def __init__(self, sensor_models, calibration_model, lr=1e-4, batch_size=20, log_dir=None, **kwargs): self.graph = T.core.Graph() self.log_dir = log_dir with self.graph.as_default(): self.calibration_model = calibration_model self.board_ids = list(sensor_models.keys()) self.board_map = {b: i for i, b in enumerate(self.board_ids)} self.sensor_map = sensor_models self.sensor_models = [ sensor_models[board_id] for board_id in self.board_ids ] self.architecture = pickle.dumps( [sensor_models, calibration_model]) self.batch_size = batch_size self.lr = lr self.learning_rate = T.placeholder(T.floatx(), []) self.sensors = T.placeholder(T.floatx(), [None, 3]) self.env = T.placeholder(T.floatx(), [None, 3]) self.board = T.placeholder(T.core.int32, [None]) self.boards = T.transpose( T.pack([self.board, T.range(T.shape(self.board)[0])])) self.rep = T.gather_nd( T.pack([ sensor_model(self.sensors) for sensor_model in self.sensor_models ]), self.boards) self.rep_ = T.placeholder(T.floatx(), [None, self.rep.get_shape()[-1]]) rep_env = T.concat([self.rep, self.env], -1) rep_env_ = T.concat([self.rep_, self.env], -1) self.y_ = self.calibration_model(rep_env) self.y_rep = self.calibration_model(rep_env_) self.y = T.placeholder(T.floatx(), [None, 2]) self.loss = T.mean((self.y - self.y_)**2) self.mae = T.mean(T.abs(self.y - self.y_)) T.core.summary.scalar('MSE', self.loss) T.core.summary.scalar('MAE', self.mae) self.summary = T.core.summary.merge_all() self.train_op = T.core.train.AdamOptimizer( self.learning_rate).minimize(self.loss) self.session = T.interactive_session(graph=self.graph)
def sample(self, num_samples=None): if num_samples is None: return self.value return T.pack([self.value for _ in range(num_samples)])
def _statistic(self, stat): return T.pack([stat(self.tensor) for _ in range(self.num)])