def _statistic(self, stat): if stat == Stats.X: return Stats.X(self.left) + Stats.X(self.right) elif stat == Stats.XXT: return (Stats.XXT(self.left) + Stats.XXT(self.right) + T.outer(Stats.X(self.left), Stats.X(self.right)) + T.outer(Stats.X(self.right), Stats.X(self.left)))
def em(i, q_dyn_natparam, q_X_natparam, _, curr_elbo): q_X_ = stats.LDS(q_X_natparam, 'natural') ess = q_X_.expected_sufficient_statistics() batch_size = T.shape(ess)[0] yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds] xxT = ess[..., :-1, :ds, :ds] yxT = ess[..., :-1, ds:2 * ds, :ds] x = ess[..., :-1, -1, :ds] y = ess[..., :-1, -1, ds:2 * ds] xaT = T.outer(x, a) yaT = T.outer(y, a) xaxaT = T.concatenate([ T.concatenate([xxT, xaT], -1), T.concatenate([T.matrix_transpose(xaT), aaT], -1), ], -2) ess = [ yyT, T.concatenate([yxT, yaT], -1), xaxaT, T.ones([batch_size, self.horizon - 1]) ] q_dyn_natparam = [ T.sum(a, [0]) * data_strength + b for a, b in zip(ess, initial_dyn_natparam) ] q_dyn_ = stats.MNIW(q_dyn_natparam, 'natural') q_stats = q_dyn_.expected_sufficient_statistics() p_X = stats.LDS((q_stats, state_prior, None, q_A.expected_value(), self.horizon)) q_X_ = stats.LDS((q_stats, state_prior, q_X, q_A.expected_value(), self.horizon)) elbo = (T.sum(stats.kl_divergence(q_X_, p_X)) + T.sum(stats.kl_divergence(q_dyn_, prior_dyn))) return i + 1, q_dyn_.get_parameters( 'natural'), q_X_.get_parameters('natural'), curr_elbo, elbo
def get_statistics(self, q_Xt, q_At, q_Xt1): Xt1_Xt1T, Xt1 = stats.Gaussian.unpack(q_Xt1.expected_sufficient_statistics()) Xt_XtT, Xt = stats.Gaussian.unpack(q_Xt.expected_sufficient_statistics()) At_AtT, At = stats.Gaussian.unpack(q_At.expected_sufficient_statistics()) XtAt = T.concatenate([Xt, At], -1) XtAt_XtAtT = T.concatenate([ T.concatenate([Xt_XtT, T.outer(Xt, At)], -1), T.concatenate([T.outer(At, Xt), At_AtT], -1), ], -2) return (XtAt_XtAtT, XtAt), (Xt1_Xt1T, Xt1)
def get_stat(x, name, feed_dict={}): node = get_current_graph().get_node(x) print(x, name) if node is not None: return node.get_stat(name, feed_dict=feed_dict) if name == 'x': return x elif name == 'xxT': return T.outer(x, x) elif name == '-0.5S^-1': return -0.5 * T.matrix_inverse(x) elif name == '-0.5log|S|': return -0.5 * T.logdet(x) raise Exception()
def kl_gradients(self, q_X, q_A, _, num_data): if self.smooth: ds = self.ds ess = q_X.expected_sufficient_statistics() yyT = ess[..., :-1, ds:2 * ds, ds:2 * ds] xxT = ess[..., :-1, :ds, :ds] yxT = ess[..., :-1, ds:2 * ds, :ds] aaT, a = stats.Gaussian.unpack( q_A.expected_sufficient_statistics()) aaT, a = aaT[:, :-1], a[:, :-1] x = ess[..., :-1, -1, :ds] y = ess[..., :-1, -1, ds:2 * ds] xaT = T.outer(x, a) yaT = T.outer(y, a) xaxaT = T.concatenate([ T.concatenate([xxT, xaT], -1), T.concatenate([T.matrix_transpose(xaT), aaT], -1), ], -2) batch_size = T.shape(ess)[0] num_batches = T.to_float(num_data) / T.to_float(batch_size) ess = [ yyT, T.concatenate([yxT, yaT], -1), xaxaT, T.ones([batch_size, self.horizon - 1]) ] else: q_Xt = q_X.__class__([ q_X.get_parameters('regular')[0][:, :-1], q_X.get_parameters('regular')[1][:, :-1], ]) q_At = q_A.__class__([ q_A.get_parameters('regular')[0][:, :-1], q_A.get_parameters('regular')[1][:, :-1], ]) q_Xt1 = q_X.__class__([ q_X.get_parameters('regular')[0][:, 1:], q_X.get_parameters('regular')[1][:, 1:], ]) (XtAt_XtAtT, XtAt), (Xt1_Xt1T, Xt1) = self.get_statistics(q_Xt, q_At, q_Xt1) batch_size = T.shape(XtAt)[0] num_batches = T.to_float(num_data) / T.to_float(batch_size) ess = [ Xt1_Xt1T, T.einsum('nha,nhb->nhba', XtAt, Xt1), XtAt_XtAtT, T.ones([batch_size, self.horizon - 1]) ] if self.time_varying: ess = [ T.sum(ess[0], [0]), T.sum(ess[1], [0]), T.sum(ess[2], [0]), T.sum(ess[3], [0]), ] else: ess = [ T.sum(ess[0], [0, 1]), T.sum(ess[1], [0, 1]), T.sum(ess[2], [0, 1]), T.sum(ess[3], [0, 1]), ] return [ -(a + num_batches * b - c) / T.to_float(num_data) for a, b, c in zip( self.A_prior.get_parameters('natural'), ess, self.A_variational.get_parameters('natural'), ) ]
map(lambda x: np.array(x).astype(T.floatx()), [ np.tile(np.eye(D)[None] * 100, [K, 1, 1]), np.random.multivariate_normal( mean=np.zeros([D]), cov=np.eye(D) * 20, size=[K]), np.ones(K), np.ones(K) * (D + 1) ]))) sigma, mu = Gaussian(q_theta.expected_sufficient_statistics(), parameter_type='natural').get_parameters('regular') alpha = Categorical(q_pi.expected_sufficient_statistics(), parameter_type='natural').get_parameters('regular') pi_cmessage = q_pi.expected_sufficient_statistics() x_tmessage = NIW.pack([ T.outer(X, X), X, T.ones([batch_size]), T.ones([batch_size]), ]) x_stats = Gaussian.pack([ T.outer(X, X), X, ]) theta_cmessage = q_theta.expected_sufficient_statistics() num_batches = N / T.to_float(batch_size) nat_scale = 10.0 parent_z = q_pi.expected_sufficient_statistics()[None] new_z = T.einsum('iab,jab->ij', x_tmessage, theta_cmessage) + parent_z
def activate(self, X): shape = T.shape(X) return stats.NIW.pack( [T.outer(X, X), X, T.ones(shape[:-1]), T.ones(shape[:-1])])
def compute(self, x): return T.outer(x, x)