = map_data_all_slices_depth[
        style_parameter['map_view_default_index']]
    map_data_one_slice_depth_bokeh = ColumnDataSource(data=dict(lat=[map_view_label_lat], lon=[map_view_label_lon],
                                                           map_depth=[map_data_one_slice_depth],
                                                           left=[style_parameter['profile_plot_xmin']], \
                                                           right=[style_parameter['profile_plot_xmax']]))

    #
    map_view_default_index = style_parameter['map_view_default_index']
    #map_data_one_slice = map_data_all_slices[map_view_default_index]
    #
    map_color_all_slices = []
    for i in range(len(map_data_all_slices)):
        vmin, vmax = color_range_all_slices[i]
        map_color = val_to_rgb(map_data_all_slices[i], palette_r, vmin, vmax)
        map_color_2d = map_color.view('uint32').reshape(map_color.shape[:2])
        map_color_all_slices.append(map_color_2d)
    map_color_one_slice = map_color_all_slices[map_view_default_index]
    #
    map_data_one_slice_bokeh = ColumnDataSource(data=dict(x=[style_parameter['map_view_image_lon_min']],\
                   y=[style_parameter['map_view_image_lat_min']],dw=[style_parameter['nlon']*style_parameter['dlon']],\
                   dh=[style_parameter['nlat']*style_parameter['dlat']],map_data_one_slice=[map_color_one_slice]))
    map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices=map_color_all_slices,\
                                                           map_data_all_slices_depth=map_data_all_slices_depth))
    # ------------------------------
    nprofile = len(profile_data_all)
    grid_lat_list = []
    grid_lon_list = []
    width_list = []
    height_list = []
    for iprofile in range(nprofile):
        aprofile = profile_data_all[iprofile]
        grid_lat_list.append(aprofile['lat'])
        grid_lon_list.append(aprofile['lon'])
        width_list.append(style_parameter['map_view_grid_width'])
        height_list.append(style_parameter['map_view_grid_height'])
    grid_data_bokeh = ColumnDataSource(data=dict(lon=grid_lon_list,lat=grid_lat_list,\
                                            width=width_list, height=height_list))
    profile_default_index = style_parameter['profile_default_index']
    selected_dot_on_map_bokeh = ColumnDataSource(data=dict(lat=[grid_lat_list[profile_default_index]], \
                                                           lon=[grid_lon_list[profile_default_index]], \
                                                           width=[style_parameter['map_view_grid_width']],\
                                                           height=[style_parameter['map_view_grid_height']],\
                                                           index=[profile_default_index]))
    # ------------------------------
    profile_vs_all = []
    profile_depth_all = []
    profile_ndepth = style_parameter['profile_ndepth']
    profile_lat_label_list = []
    profile_lon_label_list = []
    for iprofile in range(nprofile):
        aprofile = profile_data_all[iprofile]
        vs_raw = aprofile['vs']
        top_raw = aprofile['top']
        profile_lat_label_list.append('Lat: {0:12.1f}'.format(aprofile['lat']))
        profile_lon_label_list.append('Lon: {0:12.1f}'.format(aprofile['lon']))
        vs_plot = []
        depth_plot = []
        for idepth in range(profile_ndepth):
            vs_plot.append(vs_raw[idepth])
            depth_plot.append(top_raw[idepth])
            vs_plot.append(vs_raw[idepth])
            depth_plot.append(top_raw[idepth + 1])
        profile_vs_all.append(vs_plot)
        profile_depth_all.append(depth_plot)
    profile_data_all_bokeh = ColumnDataSource(data=dict(profile_vs_all=profile_vs_all, \
                                                        profile_depth_all=profile_depth_all))
    selected_profile_data_bokeh = ColumnDataSource(data=dict(vs=profile_vs_all[profile_default_index],\
                                                             depth=profile_depth_all[profile_default_index]))
    selected_profile_lat_label_bokeh = ColumnDataSource(data=\
                                dict(x=[style_parameter['profile_lat_label_x']], y=[style_parameter['profile_lat_label_y']],\
                                    lat_label=[profile_lat_label_list[profile_default_index]]))
    selected_profile_lon_label_bokeh = ColumnDataSource(data=\
                                dict(x=[style_parameter['profile_lon_label_x']], y=[style_parameter['profile_lon_label_y']],\
                                    lon_label=[profile_lon_label_list[profile_default_index]]))
    all_profile_lat_label_bokeh = ColumnDataSource(data=dict(
        profile_lat_label_list=profile_lat_label_list))
    all_profile_lon_label_bokeh = ColumnDataSource(data=dict(
        profile_lon_label_list=profile_lon_label_list))
    #
    button_ndepth = style_parameter['button_ndepth']
    button_data_all_vs = []
    button_data_all_vp = []
    button_data_all_rho = []
    button_data_all_top = []
    for iprofile in range(nprofile):
        aprofile = profile_data_all[iprofile]
        button_data_all_vs.append(aprofile['vs'][:button_ndepth])
        button_data_all_vp.append(aprofile['vp'][:button_ndepth])
        button_data_all_rho.append(aprofile['rho'][:button_ndepth])
        button_data_all_top.append(aprofile['top'][:button_ndepth])
    button_data_all_bokeh = ColumnDataSource(data=dict(button_data_all_vs=button_data_all_vs,\
                                                       button_data_all_vp=button_data_all_vp,\
                                                       button_data_all_rho=button_data_all_rho,\
                                                       button_data_all_top=button_data_all_top))
    # ==============================
    map_view = Figure(plot_width=style_parameter['map_view_plot_width'], plot_height=style_parameter['map_view_plot_height'], \
                      tools=style_parameter['map_view_tools'], title=style_parameter['map_view_title'], \
                      y_range=[style_parameter['map_view_figure_lat_min'], style_parameter['map_view_figure_lat_max']],\
                      x_range=[style_parameter['map_view_figure_lon_min'], style_parameter['map_view_figure_lon_max']])
    #
    map_view.image_rgba('map_data_one_slice',x='x',\
                   y='y',dw='dw',dh='dh',
                   source=map_data_one_slice_bokeh, level='image')

    depth_slider_callback = CustomJS(args=dict(map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                               map_data_all_slices_bokeh=map_data_all_slices_bokeh,\
                                               colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh,\
                                               colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\
                                               map_data_one_slice_depth_bokeh=map_data_one_slice_depth_bokeh), code="""

        var d_index = Math.round(cb_obj.value)
        
        var map_data_all_slices = map_data_all_slices_bokeh.data
        
        map_data_one_slice_bokeh.data['map_data_one_slice'] = [map_data_all_slices['map_data_all_slices'][d_index]]
        map_data_one_slice_bokeh.change.emit()
        
        var color_data_all_slices = colorbar_data_all_slices_bokeh.data
        colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][d_index]
        colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][d_index]
        colorbar_data_one_slice_bokeh.change.emit()
        
        map_data_one_slice_depth_bokeh.data['map_depth'] = [map_data_all_slices['map_data_all_slices_depth'][d_index]]
        map_data_one_slice_depth_bokeh.change.emit()
        
    """)
    depth_slider = Slider(start=0, end=style_parameter['map_view_ndepth']-1, \
                          value=map_view_default_index, step=1, \
                          width=style_parameter['map_view_plot_width'],\
                          title=style_parameter['depth_slider_title'], height=50)
    depth_slider.js_on_change('value', depth_slider_callback)
    depth_slider_callback.args["depth_index"] = depth_slider
    # ------------------------------
    # add boundaries to map view
    # country boundaries
    map_view.multi_line(boundary_data['country']['longitude'],\
                        boundary_data['country']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # marine boundaries
    map_view.multi_line(boundary_data['marine']['longitude'],\
                        boundary_data['marine']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # shoreline boundaries
    map_view.multi_line(boundary_data['shoreline']['longitude'],\
                        boundary_data['shoreline']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # state boundaries
    map_view.multi_line(boundary_data['state']['longitude'],\
                        boundary_data['state']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # ------------------------------
    # add depth label
    map_view.rect(style_parameter['map_view_depth_box_lon'], style_parameter['map_view_depth_box_lat'], \
                  width=style_parameter['map_view_depth_box_width'], height=style_parameter['map_view_depth_box_height'], \
                  width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay')
    map_view.text('lon', 'lat', 'map_depth', source=map_data_one_slice_depth_bokeh,\
                  text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay')
    # ------------------------------
    map_view.rect('lon', 'lat', width='width', \
                  width_units='screen', height='height', \
                  height_units='screen', line_color='gray', line_alpha=0.5, \
                  selection_line_color='gray', selection_line_alpha=0.5, selection_fill_color=None,\
                  nonselection_line_color='gray',nonselection_line_alpha=0.5, nonselection_fill_color=None,\
                  source=grid_data_bokeh, color=None, line_width=1, level='glyph')
    map_view.rect('lon', 'lat',width='width', \
                  width_units='screen', height='height', \
                  height_units='screen', line_color='#00ff00', line_alpha=1.0, \
                  source=selected_dot_on_map_bokeh, fill_color=None, line_width=3.,level='glyph')
    # ------------------------------
    grid_data_js = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh, \
                                                  grid_data_bokeh=grid_data_bokeh,\
                                                  profile_data_all_bokeh=profile_data_all_bokeh,\
                                                  selected_profile_data_bokeh=selected_profile_data_bokeh,\
                                                  selected_profile_lat_label_bokeh=selected_profile_lat_label_bokeh,\
                                                  selected_profile_lon_label_bokeh=selected_profile_lon_label_bokeh, \
                                                  all_profile_lat_label_bokeh=all_profile_lat_label_bokeh, \
                                                  all_profile_lon_label_bokeh=all_profile_lon_label_bokeh, \
                                                 ), code="""
        
        var inds = cb_obj.indices
        
        var grid_data = grid_data_bokeh.data
        selected_dot_on_map_bokeh.data['lat'] = [grid_data['lat'][inds]]
        selected_dot_on_map_bokeh.data['lon'] = [grid_data['lon'][inds]]
        selected_dot_on_map_bokeh.data['index'] = [inds]
        selected_dot_on_map_bokeh.change.emit()
        
        var profile_data_all = profile_data_all_bokeh.data
        selected_profile_data_bokeh.data['vs'] = profile_data_all['profile_vs_all'][inds]
        selected_profile_data_bokeh.data['depth'] = profile_data_all['profile_depth_all'][inds]
        selected_profile_data_bokeh.change.emit()
        
        var all_profile_lat_label = all_profile_lat_label_bokeh.data['profile_lat_label_list']
        var all_profile_lon_label = all_profile_lon_label_bokeh.data['profile_lon_label_list']
        selected_profile_lat_label_bokeh.data['lat_label'] = [all_profile_lat_label[inds]]
        selected_profile_lon_label_bokeh.data['lon_label'] = [all_profile_lon_label[inds]]
        selected_profile_lat_label_bokeh.change.emit()
        selected_profile_lon_label_bokeh.change.emit()
    """)
    grid_data_bokeh.selected.js_on_change('indices', grid_data_js)
    # ------------------------------
    # change style
    map_view.title.text_font_size = style_parameter['title_font_size']
    map_view.title.align = 'center'
    map_view.title.text_font_style = 'normal'
    map_view.xaxis.axis_label = style_parameter['map_view_xlabel']
    map_view.xaxis.axis_label_text_font_style = 'normal'
    map_view.xaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.xaxis.major_label_text_font_size = xlabel_fontsize
    map_view.yaxis.axis_label = style_parameter['map_view_ylabel']
    map_view.yaxis.axis_label_text_font_style = 'normal'
    map_view.yaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.yaxis.major_label_text_font_size = xlabel_fontsize
    map_view.xgrid.grid_line_color = None
    map_view.ygrid.grid_line_color = None
    map_view.toolbar.logo = None
    map_view.toolbar_location = 'above'
    map_view.toolbar_sticky = False
    # ==============================
    # plot colorbar
    colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \
                      plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title'])
    colorbar_fig.toolbar_location = None
    colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\
                  color='palette_r',source=colorbar_data_one_slice_bokeh)
    colorbar_fig.yaxis[0].ticker = FixedTicker(ticks=[])
    colorbar_fig.xgrid.grid_line_color = None
    colorbar_fig.ygrid.grid_line_color = None
    colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f")
    colorbar_fig.title.text_font_size = xlabel_fontsize
    colorbar_fig.title.align = 'center'
    colorbar_fig.title.text_font_style = 'normal'
    # ==============================
    profile_xrange = Range1d(start=style_parameter['profile_plot_xmin'],
                             end=style_parameter['profile_plot_xmax'])
    profile_yrange = Range1d(start=style_parameter['profile_plot_ymax'],
                             end=style_parameter['profile_plot_ymin'])
    profile_fig = Figure(plot_width=style_parameter['profile_plot_width'], plot_height=style_parameter['profile_plot_height'],\
                         x_range=profile_xrange, y_range=profile_yrange, tools=style_parameter['profile_tools'],\
                         title=style_parameter['profile_title'])
    profile_fig.line('vs',
                     'depth',
                     source=selected_profile_data_bokeh,
                     line_width=2,
                     line_color='black')
    # ------------------------------
    # add lat, lon
    profile_fig.rect([style_parameter['profile_label_box_x']], [style_parameter['profile_label_box_y']],\
                     width=style_parameter['profile_label_box_width'], height=style_parameter['profile_label_box_height'],\
                     width_units='screen', height_units='screen', color='#FFFFFF', line_width=1., line_color='black',\
                     level='underlay')
    profile_fig.text('x',
                     'y',
                     'lat_label',
                     source=selected_profile_lat_label_bokeh)
    profile_fig.text('x',
                     'y',
                     'lon_label',
                     source=selected_profile_lon_label_bokeh)
    # ------------------------------
    # change style
    profile_fig.xaxis.axis_label = style_parameter['profile_xlabel']
    profile_fig.xaxis.axis_label_text_font_style = 'normal'
    profile_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    profile_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    profile_fig.yaxis.axis_label = style_parameter['profile_ylabel']
    profile_fig.yaxis.axis_label_text_font_style = 'normal'
    profile_fig.yaxis.axis_label_text_font_size = xlabel_fontsize
    profile_fig.yaxis.major_label_text_font_size = xlabel_fontsize
    profile_fig.xgrid.grid_line_dash = [4, 2]
    profile_fig.ygrid.grid_line_dash = [4, 2]
    profile_fig.title.text_font_size = style_parameter['title_font_size']
    profile_fig.title.align = 'center'
    profile_fig.title.text_font_style = 'normal'
    profile_fig.toolbar_location = 'above'
    profile_fig.toolbar_sticky = False
    profile_fig.toolbar.logo = None
    # ==============================
    profile_slider_callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                                 grid_data_bokeh=grid_data_bokeh, \
                                                 profile_data_all_bokeh=profile_data_all_bokeh, \
                                                 selected_profile_data_bokeh=selected_profile_data_bokeh,\
                                                 selected_profile_lat_label_bokeh=selected_profile_lat_label_bokeh,\
                                                 selected_profile_lon_label_bokeh=selected_profile_lon_label_bokeh, \
                                                 all_profile_lat_label_bokeh=all_profile_lat_label_bokeh, \
                                                 all_profile_lon_label_bokeh=all_profile_lon_label_bokeh), code="""
        var p_index = Math.round(cb_obj.value)
        
        var grid_data = grid_data_bokeh.data
        selected_dot_on_map_bokeh.data['lat'] = [grid_data['lat'][p_index]]
        selected_dot_on_map_bokeh.data['lon'] = [grid_data['lon'][p_index]]
        selected_dot_on_map_bokeh.data['index'] = [p_index]
        selected_dot_on_map_bokeh.change.emit()
        
        var profile_data_all = profile_data_all_bokeh.data
        selected_profile_data_bokeh.data['vs'] = profile_data_all['profile_vs_all'][p_index]
        selected_profile_data_bokeh.data['depth'] = profile_data_all['profile_depth_all'][p_index]
        selected_profile_data_bokeh.change.emit()
        
        var all_profile_lat_label = all_profile_lat_label_bokeh.data['profile_lat_label_list']
        var all_profile_lon_label = all_profile_lon_label_bokeh.data['profile_lon_label_list']
        selected_profile_lat_label_bokeh.data['lat_label'] = [all_profile_lat_label[p_index]]
        selected_profile_lon_label_bokeh.data['lon_label'] = [all_profile_lon_label[p_index]]
        selected_profile_lat_label_bokeh.change.emit()
        selected_profile_lon_label_bokeh.change.emit()
        
    """)
    profile_slider = Slider(start=0, end=nprofile-1, value=style_parameter['profile_default_index'], \
                           step=1, title=style_parameter['profile_slider_title'], \
                           width=style_parameter['profile_plot_width'], height=50)
    profile_slider_callback.args['profile_index'] = profile_slider
    profile_slider.js_on_change('value', profile_slider_callback)
    # ==============================
    simple_text_button_callback = CustomJS(args=dict(button_data_all_bokeh=button_data_all_bokeh,\
                                                    selected_dot_on_map_bokeh=selected_dot_on_map_bokeh), \
                                           code="""
        var index = selected_dot_on_map_bokeh.data['index']
        
        var button_data_vs = button_data_all_bokeh.data['button_data_all_vs'][index]
        var button_data_vp = button_data_all_bokeh.data['button_data_all_vp'][index]
        var button_data_rho = button_data_all_bokeh.data['button_data_all_rho'][index]
        var button_data_top = button_data_all_bokeh.data['button_data_all_top'][index]
        
        var csvContent = ""
        var i = 0
        var temp = csvContent
        temp += "# Layer Top (km)      Vs(km/s)    Vp(km/s)    Rho(g/cm^3) \\n"
        while(button_data_vp[i]) {
            temp+=button_data_top[i].toPrecision(6) + "    " + button_data_vs[i].toPrecision(4) + "   " + \
                    button_data_vp[i].toPrecision(4) + "   " + button_data_rho[i].toPrecision(4) + "\\n"
            i = i + 1
        }
        const blob = new Blob([temp], { type: 'text/csv;charset=utf-8;' })
        const link = document.createElement('a');
        link.href = URL.createObjectURL(blob);
        link.download = 'vel_model.txt';
        link.target = '_blank'
        link.style.visibility = 'hidden'
        link.dispatchEvent(new MouseEvent('click'))
        
    """)

    simple_text_button = Button(
        label=style_parameter['simple_text_button_label'],
        button_type='default',
        width=style_parameter['button_width'])
    simple_text_button.js_on_click(simple_text_button_callback)
    # ------------------------------
    model96_button_callback = CustomJS(args=dict(button_data_all_bokeh=button_data_all_bokeh,\
                                                    selected_dot_on_map_bokeh=selected_dot_on_map_bokeh), \
                                           code="""
        var index = selected_dot_on_map_bokeh.data['index']
        var lat = selected_dot_on_map_bokeh.data['lat']
        var lon = selected_dot_on_map_bokeh.data['lon']
        
        var button_data_vs = button_data_all_bokeh.data['button_data_all_vs'][index]
        var button_data_vp = button_data_all_bokeh.data['button_data_all_vp'][index]
        var button_data_rho = button_data_all_bokeh.data['button_data_all_rho'][index]
        var button_data_top = button_data_all_bokeh.data['button_data_all_top'][index]
        
        var csvContent = ""
        var i = 0
        var temp = csvContent
        temp +=  "MODEL." + index + " \\n"
        temp +=  "ShearVelocityModel Lat: "+ lat +"  Lon: " + lon + "\\n"
        temp +=  "ISOTROPIC \\n"
        temp +=  "KGS \\n"
        temp +=  "SPHERICAL EARTH \\n"
        temp +=  "1-D \\n"
        temp +=  "CONSTANT VELOCITY \\n"
        temp +=  "LINE08 \\n"
        temp +=  "LINE09 \\n"
        temp +=  "LINE10 \\n"
        temp +=  "LINE11 \\n"
        temp +=  "      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)     QP         QS       ETAP       ETAS      FREFP      FREFS \\n"
        while(button_data_vp[i+1]) {
            var thickness = button_data_top[i+1] - button_data_top[i]
            temp+="      " +thickness.toPrecision(6) + "    " + button_data_vp[i].toPrecision(4) + "      " + button_data_vs[i].toPrecision(4) \
                 + "      " + button_data_rho[i].toPrecision(4) + "     0.00       0.00       0.00       0.00       1.00       1.00" + "\\n"
            i = i + 1
        }
        const blob = new Blob([temp], { type: 'text/csv;charset=utf-8;' })
        const link = document.createElement('a');
        link.href = URL.createObjectURL(blob);
        link.download = 'vel_model96.txt';
        link.target = '_blank'
        link.style.visibility = 'hidden'
        link.dispatchEvent(new MouseEvent('click'))
    """)
    model96_button = Button(label=style_parameter['model96_button_label'],
                            button_type='default',
                            width=style_parameter['button_width'])
    model96_button.js_on_click(model96_button_callback)
    # ==============================
    # annotating text
    annotating_fig01 = Div(text=style_parameter['annotating_html01'], \
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    annotating_fig02 = Div(text=style_parameter['annotating_html02'],\
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    # ==============================
    output_file(filename,
                title=style_parameter['html_title'],
                mode=style_parameter['library_source'])
    left_column = Column(depth_slider,
                         map_view,
                         colorbar_fig,
                         annotating_fig01,
                         width=style_parameter['left_column_width'])
    button_pannel = Row(simple_text_button, model96_button)
    right_column = Column(profile_slider,
                          profile_fig,
                          button_pannel,
                          annotating_fig02,
                          width=style_parameter['right_column_width'])
    layout = Row(left_column, right_column)
    save(layout)
Exemplo n.º 28
0
def hist_viz(
    hist: List[Tuple[np.ndarray, np.ndarray]],
    nrows: List[int],
    col: str,
    yscale: str,
    plot_width: int,
    plot_height: int,
    show_yticks: bool,
    orig: List[str],
    df_labels: List[str],
) -> Figure:
    """
    Render a histogram
    """
    # pylint: disable=too-many-arguments,too-many-locals

    tooltips = [
        ("Bin", "@intvl"),
        ("Frequency", "@freq"),
        ("Percent", "@pct{0.2f}%"),
        ("Source", "@orig"),
    ]
    fig = Figure(
        plot_height=plot_height,
        plot_width=plot_width,
        title=col,
        toolbar_location=None,
        y_axis_type=yscale,
    )

    for i, hst in enumerate(hist):
        counts, bins = hst
        if sum(counts) == 0:
            fig.rect(x=0, y=0, width=0, height=0)
            continue
        intvls = _format_bin_intervals(bins)
        df = pd.DataFrame({
            "intvl": intvls,
            "left": bins[:-1],
            "right": bins[1:],
            "freq": counts,
            "pct": counts / nrows[i] * 100,
            "orig": orig[i],
        })
        bottom = 0 if yscale == "linear" or df.empty else counts.min() / 2
        fig.quad(
            source=df,
            left="left",
            right="right",
            bottom=bottom,
            alpha=0.5,
            top="freq",
            fill_color=CATEGORY10[i],
            line_color=CATEGORY10[i],
        )
    hover = HoverTool(tooltips=tooltips, attachment="vertical", mode="vline")
    fig.add_tools(hover)

    tweak_figure(fig, "hist", show_yticks)
    fig.yaxis.axis_label = "Frequency"

    _format_axis(fig, df.iloc[0]["left"], df.iloc[-1]["right"], "x")

    x_axis_label = ""
    if show_yticks:
        x_axis_label += col
        if yscale == "linear":
            _format_axis(fig, 0, df["freq"].max(), "y")

    if orig != df_labels:
        if x_axis_label:
            x_axis_label += f", this vairable is only in {','.join(orig)}"
        else:
            x_axis_label += f"This vairable is only in {','.join(orig)}"
    fig.xaxis.axis_label = x_axis_label
    fig.xaxis.axis_label_standoff = 0

    return fig
Exemplo n.º 29
0
d5 = {'kind': 'cash',
      'value': 15,
      'max_cash': 30}

projection = Portfolio(Asset(**d1),
                       Asset(**d2),
                       Asset(**d3),
                       Asset(**d4),
                       Asset(**d5), prd=200)
source = ColumnDataSource(projection.gen_quads())

TOOLS = "crosshair, pan, reset, resize, wheel_zoom"
plot = Figure(tools=TOOLS, x_axis_type='datetime', plot_height=600,
              plot_width=600, title="FI calculator")
p = plot.quad(left='left', right='right', bottom='bottom', top='top',
              color='color', source=source)


def update_graphic():
    """Update the data of the Asset dictionaries and recreate the
    projection.
    """
    projection = Portfolio(Asset(**d1),
                           Asset(**d2),
                           Asset(**d3),
                           Asset(**d4),
                           Asset(**d5), prd=200)
    bdf_quad = projection.gen_quads()
    # print(bdf_quad.head())
    source.data['bottom'] = bdf_quad['bottom']
    source.data['top'] = bdf_quad['top']
Exemplo n.º 30
0
ph = Figure(tools='pan,wheel_zoom, reset',
            toolbar_location='left',
            plot_width=plot.plot_width,
            plot_height=200,
            x_range=plot.x_range,
            y_range=(-0.1 * hmax, hmax),
            min_border=10,
            min_border_left=50,
            y_axis_location="right")

ph.xgrid.grid_line_color = None
ph.yaxis.major_label_orientation = 0

qh = ph.quad(bottom=0,
             left=hedges[:-1],
             right=hedges[1:],
             top=hhist,
             color="#a7bae1",
             line_color="black")

# create the vertical histogram
vhist, vedges = np.histogram(source.data['y'], bins='sqrt')
vzeros = np.zeros(len(vedges) - 1)
vmax = max(vhist) * 1.1

pv = Figure(tools='pan,wheel_zoom, reset',
            toolbar_location='above',
            plot_width=200,
            plot_height=plot.plot_height,
            x_range=(-0.1 * vmax, vmax),
            y_range=plot.y_range,
            min_border=10,
Exemplo n.º 31
0
v4 = hst.Potencia[(hst.oscuridad > 80) & (hst.oscuridad < 85)].sum()
v5 = hst.Potencia[(hst.oscuridad > 75) & (hst.oscuridad < 80)].sum()
v6 = hst.Potencia[(hst.oscuridad > 70) & (hst.oscuridad < 75)].sum()
v7 = hst.Potencia[(hst.oscuridad > 65) & (hst.oscuridad < 70)].sum()
v8 = hst.Potencia[(hst.oscuridad > 60) & (hst.oscuridad < 65)].sum()
v9 = hst.Potencia[(hst.oscuridad > 55) & (hst.oscuridad < 60)].sum()
v10 = hst.Potencia[(hst.oscuridad > 50) & (hst.oscuridad < 55)].sum()

ac = np.array([v10, v9, v8, v7, v6, v5, v4, v3, v2, v1])
edges = np.arange(50, 101, 5)

p3 = Figure(tools=TOOLS)
p3.quad(top=ac,
        bottom=0,
        left=edges[:-1],
        right=edges[1:],
        fill_color="orangered",
        line_color="white",
        alpha=1.0)

p3.xaxis.axis_label = "Porcentaje oscuridad (%)"
p3.yaxis.axis_label = "Potencia (MW)"
########################################################################################
# est_minEner = pd.read_csv('../datos/estaciones_MinEner/infoEstaciones.csv', sep=';', encoding="ISO-8859-1")
# est_minEner['Mandante'] = 'Min Energia'
# #est_minEner["weblink"] = "http://localhost:6010/est_minEner"

# wl = []
# for pl in est_minEner.index:
#    try:
#        wl_tmp = "http://localhost:6010/est_minEner" + "?idEst=" + str(int(pl))
Exemplo n.º 32
0
'''

# Read in the FSAEM data
compdata = pd.read_excel('FSAEM_summarized_results.xlsx')
source = ColumnDataSource(data=dict())

# Initialize the plot
plot = Figure(plot_width=800,
              plot_height=500,
              toolbar_location='right',
              tools="pan,wheel_zoom,box_zoom,reset,resize")

freq_bars = plot.quad(top='hist',
                      bottom=0,
                      left='left_edge',
                      right='right_edge',
                      source=source,
                      fill_color='OliveDrab',
                      line_color='#000000')

plot.xaxis.axis_label = "Weight [kg]"
plot.xaxis.axis_line_color = None
plot.xaxis.minor_tick_line_color = None

plot.yaxis.axis_label = "Frequency"
plot.yaxis.axis_line_color = None
plot.yaxis.major_tick_line_color = None
plot.yaxis.minor_tick_line_color = None

plot.xgrid.grid_line_color = None
plot.ygrid.grid_line_color = None
Exemplo n.º 33
0
}

# Read in the FSAEM data
compdata = pd.read_excel('FSAEM_summarized_results.xlsx')
source = ColumnDataSource(data=dict())

# Initialize the plot
plot = Figure(plot_width=800,
              plot_height=500,
              toolbar_location='right',
              tools="pan,wheel_zoom,box_zoom,reset,resize")

freq_bars = plot.quad(top='hist',
                      bottom=0,
                      left='left_edge',
                      right='right_edge',
                      source=source,
                      fill_color=YlOrBr3[0],
                      line_color='#000000')

plot.xaxis.axis_label = "Total Score"
plot.xaxis.axis_line_color = None
plot.xaxis.minor_tick_line_color = None

plot.yaxis.axis_label = "Frequency"
plot.yaxis.axis_line_color = None
plot.yaxis.major_tick_line_color = None
plot.yaxis.minor_tick_line_color = None

plot.xgrid.grid_line_color = None
plot.ygrid.grid_line_color = None
Exemplo n.º 34
0
def plot_cross_section_bokeh(filename, map_data_all_slices, map_depth_all_slices, \
                             color_range_all_slices, cross_data, boundary_data, \
                             style_parameter):
    '''
    Plot shear velocity maps and cross-sections using bokeh

    Input:
        filename is the filename of the resulting html file
        map_data_all_slices contains the velocity model parameters saved for map view plots
        map_depth_all_slices is a list of depths
        color_range_all_slices is a list of color ranges
        profile_data_all is a list of velocity profiles
        cross_lat_data_all is a list of cross-sections along latitude
        lat_value_all is a list of corresponding latitudes for these cross-sections
        cross_lon_data_all is a list of cross-sections along longitude
        lon_value_all is a list of corresponding longitudes for these cross-sections
        boundary_data is a list of boundaries
        style_parameter contains parameters to customize the plots

    Output:
        None
    
    '''
    xlabel_fontsize = style_parameter['xlabel_fontsize']
    #
    colorbar_data_all_left = []
    colorbar_data_all_right = []
    map_view_ndepth = style_parameter['map_view_ndepth']
    palette_r = palette[::-1]
    ncolor = len(palette_r)
    colorbar_top = [0.1 for i in range(ncolor)]
    colorbar_bottom = [0 for i in range(ncolor)]
    map_data_all_slices_depth = []
    for idepth in range(map_view_ndepth): 
        color_min = color_range_all_slices[idepth][0]
        color_max = color_range_all_slices[idepth][1]
        color_step = (color_max - color_min)*1./ncolor
        colorbar_left = np.linspace(color_min,color_max-color_step,ncolor)
        colorbar_right = np.linspace(color_min+color_step,color_max,ncolor)
        colorbar_data_all_left.append(colorbar_left)
        colorbar_data_all_right.append(colorbar_right)
        map_depth = map_depth_all_slices[idepth]
        map_data_all_slices_depth.append('Depth: {0:8.0f} km'.format(map_depth))
    # data for the colorbar
    colorbar_data_one_slice = {}
    colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[style_parameter['map_view_default_index']]
    colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[style_parameter['map_view_default_index']]
    colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom,\
                                                               colorbar_left=colorbar_data_one_slice['colorbar_left'],\
                                                               colorbar_right=colorbar_data_one_slice['colorbar_right'],\
                                                               palette_r=palette_r))
    colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\
                                                                colorbar_data_all_right=colorbar_data_all_right))
    #
    map_view_label_lon = style_parameter['map_view_depth_label_lon']
    map_view_label_lat = style_parameter['map_view_depth_label_lat']
    map_data_one_slice_depth = map_data_all_slices_depth[style_parameter['map_view_default_index']]
    map_data_one_slice_depth_bokeh = ColumnDataSource(data=dict(lat=[map_view_label_lat], lon=[map_view_label_lon],
                                                           map_depth=[map_data_one_slice_depth]))
    
    #
    map_view_default_index = style_parameter['map_view_default_index']
    #map_data_one_slice = map_data_all_slices[map_view_default_index]
    map_color_all_slices = []
    for i in range(len(map_data_all_slices)):
        vmin, vmax = color_range_all_slices[i]
        map_color = val_to_rgb(map_data_all_slices[i], palette_r, vmin, vmax)
        map_color_all_slices.append(map_color)
    map_color_one_slice = map_color_all_slices[map_view_default_index]
    #
    map_data_one_slice_bokeh = ColumnDataSource(data=dict(x=[style_parameter['map_view_image_lon_min']],\
                   y=[style_parameter['map_view_image_lat_min']],dw=[style_parameter['nlon']],\
                   dh=[style_parameter['nlat']],map_data_one_slice=[map_color_one_slice]))
    map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices=map_color_all_slices,\
                                                           map_data_all_slices_depth=map_data_all_slices_depth))
    #
    
    plot_depth = np.shape(cross_data)[0] * style_parameter['cross_ddepth']
    plot_lon = great_arc_distance(style_parameter['cross_default_lat0'], style_parameter['cross_default_lon0'],\
                                  style_parameter['cross_default_lat1'], style_parameter['cross_default_lon1'])
    
    vs_min = style_parameter['cross_view_vs_min']
    vs_max = style_parameter['cross_view_vs_max']
    cross_color = val_to_rgb(cross_data, palette_r, vmin, vmax)
    cross_data_bokeh = ColumnDataSource(data=dict(x=[0],\
                   y=[plot_depth],dw=[plot_lon],\
                   dh=[plot_depth],cross_data=[cross_color]))
    
    map_line_bokeh = ColumnDataSource(data=dict(lat=[style_parameter['cross_default_lat0'], style_parameter['cross_default_lat1']],\
                                                    lon=[style_parameter['cross_default_lon0'], style_parameter['cross_default_lon1']]))
    #
    ncolor_cross = len(my_palette)
    colorbar_top_cross = [0.1 for i in range(ncolor_cross)]
    colorbar_bottom_cross = [0 for i in range(ncolor_cross)]
    color_min_cross = style_parameter['cross_view_vs_min']
    color_max_cross = style_parameter['cross_view_vs_max']
    color_step_cross = (color_max_cross - color_min_cross)*1./ncolor_cross
    colorbar_left_cross = np.linspace(color_min_cross, color_max_cross-color_step_cross, ncolor_cross)
    colorbar_right_cross = np.linspace(color_min_cross+color_step_cross, color_max_cross, ncolor_cross)
    # ==============================
    map_view = Figure(plot_width=style_parameter['map_view_plot_width'], plot_height=style_parameter['map_view_plot_height'], \
                      tools=style_parameter['map_view_tools'], title=style_parameter['map_view_title'], \
                      y_range=[style_parameter['map_view_figure_lat_min'], style_parameter['map_view_figure_lat_max']],\
                      x_range=[style_parameter['map_view_figure_lon_min'], style_parameter['map_view_figure_lon_max']])
    #
    map_view.image_rgba('map_data_one_slice',x='x',\
                   y='y',dw='dw',dh='dh',\
                   source=map_data_one_slice_bokeh, level='image')

    depth_slider_callback = CustomJS(args=dict(map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                               map_data_all_slices_bokeh=map_data_all_slices_bokeh,\
                                               colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh,\
                                               colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\
                                               map_data_one_slice_depth_bokeh=map_data_one_slice_depth_bokeh), code="""

        var d_index = Math.round(cb_obj.value)
        
        var map_data_all_slices = map_data_all_slices_bokeh.data
        
        map_data_one_slice_bokeh.data['map_data_one_slice'] = [map_data_all_slices['map_data_all_slices'][d_index]]
        map_data_one_slice_bokeh.change.emit()
        
        var color_data_all_slices = colorbar_data_all_slices_bokeh.data
        colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][d_index]
        colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][d_index]
        colorbar_data_one_slice_bokeh.change.emit()
        
        map_data_one_slice_depth_bokeh.data['map_depth'] = [map_data_all_slices['map_data_all_slices_depth'][d_index]]
        map_data_one_slice_depth_bokeh.change.emit()
        
    """) 
    depth_slider = Slider(start=0, end=style_parameter['map_view_ndepth']-1, \
                          value=map_view_default_index, step=1, \
                          width=style_parameter['map_view_plot_width'],\
                          title=style_parameter['depth_slider_title'], height=50, \
                          callback=depth_slider_callback)
    # ------------------------------
    # add boundaries to map view
    # country boundaries
    map_view.multi_line(boundary_data['country']['longitude'],\
                        boundary_data['country']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # marine boundaries
    map_view.multi_line(boundary_data['marine']['longitude'],\
                        boundary_data['marine']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # shoreline boundaries
    map_view.multi_line(boundary_data['shoreline']['longitude'],\
                        boundary_data['shoreline']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # state boundaries
    map_view.multi_line(boundary_data['state']['longitude'],\
                        boundary_data['state']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
     # ------------------------------
    # add depth label
    map_view.rect(style_parameter['map_view_depth_box_lon'], style_parameter['map_view_depth_box_lat'], \
                  width=style_parameter['map_view_depth_box_width'], height=style_parameter['map_view_depth_box_height'], \
                  width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay')
    map_view.text('lon', 'lat', 'map_depth', source=map_data_one_slice_depth_bokeh,\
                  text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay')
    # ------------------------------
    map_view.line('lon', 'lat', source=map_line_bokeh, line_dash=[8,2,8,2], line_color='#00ff00',\
                        nonselection_line_alpha=1.0, line_width=5.,\
                        nonselection_line_color='black')
    map_view.text([style_parameter['cross_default_lon0']],[style_parameter['cross_default_lat0']], ['A'], \
            text_font_size=style_parameter['title_font_size'],text_align='left')
    map_view.text([style_parameter['cross_default_lon1']],[style_parameter['cross_default_lat1']], ['B'], \
            text_font_size=style_parameter['title_font_size'],text_align='left')
    # ------------------------------
    # change style
    map_view.title.text_font_size = style_parameter['title_font_size']
    map_view.title.align = 'center'
    map_view.title.text_font_style = 'normal'
    map_view.xaxis.axis_label = style_parameter['map_view_xlabel']
    map_view.xaxis.axis_label_text_font_style = 'normal'
    map_view.xaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.xaxis.major_label_text_font_size = xlabel_fontsize
    map_view.yaxis.axis_label = style_parameter['map_view_ylabel']
    map_view.yaxis.axis_label_text_font_style = 'normal'
    map_view.yaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.yaxis.major_label_text_font_size = xlabel_fontsize
    map_view.xgrid.grid_line_color = None
    map_view.ygrid.grid_line_color = None
    map_view.toolbar.logo = None
    map_view.toolbar_location = 'above'
    map_view.toolbar_sticky = False
    # ==============================
    # plot colorbar
    
    colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \
                      plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title'])
    colorbar_fig.toolbar_location=None
    colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\
                  color='palette_r',source=colorbar_data_one_slice_bokeh)
    colorbar_fig.yaxis[0].ticker=FixedTicker(ticks=[])
    colorbar_fig.xgrid.grid_line_color = None
    colorbar_fig.ygrid.grid_line_color = None
    colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f")
    colorbar_fig.title.text_font_size = xlabel_fontsize
    colorbar_fig.title.align = 'center'
    colorbar_fig.title.text_font_style = 'normal'
     # ==============================
    # annotating text
    annotating_fig01 = Div(text=style_parameter['annotating_html01'], \
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    annotating_fig02 = Div(text="""<p style="font-size:16px">""", \
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    # ==============================
    # plot cross-section along latitude
    cross_section_plot_width = int(style_parameter['cross_plot_height']*1.0/plot_depth*plot_lon/10.)
    cross_view = Figure(plot_width=cross_section_plot_width, plot_height=style_parameter['cross_plot_height'], \
                      tools=style_parameter['cross_view_tools'], title=style_parameter['cross_view_title'], \
                      y_range=[plot_depth, -30],\
                      x_range=[0, plot_lon])
    cross_view.image_rgba('cross_data',x='x',\
                   y='y',dw='dw',dh='dh',\
                   source=cross_data_bokeh, level='image')
    cross_view.text([plot_lon*0.1], [-10], ['A'], \
                text_font_size=style_parameter['title_font_size'],text_align='left',level='underlay')
    cross_view.text([plot_lon*0.9], [-10], ['B'], \
                text_font_size=style_parameter['title_font_size'],text_align='left',level='underlay')
    # ------------------------------
    # change style
    cross_view.title.text_font_size = style_parameter['title_font_size']
    cross_view.title.align = 'center'
    cross_view.title.text_font_style = 'normal'
    cross_view.xaxis.axis_label = style_parameter['cross_view_xlabel']
    cross_view.xaxis.axis_label_text_font_style = 'normal'
    cross_view.xaxis.axis_label_text_font_size = xlabel_fontsize
    cross_view.xaxis.major_label_text_font_size = xlabel_fontsize
    cross_view.yaxis.axis_label = style_parameter['cross_view_ylabel']
    cross_view.yaxis.axis_label_text_font_style = 'normal'
    cross_view.yaxis.axis_label_text_font_size = xlabel_fontsize
    cross_view.yaxis.major_label_text_font_size = xlabel_fontsize
    cross_view.xgrid.grid_line_color = None
    cross_view.ygrid.grid_line_color = None
    cross_view.toolbar.logo = None
    cross_view.toolbar_location = 'right'
    cross_view.toolbar_sticky = False
    # ==============================
    colorbar_fig_right = Figure(tools=[], y_range=(0,0.1),plot_width=cross_section_plot_width, \
                      plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title'])
    colorbar_fig_right.toolbar_location=None
    
    colorbar_fig_right.quad(top=colorbar_top_cross,bottom=colorbar_bottom_cross,\
                            left=colorbar_left_cross,right=colorbar_right_cross,\
                            color=my_palette)
    colorbar_fig_right.yaxis[0].ticker=FixedTicker(ticks=[])
    colorbar_fig_right.xgrid.grid_line_color = None
    colorbar_fig_right.ygrid.grid_line_color = None
    colorbar_fig_right.xaxis.axis_label_text_font_size = xlabel_fontsize
    colorbar_fig_right.xaxis.major_label_text_font_size = xlabel_fontsize
    colorbar_fig_right.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f")
    colorbar_fig_right.title.text_font_size = xlabel_fontsize
    colorbar_fig_right.title.align = 'center'
    colorbar_fig_right.title.text_font_style = 'normal'
    # ==============================
    output_file(filename,title=style_parameter['html_title'], mode=style_parameter['library_source'])
    left_column = Column(depth_slider, map_view, colorbar_fig, annotating_fig01, width=style_parameter['left_column_width'])
    
    right_column = Column(annotating_fig02, cross_view, colorbar_fig_right, width=cross_section_plot_width)
    layout = Row(left_column, right_column, height=800)
    save(layout)
Exemplo n.º 35
0
    pay_debt_faster=True,
    prd=50,
)

test = C1(d=d)
source = ColumnDataSource(test.gen_quads())
TOOLS = "crosshair, pan, reset, resize, wheel_zoom"

plot = Figure(tools=TOOLS,
              x_axis_type='datetime',
              plot_height=600,
              plot_width=600,
              title="FI calculator")
p = plot.quad(left='left',
              right='right',
              bottom='bottom',
              top='top',
              color='color',
              source=source)


def update_graphic():
    test = C1(d=d)
    bdf_quad = test.gen_quads()
    source.data['bottom'] = bdf_quad['bottom']
    source.data['top'] = bdf_quad['top']
    source.data['left'] = bdf_quad['left']
    source.data['right'] = bdf_quad['right']
    source.trigger('data', source.data, source.data)


# Set up widgets
Exemplo n.º 36
0
plot2.border_fill_color = "white"
plot2.min_border_left = 0
plot2.circle('x', 'y', source=junk_points, \
      fill_color='purple', radius=0.1, line_alpha=0.5, fill_alpha=1.0)
plot2.line('x', 'y', source=junk_points, line_color='purple', line_alpha=0.5)

rect_points = ColumnDataSource(data=dict(top=[totyield / 2. - 50., 9000, 9000],
                                         bottom=[-49.8, 8800, 8800],
                                         left=[-49.8, 8800, 9000],
                                         strbag=' ',
                                         right=[-45, 8800, 9200]))

plot1.quad(top="top",
           bottom="bottom",
           left="left",
           right="right",
           source=rect_points,
           color="lightgreen",
           fill_alpha=0.5,
           line_alpha=0.)
plot1.quad(top=49.9,
           bottom=-49.9,
           left=-49.8,
           right=-45,
           line_color="lightgreen",
           line_width=3,
           fill_alpha=0.0)  # open box
plot1.circle([-47.4],
             'top',
             source=rect_points,
             radius=1.8,
             fill_alpha=0.5,
Exemplo n.º 37
0
import pandas as pd
import numpy as np
#Pandas version 0.22.0
#Bokeh version 0.12.10
#Numpy version 1.12.1
from bokeh.io import output_file, show,curdoc
from bokeh.models import Quad
from bokeh.layouts import row, layout,widgetbox
from bokeh.models.widgets import Select,MultiSelect
from bokeh.plotting import ColumnDataSource,Figure,reset_output,gridplot
d= {'A': [1,1,1,2,2,3,4,4,4,4,4], 'B': [1,2,2,2,3,3,4,5,6,6,6], 'C' : [2,2,2,2,2,3,4,5,6,6,6]}
df = pd.DataFrame(data=d)
names = ["A","B", "C"]
#Since bokeh.charts are deprecated so using the new method using numpy histogram
hist,edge = np.histogram(df['A'],bins=4)
#This is the method you need to pass the histogram objects to source data here it takes edge values for each bin start and end and hist gives count.
source = ColumnDataSource(data={'hist': hist, 'edges_rt': edge[1:], 'edges_lt':edge[:-1]})
plot = Figure(plot_height = 300,plot_width = 400)
#The quad is used to display the histogram using bokeh.
plot.quad(top='hist', bottom=0, left='edges_lt', right='edges_rt',fill_color="#036564",
 line_color="#033649",source = source)
#When you change the selection it will this function and changes the source data so that values are updated.
def callback_menu(attr, old, new):
    hist,edge = np.histogram(df[menu.value],bins=4)
    source.data={'hist': hist,'edges_rt': edge[1:], 'edges_lt': edge[:-1]}
#These are interacting tools in the final graph
menu = MultiSelect(options=names,value= ['A','B'], title='Sensor Data')
menu.on_change('value', callback_menu)
layout = gridplot([[widgetbox(menu),plot]])
curdoc().add_root(layout)
Exemplo n.º 38
0
                                    q1_GDD=[], q3_GDD=[],
                                    time=[], timer=[], timel=[], 
                                    date_str=[]))

# Create Input controls
current_year = datetime.today().year
min_year = Slider(title="Year Start", start=1900, end=current_year, value=1900, step=1)
max_year = Slider(title="Year End", start=1900, end=current_year, value=current_year, step=1)
station_IDs_str = TextInput(title="Station ID", value='6551')
base_temp = Slider(title="Base Temperature (C)", start=0, end=25, value=10, step=1)

# Create Figure and Plot
hover = HoverTool(tooltips=[
    ("Date","@date_str")])
p = Figure(x_axis_type="datetime", plot_width=800, tools=[hover])
p.quad(top='max_GDD', bottom='min_GDD', left='timel', right='timer', source=source, alpha=0.5, color='mediumslateblue', line_color="black", line_alpha=0.5, legend='Min/Max')
p.quad(top='q3_GDD', bottom='q1_GDD', left='timel', right='timer', source=source, alpha=0.5, color='black', line_color="black", line_alpha=0.5, legend='25-75 Percentile')
p.line(x='time', y='mean_GDD', source = source, color='red', line_width = 2, alpha=0.8, legend='Average' )
p.x_range = DataRange1d(range_padding=0, bounds=None)
p.yaxis.axis_label = "GDD"
p.xaxis.axis_label = 'Month'
# p.xaxis[0].formatter = DatetimeTickFormatter(formats=dict(days=["%B %d"], months=["%B"], years=["%Y"]))


# Select Data based on input info             
def select_data():
    # p.title = p.title + str(' (Wait..)')
    global station_IDs
    # Make Stations ID's as a list
    station_IDs=[]
    [station_IDs.append(int(n)) for n in station_IDs_str.value.split()]
Exemplo n.º 39
0
src = ColumnDataSource(data=dict(arr_hist=arr_hist, left=left, right=right))

p = Figure(plot_height=400,
           plot_width=500,
           x_range=(xMin, xMax),
           x_axis_label='parameter',
           y_axis_label='probability',
           tools="xpan, xwheel_zoom",
           active_scroll='xwheel_zoom',
           active_drag="xpan")

p.quad(source=src,
       bottom=0,
       top='arr_hist',
       left='left',
       right='right',
       fill_color='cornflowerblue',
       line_color='black')

p.yaxis.major_tick_line_color = None  # turn off y-axis major ticks
p.yaxis.minor_tick_line_color = None  # turn off y-axis minor ticks
p.yaxis.major_label_text_font_size = '0pt'  # preferred method for removing tick labels

#defines the callback to be used:
callback_plot = CustomJS(args=dict(src=src,
                                   p=p,
                                   axis=p.xaxis[0],
                                   x_range=p.x_range),
                         code="""
Exemplo n.º 40
0
Use
    bokeh serve historic_histogram_interactive.py

to run the plot.
'''

# Read in the FSAEM data
compdata = pd.read_excel('FSAEM_summarized_results.xlsx')
source = ColumnDataSource(data=dict())

# Initialize the plot
plot = Figure(plot_width=800, plot_height=500, toolbar_location='right',
              tools="pan,wheel_zoom,box_zoom,reset,resize")

freq_bars = plot.quad(top='hist', bottom=0, left='left_edge', right='right_edge',
                      source=source, fill_color='OliveDrab', line_color='#000000')

plot.xaxis.axis_label = "Weight [kg]"
plot.xaxis.axis_line_color = None
plot.xaxis.minor_tick_line_color = None

plot.yaxis.axis_label = "Frequency"
plot.yaxis.axis_line_color = None
plot.yaxis.major_tick_line_color = None
plot.yaxis.minor_tick_line_color = None

plot.xgrid.grid_line_color = None
plot.ygrid.grid_line_color = None

plot.outline_line_color = None
Exemplo n.º 41
0
    str(int(np.sum(yields['complete2'][:]))),
    str(int(np.sum(yields['complete3'][:]))),
    str(int(np.sum(yields['complete4'][:]))),
    str(int(np.sum(yields['complete5'][:]))),
    str(int(np.sum(yields['complete6'][:]))),
    str(int(np.sum(yields['complete7'][:]))),
    str(int(np.sum(yields['complete8'][:]))),
    str(int(np.sum(yields['complete9'][:]))),
    str(int(np.sum(yields['complete10'][:]))),
    str(int(np.sum(yields['complete11'][:]))),
    str(int(np.sum(yields['complete12'][:]))),
    str(int(np.sum(yields['complete13'][:]))),
    str(int(np.sum(yields['complete14'][:])))
]

hist_plot.quad(top='yields', bottom=0., left='left', right='right', source=total_yield_label, \
                color='color', fill_alpha=0.9, line_alpha=1., name='total_yield_label_hover')

hist_plot.text('xlabels',
               'yields',
               'labels',
               0.,
               20,
               -3,
               text_align='center',
               source=total_yield_label,
               text_color='black')

yield_hover = HoverTool(names=["total_yield_label_hover"],
                        mode='mouse',
                        tooltips=""" 
            <div>