Exemplo n.º 1
0
def coerce(x, shape=None):
    from .deterministic_tensor import DeterministicTensor
    if isinstance(x, float) or isinstance(x, int):
        return DeterministicTensor(T.constant(x))
    if isinstance(x, np.ndarray):
        return DeterministicTensor(T.constant(x))
    if isinstance(x, T.core.Tensor):
        return DeterministicTensor(x)
Exemplo n.º 2
0
Arquivo: vmp.py Projeto: sharadmv/nvmp
def vmp(graph, data, max_iter=100, tol=1e-4):
    q, visible = {}, {}
    for node in top_sort(graph)[::-1]:
        if node in data:
            visible[node] = T.to_float(data[node])
        else:
            q[node] = initialize_node(node, {})

    ordering = list(q.keys())
    params = [q[var].get_parameters('natural') for var in ordering]
    prev_elbo = T.constant(float('inf'))

    def cond(i, elbo, prev_elbo, q):
        return T.logical_and(i < max_iter, abs(elbo - prev_elbo) > tol)

    def step(i, elbo, prev_elbo, q):
        prev_elbo = elbo
        q_vars = {
            var: var.__class__(param, 'natural')
            for var, param in zip(ordering, q)
        }
        q, elbo = message_passing(q_vars, visible)
        return i + 1, elbo, prev_elbo, [
            q[var].get_parameters('natural') for var in ordering
        ]

    i, elbo, prev_elbo, q = T.while_loop(cond, step,
                                         [0, float('inf'), 0.0, params])
    return {
        var: var.__class__(param, 'natural')
        for var, param in zip(ordering, q)
    }, elbo
Exemplo n.º 3
0
def generate_data(N, D, K, sigma0=10, sigma=10, seed=None):
    np.random.seed(seed)
    pi = np.random.dirichlet([100] * K)
    X = np.zeros((N, D))
    mu, sigma = np.random.multivariate_normal(mean=np.zeros(D),
                                              cov=np.eye(D) * sigma0,
                                              size=[K]), np.tile(
                                                  np.eye(D)[None] * sigma,
                                                  [K, 1, 1])
    Z = np.zeros(N)
    for i in range(N):
        z = Z[i] = np.random.choice(K, p=pi)
        X[i] = np.random.multivariate_normal(mean=mu[z], cov=sigma[z])
    return X.astype(np.float32), (mu, sigma, Z)
    return sess.run(obs_net(T.constant(X.astype(
        np.float32))).sample()[:, 0]), (mu, sigma, Z)
Exemplo n.º 4
0
    def posterior_dynamics(self,
                           q_X,
                           q_A,
                           data_strength=1.0,
                           max_iter=200,
                           tol=1e-3):
        if self.smooth:
            if self.time_varying:
                prior_dyn = stats.MNIW(
                    self.A_variational.get_parameters('natural'), 'natural')
            else:
                natparam = self.A_variational.get_parameters('natural')
                prior_dyn = stats.MNIW([
                    T.tile(natparam[0][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[1][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[2][None], [self.horizon - 1, 1, 1]),
                    T.tile(natparam[3][None], [self.horizon - 1]),
                ], 'natural')
            state_prior = stats.Gaussian([T.eye(self.ds), T.zeros(self.ds)])
            aaT, a = stats.Gaussian.unpack(
                q_A.expected_sufficient_statistics())
            aaT, a = aaT[:, :-1], a[:, :-1]
            ds, da = self.ds, self.da

            initial_dyn_natparam = prior_dyn.get_parameters('natural')
            initial_X_natparam = stats.LDS(
                (self.sufficient_statistics(), state_prior, q_X,
                 q_A.expected_value(), self.horizon),
                'internal').get_parameters('natural')

            def em(i, q_dyn_natparam, q_X_natparam, _, curr_elbo):
                q_X_ = stats.LDS(q_X_natparam, 'natural')
                ess = q_X_.expected_sufficient_statistics()
                batch_size = T.shape(ess)[0]
                yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds]
                xxT = ess[..., :-1, :ds, :ds]
                yxT = ess[..., :-1, ds:2 * ds, :ds]
                x = ess[..., :-1, -1, :ds]
                y = ess[..., :-1, -1, ds:2 * ds]
                xaT = T.outer(x, a)
                yaT = T.outer(y, a)
                xaxaT = T.concatenate([
                    T.concatenate([xxT, xaT], -1),
                    T.concatenate([T.matrix_transpose(xaT), aaT], -1),
                ], -2)
                ess = [
                    yyT,
                    T.concatenate([yxT, yaT], -1), xaxaT,
                    T.ones([batch_size, self.horizon - 1])
                ]
                q_dyn_natparam = [
                    T.sum(a, [0]) * data_strength + b
                    for a, b in zip(ess, initial_dyn_natparam)
                ]
                q_dyn_ = stats.MNIW(q_dyn_natparam, 'natural')
                q_stats = q_dyn_.expected_sufficient_statistics()
                p_X = stats.LDS((q_stats, state_prior, None,
                                 q_A.expected_value(), self.horizon))
                q_X_ = stats.LDS((q_stats, state_prior, q_X,
                                  q_A.expected_value(), self.horizon))
                elbo = (T.sum(stats.kl_divergence(q_X_, p_X)) +
                        T.sum(stats.kl_divergence(q_dyn_, prior_dyn)))
                return i + 1, q_dyn_.get_parameters(
                    'natural'), q_X_.get_parameters('natural'), curr_elbo, elbo

            def cond(i, _, __, prev_elbo, curr_elbo):
                with T.core.control_dependencies([T.core.print(curr_elbo)]):
                    prev_elbo = T.core.identity(prev_elbo)
                return T.logical_and(
                    T.abs(curr_elbo - prev_elbo) > tol, i < max_iter)

            result = T.while_loop(
                cond,
                em, [
                    0, initial_dyn_natparam, initial_X_natparam,
                    T.constant(-np.inf),
                    T.constant(0.)
                ],
                back_prop=False)
            pd = stats.MNIW(result[1], 'natural')
            sigma, mu = pd.expected_value()
            q_X = stats.LDS(result[2], 'natural')
            return ((mu, sigma), pd.expected_sufficient_statistics()), (q_X,
                                                                        q_A)
        else:
            q_Xt = q_X.__class__([
                q_X.get_parameters('regular')[0][:, :-1],
                q_X.get_parameters('regular')[1][:, :-1],
            ])
            q_At = q_A.__class__([
                q_A.get_parameters('regular')[0][:, :-1],
                q_A.get_parameters('regular')[1][:, :-1],
            ])
            q_Xt1 = q_X.__class__([
                q_X.get_parameters('regular')[0][:, 1:],
                q_X.get_parameters('regular')[1][:, 1:],
            ])
            (XtAt_XtAtT, XtAt), (Xt1_Xt1T,
                                 Xt1) = self.get_statistics(q_Xt, q_At, q_Xt1)
            batch_size = T.shape(XtAt)[0]
            ess = [
                Xt1_Xt1T,
                T.einsum('nha,nhb->nhba', XtAt, Xt1), XtAt_XtAtT,
                T.ones([batch_size, self.horizon - 1])
            ]
            if self.time_varying:
                posterior = stats.MNIW([
                    T.sum(a, [0]) * data_strength + b for a, b in zip(
                        ess, self.A_variational.get_parameters('natural'))
                ], 'natural')
            else:
                posterior = stats.MNIW([
                    T.sum(a, [0]) * data_strength + b[None] for a, b in zip(
                        ess, self.A_variational.get_parameters('natural'))
                ], 'natural')
            Q, A = posterior.expected_value()
            return (A, Q), q_X
Exemplo n.º 5
0
    ellipse = 2. * np.dot(np.linalg.cholesky(cov), circle) + mean[:, None]
    if line:
        line.set_data(ellipse)
        line.set_alpha(alpha)
    else:
        ax.plot(ellipse[0], ellipse[1], linestyle='-', linewidth=2)


N = 1000
K = 5
D = 2

sigma = 0.5
sigma0 = 100
data = generate_data(N, D, K, sigma=sigma, sigma0=sigma0, seed=None)
p_pi = Dirichlet(T.constant(10.0 * np.ones([K], dtype=T.floatx())))
p_theta = NIW(
    list(
        map(lambda x: T.constant(np.array(x).astype(T.floatx())),
            [np.eye(D) * sigma, np.zeros(D), 1, D + 1])))
prior = (p_pi, p_theta)

np.random.seed(None)

X = T.placeholder(T.floatx(), [None, D])
batch_size = T.shape(X)[0]

q_pi = make_variable(Dirichlet(np.ones([K], dtype=T.floatx())))
q_theta = make_variable(
    NIW(
        map(lambda x: np.array(x).astype(T.floatx()), [
Exemplo n.º 6
0
    else:
        ax.plot(ellipse[0],
                ellipse[1],
                linestyle='-',
                linewidth=2,
                alpha=alpha)


N = 1000
K = 1
D = 2

sigma = 0.5
sigma0 = 100
data = generate_data(N, D, K, sigma=sigma, sigma0=sigma0, seed=None)
p_pi = Dirichlet(T.constant(10.0 * np.ones([K], dtype=T.floatx())))
p_theta = NIW(
    list(
        map(lambda x: T.constant(np.array(x).astype(T.floatx())),
            [np.eye(D) * sigma, np.zeros(D), 1, D + 1])))
prior = (p_pi, p_theta)

np.random.seed(None)

X = T.placeholder(T.floatx(), [None, D])
batch_size = T.shape(X)[0]

with T.initialization('xavier'):
    net = Relu(5) >> Relu(5) >> GaussianStats(D)

encoded_data = Gaussian.unpack(net(T.constant(data)))[1]
Exemplo n.º 7
0
sns.set_style('white')
import numpy as np
from tqdm import trange

from sklearn.linear_model import LogisticRegression
from deepx import T
from deepx.nn import *
from deepx.stats import Gaussian, Dirichlet, NIW, Categorical, kl_divergence, Bernoulli
from activations import Gaussian as GaussianLayer
from activations import GaussianStats

N = 1000
D = 10

p_w = Gaussian([
    T.constant(np.eye(D).astype(T.floatx()))[None],
    T.constant(np.zeros(D).astype(T.floatx()))[None]
])


def logistic(x):
    return 1 / (1 + np.exp(-x))


# def generate_data(N, D):
# with T.session() as s:
# w = np.random.multivariate_normal(mean=np.zeros(D), cov=np.eye(D))


# X = np.random.normal(size=(N, D))
# p = logistic(np.einsum('ia,a->i', X, w))
Exemplo n.º 8
0
from deepx import stats, T

N, H, ds, da = 1, 2, 4, 2

# random rotation for state-state transition
A = np.zeros([H - 1, ds, ds])
for t in range(H - 1):
    theta = 0.5 * np.pi * np.random.rand()
    rot = np.array([[np.cos(theta), -np.sin(theta)],
                    [np.sin(theta), np.cos(theta)]])
    out = np.zeros((ds, ds))
    out[:2, :2] = rot
    q = np.linalg.qr(np.random.randn(ds, ds))[0]
    A[t] = q.dot(out).dot(q.T)
A = T.constant(A, dtype=T.floatx())

B = T.constant(0.1 * np.random.randn(H - 1, ds, da), dtype=T.floatx())
Q = T.matrix_diag(
    np.random.uniform(low=0.9, high=1.1, size=[H - 1, ds]).astype(np.float32))

prior = stats.Gaussian([T.eye(ds), T.zeros(ds)])
p_S = stats.Gaussian([
    T.eye(ds, batch_shape=[N, H]),
    T.constant(np.random.randn(N, H, ds), dtype=T.floatx())
])
potentials = stats.Gaussian.unpack(
    p_S.get_parameters('natural')) + [p_S.log_z()]
actions = T.constant(np.random.randn(N, H, da), dtype=T.floatx())

lds = stats.LDS(((A, B, Q), prior, potentials, actions))