Exemplo n.º 1
0
def calculate_angles(Input_Cords):
    # Constants
    scalling_const = np.sqrt(.3)
    f = 195 * scalling_const
    t = 375 * scalling_const

    f = f * (10 ^ -3)
    t = t * (10 ^ -3)

    angle_list = []
    for coord in Input_Cords:
        X = (coord[0]) * (10 ^ -3)
        Y = (-coord[1]) * (10 ^ -3)
        H = np.sqrt(math.power(X, 2) + math.power(Y, 2))
        alpha = math.acos(
            (math.power(t, 2) - math.power(f, 2) - math.power(H, 2)) /
            (2 * f * H))
        beta = math.atan(Y / X)
        T_1 = alpha - beta + np.pi
        T_2 = math.acos(
            (math.power(H, 2) - math.power(f, 2) - math.power(t, 2)) /
            (2 * f * t)) + np.pi
        angles = [T_1, T_2]
        angle_list.append(angles)
    return angle_list
Exemplo n.º 2
0
def calAngles(target, segments):
    x = target.x
    y = target.y
    z = target.z
    s1 = segments[0]
    s2 = segments[1]
    s3 = segments[2]
    theta0 = atan(y / x)
    theta1 = acos((s1**2 - z**2 + (s1 - z)**2)/(2*s1*sqrt(x**2 + y**2 + (s1 - z)**2))) \
            + acos((s2**2 - s3**2 + x**2 + y**2 + (s1 - z)**2)/(2*s2*sqrt(x**2 + y**2 + (s1 - z)**2)))
    theta2 = acos((s2**2 + s3**2 - x**2 - y**2 - (s1 - z)**2) / (2 * s2 * s3))
    return [theta0, theta1, theta2]
Exemplo n.º 3
0
def get_ang(pos_1, pos_2, pos_3):

    mmp.mp.dps = 30
    x1, y1, z1 = get_each(pos_1)
    x2, y2, z2 = get_each(pos_2)
    x3, y3, z3 = get_each(pos_3)
    cosb = (x1 * x2 + y1 * y2 + z1 * z2)/(mmp.sqrt(x1**2 + y1**2 + z1**2) * mmp.sqrt(x2**2 + y2**2 + z2**2))
    cosc = (x1 * x3 + y1 * y3 + z1 * z3)/(mmp.sqrt(x1**2 + y1**2 + z1**2) * mmp.sqrt(x3**2 + y3**2 + z3**2))
    cosa = (x3 * x2 + y3 * y2 + z3 * z2)/(mmp.sqrt(x3**2 + y3**2 + z3**2) * mmp.sqrt(x2**2 + y2**2 + z2**2))

    sinb = mmp.sin(mmp.acos(cosb))
    sinc = mmp.sin(mmp.acos(cosc))

    cosA = (cosa - cosb * cosc) /(sinb * sinc)

    return mmp.acos(cosA)
Exemplo n.º 4
0
 def Pinv(self, P):
     from mpmath import ellipf, sqrt, asin, acos, mpc, mpf
     Delta = self.Delta
     e1, e2, e3 = self.__roots
     if self.__ng3:
         P = -P
     if Delta > 0:
         m = (e2 - e3) / (e1 - e3)
         retval = (1 / sqrt(e1 - e3)) * ellipf(
             asin(sqrt((e1 - e3) / (P - e3))), m=m)
     elif Delta < 0:
         H2 = (sqrt((e2 - e3) * (e2 - e1))).real
         assert (H2 > 0)
         m = mpf(1) / mpf(2) - 3 * e2 / (4 * H2)
         retval = 1 / (2 * sqrt(H2)) * ellipf(acos(
             (e2 - P + H2) / (e2 - P - H2)),
                                              m=m)
     else:
         g2, g3 = self.__invariants
         if g2 == 0 and g3 == 0:
             retval = 1 / sqrt(P)
         else:
             c = e1 / 2
             retval = (1 / sqrt(3 * c)) * asin(sqrt((3 * c) / (P + c)))
     if self.__ng3:
         retval /= mpc(0, 1)
     alpha, beta, _, _ = self.reduce_to_fpp(retval)
     T1, T2 = self.periods
     return T1 * alpha + T2 * beta
Exemplo n.º 5
0
def ellipse(r, a, incl):
    """Equation of an ellipse, reusing the definition of cos_gamma.
    This equation can be used for calculations in the Newtonian limit (large P = b, small a)
    or to visualize the equatorial plane."""
    g = mpmath.acos(cos_gamma(a, incl))
    b_ = r * mpmath.sin(g)
    return b_
	def Pinv(self,P):
		from mpmath import ellipf, sqrt, asin, acos, mpc, mpf
		Delta = self.Delta
		e1, e2, e3 = self.__roots
		if self.__ng3:
			P = -P
		if Delta > 0:
			m = (e2 - e3) / (e1 - e3)
			retval = (1 / sqrt(e1 - e3)) * ellipf(asin(sqrt((e1 - e3)/(P - e3))),m=m)
		elif Delta < 0:
			H2 = (sqrt((e2 - e3) * (e2 - e1))).real
			assert(H2 > 0)
			m = mpf(1) / mpf(2) - 3 * e2 / (4 * H2)
			retval = 1 / (2 * sqrt(H2)) * ellipf(acos((e2-P+H2)/(e2-P-H2)),m=m)
		else:
			g2, g3 = self.__invariants
			if g2 == 0 and g3 == 0:
				retval = 1 / sqrt(P)
			else:
				c = e1 / 2
				retval = (1 / sqrt(3 * c)) * asin(sqrt((3 * c)/(P + c)))
		if self.__ng3:
			retval /= mpc(0,1)
		alpha, beta, _, _ = self.reduce_to_fpp(retval)
		T1, T2 = self.periods
		return T1 * alpha + T2 * beta
Exemplo n.º 7
0
def error(coefs, progress=True):
    (a, b, c) = coefs
    xs = (x / mp.mpf(4096) for x in range(-4096, 4097))
    err = max(fabs(acos(x) - f(x, a, b, c)) for x in xs)
    if progress:
        print('(a, b, c, d): ({}, {}, {}, {})'.format(a, b, c, d(a, b, c)))
        print('evaluated error: ', err)
        print()
    return float(err)
Exemplo n.º 8
0
def get_offset_five(positions_old, positions, ligand_length):
    vec_a = (positions[ligand_length+(len(positions)-len(positions_old))+1]-positions[ligand_length+(len(positions)-len(positions_old))])
    vec_b = (positions_old[ligand_length+1]-positions_old[ligand_length])
    alpha = math.acos(sum([alem.value_in_unit(unit.angstroms)*blem.value_in_unit(unit.angstroms) for alem, blem in zip(vec_a,vec_b)])/(np.linalg.norm(vec_a.value_in_unit(unit.angstroms))*np.linalg.norm(vec_b.value_in_unit(unit.angstroms))))
    alpha_t = 0.
    #alpha_t = math.pi-113.3*math.pi/360.
    d_alpha = alpha_t-alpha
    axis = cross(vec_a.value_in_unit(unit.angstroms),vec_b.value_in_unit(unit.angstroms))/np.linalg.norm(cross(vec_a.value_in_unit(unit.angstroms),vec_b.value_in_unit(unit.angstroms)))
    offset = positions_old[-1]-positions[len(positions_old)-1]
    return d_alpha, axis, offset, vec_a, vec_b
Exemplo n.º 9
0
def polar_cubic(a, q, r):
    '''
    The polar coordinate solution of the cubic function; for use when
    Q^3+R^2 < 0

    This version formulated to work with mpmath for arbitrary floating point
    precision and numpy arrays.
    '''
    theta = mpmath.acos(r / numpy.power(mpf('-1') * numpy.power(q, mpf('3')), mpf('0.5')))
    return mpmath.cos(theta / mpf('3')) * numpy.power(mpf('-1') * q, mpf('0.5')) * mpf('2') - a / mpf('3')
    def equiv_cos(x, range1, range2, radians=None, degrees=None, accuracy=2):
        mpmath.mp.dps = accuracy + 1
        range1, range2 = TrigEquivAngle.deg_or_rad([range1, range2], degrees)
        firstCosAngle = mpmath.acos(x)
        secondCosAngle = 2 * mpmath.pi - firstCosAngle

        angles = TrigEquivAngle.create_equiv_angle_list(
            [firstCosAngle, secondCosAngle], range1, range2, 2 * mpmath.pi)
        return (TrigEquivAngle.clean_angles_rad_deg(angles, radians, degrees,
                                                    accuracy))
Exemplo n.º 11
0
def polar_cubic(a, q, r):
    '''
    The polar coordinate solution of the cubic function; for use when
    Q^3+R^2 < 0

    This version formulated to work with mpmath for arbitrary floating point
    precision and numpy arrays.
    '''
    theta = mpmath.acos(r / numpy.power(mpf('-1') * numpy.power(q, mpf('3')), mpf('0.5')))
    return mpmath.cos(theta / mpf('3')) * numpy.power(mpf('-1') * q, mpf('0.5')) * mpf('2') - a / mpf('3')
		def obliquity(t):
			from mpmath import acos, cos, sqrt
			H = self.__H_time(t)
			hs = self.__hs_time(t)
			G = d_eval['G']
			Gt = d_eval['\\tilde{G}']
			Hts = d_eval['\\tilde{H}_\\ast']
			Gxy = sqrt(G**2-H**2)
			Gtxys = sqrt(Gt**2-(Hts-H)**2)
			retval = (Gxy*Gtxys*cos(hs)+H*(Hts-H))/(G*Gt)
			return acos(retval)
Exemplo n.º 13
0
def q_eit_standing_wave(Delta, Deltac, Omega, g1d, periodLength, phaseShift):
    if Delta == Deltac:
        return 0
    gprime = 1 - g1d
    kd = pi / periodLength
    Mcell = eye(2)
    for i in range(periodLength):
        OmegaAtThisSite = Omega * cos(kd * i + pi * phaseShift)
        beta3 = (g1d * (Delta - Deltac)) / (
            (-2.0j * Delta + gprime) *
            (Delta - Deltac) + 2.0j * OmegaAtThisSite**2)
        M3 = matrix([[1 - beta3, -beta3], [beta3, 1 + beta3]])
        Mf = matrix([[exp(1j * kd), 0], [0, exp(-1j * kd)]])
        Mcell = Mf * M3 * Mcell
    ret = (1.0 / periodLength) * acos(-0.5 * (Mcell[0, 0] + Mcell[1, 1]))
    return ret
Exemplo n.º 14
0
def getCircleIntersectionTerm( radius1, radius2, separation ):
    distance = fdiv( fadd( fsub( power( separation, 2 ), power( radius1, 2 ) ),
                           power( radius2, 2 ) ),
                     fmul( 2, separation ) )

    #print( 'radius1', radius1 )
    #print( 'radius2', radius2 )
    #print( 'distance', distance )
    #print( 'radius1 - distance', fsub( radius1, distance ) )
    #print( 'radius1^2 - distance^2', fsub( power( radius1, 2 ), power( distance, 2 ) ) )
    #print( )

    if power( distance, 2 ) > power( radius1, 2 ):
        return fmul( power( radius1, 2 ), fdiv( pi, 2 ) )

    return fsub( fmul( power( radius1, 2 ), acos( fdiv( distance, radius1 ) ) ),
                 fmul( distance, sqrt( fsub( power( radius1, 2 ), power( distance, 2 ) ) ) ) )
Exemplo n.º 15
0
def getCircleIntersectionTerm( radius1, radius2, separation ):
    distance = fdiv( fadd( fsub( power( separation, 2 ), power( radius1, 2 ) ),
                           power( radius2, 2 ) ),
                     fmul( 2, separation ) )

    #print( 'radius1', radius1 )
    #print( 'radius2', radius2 )
    #print( 'distance', distance )
    #print( 'radius1 - distance', fsub( radius1, distance ) )
    #print( 'radius1^2 - distance^2', fsub( power( radius1, 2 ), power( distance, 2 ) ) )
    #print( )

    if power( distance, 2 ) > power( radius1, 2 ):
        return fmul( power( radius1, 2 ), fdiv( pi, 2 ) )

    return fsub( fmul( power( radius1, 2 ), acos( fdiv( distance, radius1 ) ) ),
                 fmul( distance, sqrt( fsub( power( radius1, 2 ), power( distance, 2 ) ) ) ) )
Exemplo n.º 16
0
def calc_theta(mino_t, ups_theta, qz0, zp, zm, En, aa):
    """
    theta in terms of Mino time

    Parameters:
        mino_t (float): Mino time
        ups_theta (float): Mino theta frequency
        qz0 (float): inital polar phase
        zp (float): polar root
        zm (float): polar root
        En (float): energy
        aa (float): spin

    Returns:
        theta (float)
    """
    eta = ups_theta * mino_t + qz0
    return acos(calc_zq(eta, zp, zm, En, aa))
Exemplo n.º 17
0
def subspace_angle_V_M_mp(mu, lam, dps=100):
    r"""Multiprecision implementation computing the subspace angle between V(mu) and M(lam) 
	"""
    n = len(mu)
    lam = np.atleast_1d(lam)
    m = len(lam)

    with mp.workdps(dps):
        mu = mp.matrix(mu)
        lam = mp.matrix(lam)

        # Construct the Cauchy mass matrix
        #M = mp.zeros(n,n)
        #for i,j in 	product(range(n), range(n)):
        #	M[i,j] = (mu[i] + mu[j].conjugate())**(-1)
        #ewL, QL = mp.eighe(M)
        ewL, QL = cauchy_eigen(mu, dps)

        # Construct the right hand side Mhat matrix
        Mhat = mp.zeros(2 * m, 2 * m)
        for i, j in product(range(m), range(m)):
            Mhat[i, j] = (-lam[i] - lam[j].conjugate())**(-1)
            Mhat[i, m + j] = (-lam[i] - lam[j].conjugate())**(-2)
            Mhat[m + i, j] = (-lam[i] - lam[j].conjugate())**(-2).conjugate()
            Mhat[m + i, m + j] = 2 * (-lam[i] - lam[j].conjugate())**(-3)

        # Construct the interior matrix
        A = mp.zeros(n, 2 * m)
        for i, j in product(range(n), range(m)):
            A[i, j] = (mu[i] - lam[j])**(-1)
            A[i, m + j] = (mu[i] - lam[j])**(-2)

        ewR, QR = mp.eighe(Mhat)

        AA = mp.diag([1 / mp.sqrt(ewL[i])
                      for i in range(n)]) * (QL.H * A * QR) * mp.diag(
                          [1 / mp.sqrt(ewR[i]) for i in range(2 * m)])
        U, s, VH = mp.svd(AA)
        phi = np.array([float(mp.acos(si)) for si in s])
        return phi
Exemplo n.º 18
0
def fpaa_oracle(qc, q, n, clauses, oracle, index):
    theta = math.pi / clauses
    delta = pow(2, -0.5 * pow(n, 2)) / 2
    _lambda = pow(math.sin(theta), 2) / 4 + pow(1 / 2 - math.cos(theta) / 2, 2)
    L = int(math.ceil(2 * math.log(2 / delta) / math.sqrt(_lambda)))
    gamma = mpmath.cos(mpmath.acos(1 / delta) / L)

    qc.barrier()
    A_matrix(qc, q, n, clauses, oracle, theta)
    qc.barrier()

    for k in range(1, L):
        alpha = abs(2 * mpmath.acot(
            mpmath.tan(2 * math.pi *
                       (k) / L) * mpmath.sqrt(1 - 1 / pow(gamma, -2))))
        beta = -abs(2 * mpmath.acot(
            mpmath.tan(2 * math.pi *
                       (L -
                        (k - 1)) / L) * mpmath.sqrt(1 - 1 / pow(gamma, -2))))

        qc.h(q[n])
        U_matrix(qc, q, n, beta)
        qc.h(q[n])

        Adgr_matrix(qc, q, n, clauses, oracle, theta)

        U_matrix(qc, q, n, alpha)

        A_matrix(qc, q, n, clauses, oracle, theta)
        qc.barrier()
    qc.h(q[n])
    qc.barrier()

    qc.x(q[n])
    qc.x(q[n + 1])
    qc.h(q[n + 1])
    qc.cx(q[n], q[n + 1])
    qc.h(q[n + 1])
    qc.x(q[n + 1])
    qc.x(q[n])
Exemplo n.º 19
0
def eq13(_P: float,
         _r: float,
         _a: float,
         M: float,
         incl: float,
         n: int = 0,
         tol=10e-6) -> float:
    """Relation between radius (where photon was emitted in accretion disk), a and P.
    P can be converted to b, yielding the polar coordinates (b, a) on the photographic plate"""
    zinf = zeta_inf(_P, M)
    Qvar = Q(_P, M)
    m_ = k2(
        _P, M
    )  # modulus of the elliptic integrals. mpmath takes m = k² as argument.
    ellinf = F(zinf, m_)  # Elliptic integral F(zinf, k)
    g = mpmath.acos(cos_gamma(_a, incl))  # real

    # Calculate the argument of sn (mod is m = k², same as the original elliptic integral)
    # WARNING: paper has an error here: \sqrt(P / Q) should be in denominator, not numerator
    # There's no way that \gamma and \sqrt(P/Q) can end up on the same side of the division
    if n:  # higher order image
        ellK = K(m_)  # calculate complete elliptic integral of mod m = k²
        ellips_arg = (g - 2. * n * np.pi) / (
            2. * mpmath.sqrt(_P / Qvar)) - ellinf + 2. * ellK
    else:  # direct image
        ellips_arg = g / (2. * mpmath.sqrt(_P / Qvar)) + ellinf  # complex

    # sn is an Jacobi elliptic function: elliptic sine. ellipfun() takes 'sn'
    # as argument to specify "elliptic sine" and modulus m=k²
    sn = mpmath.ellipfun('sn', ellips_arg, m=m_)
    sn2 = sn * sn
    # sn2 = float(sn2.real)
    term1 = -(Qvar - _P + 2. * M) / (4. * M * _P)
    term2 = ((Qvar - _P + 6. * M) / (4. * M * _P)) * sn2

    s = 1. - _r * (term1 + term2)  # solve this for zero
    return s
	def __set_params(self,d):
		from copy import deepcopy
		from mpmath import mpf, sqrt, polyroots, cos, acos, pi, mp
		from weierstrass_elliptic import weierstrass_elliptic as we
		names = ['m2','r2','rot2','r1','rot1','i_a','ht','a','e','i','h']
		if not all([s in d for s in names]):
			raise ValueError('invalid set of parameters')
		# Convert all the values to mpf and introduce convenience shortcuts.
		m2, r2, rot2, r1, rot1, i_a, ht_in, a, e, i, h_in = [mpf(d[s]) for s in names]
		L_in = sqrt(self.__GG_val * m2 * a)
		G_in = L_in * sqrt(1. - e**2)
		H_in = G_in * cos(i)
		Gt_in = (2 * r1**2 * rot1) / 5
		Ht_in = Gt_in * cos(i_a)
		Hts_in = H_in + Ht_in
		hs_in = h_in - ht_in
		Gxy_in = sqrt(G_in**2 - H_in**2)
		Gtxys_in = sqrt(Gt_in**2 - Ht_in**2)
		J2 = (2 * m2 * r2**2 * rot2) / 5
		II_1 = mpf(5) / (2 * r1**2)
		# Evaluation dictionary.
		eval_names = ['L','G','H','\\tilde{G}','\\tilde{H}_\\ast','h_\\ast','\\tilde{G}_{xy\\ast}','m_2','\\mathcal{G}','J_2','G_{xy}',\
			'\\varepsilon','\\mathcal{I}_1']
		eval_values = [L_in,G_in,H_in,Gt_in,Hts_in,hs_in,Gtxys_in,m2,self.__GG_val,J2,Gxy_in,self.__eps_val,II_1]
		d_eval = dict(zip(eval_names,eval_values))
		# Evaluate Hamiltonian with initial conditions.
		HHp_val = self.__HHp.trim().evaluate(d_eval)
		# Add the value of the Hamiltonian to the eval dictionary.
		d_eval['\\mathcal{H}^\\prime'] = HHp_val
		# Evaluate g2 and g3.
		g2_val, g3_val = self.__g2.trim().evaluate(d_eval), self.__g3.trim().evaluate(d_eval)
		# Create the Weierstrass object.
		wp = we(g2_val,g3_val)
		# Store the period.
		self.__wp_period = wp.periods[0]
		# Now let's find the roots of the quartic polynomial.
		# NOTE: in theory here we could use the exact solution for the quartic.
		p4coeffs = [t[0] * t[1].trim().evaluate(d_eval) for t in zip([1,4,6,4,1],self.__f4_cf)]
		p4roots, err = polyroots(p4coeffs,error = True, maxsteps = 1000)
		# Find a reachable root.
		Hr, H_max, n_lobes, lobe_idx = self.__reachable_root(p4roots,H_in)
		# Determine t_r
		t_r = self.__compute_t_r(n_lobes,lobe_idx,H_in,Hr,d_eval,p4roots,p4coeffs[0])
		# Now evaluate the derivatives of the polynomial. We will need to replace H_in with Hr in the eval dict.
		d_eval['H'] = Hr
		_, f4Hp, f4Hpp, _, _ = self.__f4
		f4p_eval = f4Hp.trim().evaluate(d_eval)
		f4pp_eval = f4Hpp.trim().evaluate(d_eval)
		# Build and store the expression for H(t).
		self.__H_time = lambda t: Hr + f4p_eval / (4 * (wp.P(t - t_r) - f4pp_eval / 24))
		# H will not be needed any more, replace with H_r
		del d_eval['H']
		d_eval['H_r'] = Hr
		# Inject the invariants and the other two constants into the evaluation dictionary.
		d_eval['g_2'] = g2_val
		d_eval['g_3'] = g3_val
		d_eval['A'] = f4p_eval / 4
		d_eval['B'] = f4pp_eval / 24
		# Verify the formulae in solutions.py
		self.__verify_solutions(d_eval)
		# Assuming g = 0 as initial angle.
		self.__g_time = spin_gr_theory.__get_g_time(d_eval,t_r,0.)
		self.__hs_time = spin_gr_theory.__get_hs_time(d_eval,t_r,hs_in)
		self.__ht_time = spin_gr_theory.__get_ht_time(d_eval,t_r,ht_in)
		def obliquity(t):
			from mpmath import acos, cos, sqrt
			H = self.__H_time(t)
			hs = self.__hs_time(t)
			G = d_eval['G']
			Gt = d_eval['\\tilde{G}']
			Hts = d_eval['\\tilde{H}_\\ast']
			Gxy = sqrt(G**2-H**2)
			Gtxys = sqrt(Gt**2-(Hts-H)**2)
			retval = (Gxy*Gtxys*cos(hs)+H*(Hts-H))/(G*Gt)
			return acos(retval)
		self.__obliquity_time = obliquity
		def spin_vector(t):
			import numpy
			ht = self.__ht_time(t)
			H = self.__H_time(t)
			G = d_eval['G']
			Gt = d_eval['\\tilde{G}']
			Hts = d_eval['\\tilde{H}_\\ast']
			Gtxys = sqrt(Gt**2-(Hts-H)**2)
			return numpy.array([x.real for x in [Gtxys*sin(ht),-Gtxys*cos(ht),Hts-H]])
		self.__spin_vector_time = spin_vector
		def orbit_vector(t):
			import numpy
			ht = self.__ht_time(t)
			hs = self.__hs_time(t)
			h = hs + ht
			H = self.__H_time(t)
			G = d_eval['G']
			Gxy = sqrt(G**2-H**2)
			return numpy.array([x.real for x in [Gxy*sin(h),-Gxy*cos(h),H]])
		self.__orbit_vector_time = orbit_vector
		# Store the params of the system.
		self.__params = dict(zip(names,[mpf(d[s]) for s in names]))
		# Final report.
		rad_conv = 360 / (2 * pi())
		print("\x1b[31mAccuracy in the identification of the poly roots:\x1b[0m")
		print(err)
		print("\n\x1b[31mPeriod (years):\x1b[0m")
		print(wp.periods[0] / (3600*24*365))
		print("\n\x1b[31mMin and max orbital inclination (deg):\x1b[0m")
		print(acos(Hr/G_in) * rad_conv,acos(H_max/G_in) * rad_conv)
		print("\n\x1b[31mMin and max axial inclination (deg):\x1b[0m")
		print(acos((Hts_in - Hr)/Gt_in) * rad_conv,acos((Hts_in-H_max)/Gt_in)  * rad_conv)
		print("\n\x1b[31mNumber of lobes:\x1b[0m " + str(n_lobes))
		print("\n\x1b[31mLobe idx:\x1b[0m " + str(lobe_idx))
		# Report the known results for simplified system for comparison.
		H = H_in
		HHp,G,L,GG,eps,m2,Hts,Gt,J2 = [d_eval[s] for s in ['\\mathcal{H}^\\prime','G','L','\\mathcal{G}',\
			'\\varepsilon','m_2','\\tilde{H}_\\ast','\\tilde{G}','J_2']]
		print("\n\x1b[31mEinstein (g):\x1b[0m " + str((3 * eps * GG**4 * m2**4/(G**2*L**3))))
		print("\n\x1b[31mLense-Thirring (g):\x1b[0m " + str(((eps * ((-6*H*J2*GG**4*m2**3)/(G**4*L**3)+3*GG**4*m2**4/(G**2*L**3))))))
		print("\n\x1b[31mLense-Thirring (h):\x1b[0m " + str((2*eps*J2*GG**4*m2**3/(G**3*L**3))))
		# These are the Delta_ constants of quasi-periodicity.
		f_period = self.wp_period
		print("\n\x1b[31mDelta_g:\x1b[0m " + str(self.g_time(f_period) - self.g_time(0)))
		print("\n\x1b[31mg_rate:\x1b[0m " + str((self.g_time(f_period) - self.g_time(0))/f_period))
		Delta_hs = self.hs_time(f_period) - self.hs_time(0)
		print("\n\x1b[31mDelta_hs:\x1b[0m " + str(Delta_hs))
		print("\n\x1b[31mhs_rate:\x1b[0m " + str(Delta_hs/f_period))
		Delta_ht = self.ht_time(f_period) - self.ht_time(0)
		print("\n\x1b[31mDelta_ht:\x1b[0m " + str(Delta_ht))
		print("\n\x1b[31mht_rate:\x1b[0m " + str(Delta_ht/f_period))
		print("\n\x1b[31mDelta_h:\x1b[0m " + str(Delta_ht+Delta_hs))
		print("\n\x1b[31mh_rate:\x1b[0m " + str((Delta_ht+Delta_hs)/f_period))
		print("\n\n")
Exemplo n.º 21
0
def solveCubicPolynomial( a, b, c, d ):
    if mp.dps < 50:
        mp.dps = 50

    if a == 0:
        return solveQuadraticPolynomial( b, c, d )

    f = fdiv( fsub( fdiv( fmul( 3, c ), a ), fdiv( power( b, 2 ), power( a, 2 ) ) ), 3 )

    g = fdiv( fadd( fsub( fdiv( fmul( 2, power( b, 3 ) ), power( a, 3 ) ),
                          fdiv( fprod( [ 9, b, c ] ), power( a, 2 ) ) ),
                    fdiv( fmul( 27, d ), a ) ), 27 )
    h = fadd( fdiv( power( g, 2 ), 4 ), fdiv( power( f, 3 ), 27 ) )

    # all three roots are the same
    if h == 0:
        x1 = fneg( root( fdiv( d, a ), 3 ) )
        x2 = x1
        x3 = x2
    # two imaginary and one real root
    elif h > 0:
        r = fadd( fneg( fdiv( g, 2 ) ), sqrt( h ) )

        if r < 0:
            s = fneg( root( fneg( r ), 3 ) )
        else:
            s = root( r, 3 )

        t = fsub( fneg( fdiv( g, 2 ) ), sqrt( h ) )

        if t < 0:
            u = fneg( root( fneg( t ), 3 ) )
        else:
            u = root( t, 3 )

        x1 = fsub( fadd( s, u ), fdiv( b, fmul( 3, a ) ) )

        real = fsub( fdiv( fneg( fadd( s, u ) ), 2 ), fdiv( b, fmul( 3, a ) ) )
        imaginary = fdiv( fmul( fsub( s, u ), sqrt( 3 ) ), 2 )

        x2 = mpc( real, imaginary )
        x3 = mpc( real, fneg( imaginary ) )
    # all real roots
    else:
        j = sqrt( fsub( fdiv( power( g, 2 ), 4 ), h ) )
        k = acos( fneg( fdiv( g, fmul( 2, j ) ) ) )

        if j < 0:
            l = fneg( root( fneg( j ), 3 ) )
        else:
            l = root( j, 3 )

        m = cos( fdiv( k, 3 ) )
        n = fmul( sqrt( 3 ), sin( fdiv( k, 3 ) ) )
        p = fneg( fdiv( b, fmul( 3, a ) ) )

        x1 = fsub( fmul( fmul( 2, l ), cos( fdiv( k, 3 ) ) ), fdiv( b, fmul( 3, a ) ) )
        x2 = fadd( fmul( fneg( l ), fadd( m, n ) ), p )
        x3 = fadd( fmul( fneg( l ), fsub( m, n ) ), p )

    return [ chop( x1 ), chop( x2 ), chop( x3 ) ]
Exemplo n.º 22
0
 def eval(self, z):
     return mpmath.acos(z)
Exemplo n.º 23
0
def sarkar_embedding(tree, root, **kwargs):
    ''' 
    Embed a tree in the Poincare disc using Sarkar's algorithm 
    from "Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane.
        Args:
            tree (networkx.Graph) : The tree represented with int node labels.
                  Weighted trees should have the edge attribute "weight"
            root (int): The node to use as the root of the embedding 
        Keyword Args:
            weighted (bool): True if the tree is weighted (default True)
            tau (float): the scaling factor for distances. 
                        By default it is calculated based on statistics of the tree.
            epsilon (float): parameter >0 controlling distortion bound (default 0.1).
            precision (int): number of bits of precision to use.
                            By default it is calculated based on tau and epsilon.
        Returns:
            size N x 2 mpmath.matrix containing the coordinates of embedded nodes
    '''
    eps = kwargs.get("epsilon",0.1)
    weighted = kwargs.get("weighted", True)
    tau = kwargs.get("tau")
    max_deg = max(tree.degree)[1]

    if tau is None:
        tau = (1+eps)/eps * mpm.log(2*max_deg/ mpm.pi)
    prc = kwargs.get("precision")
    if prc is None:
        prc = _embedding_precision(tree,root,eps)
    mpm.mp.dps = prc
    
    n = tree.order()
    emb = mpm.zeros(n,2)
    place = []

    # place the children of root
    for i, v in enumerate(tree[root]):
        if weighted: 
            r = mpm.tanh( tau*tree[root][v]["weight"])
        else:
            r = mpm.tanh(tau)
        theta = 2*i*mpm.pi / tree.degree[root]
        emb[v,0] = r*mpm.cos(theta)
        emb[v,1] = r*mpm.sin(theta)
        place.append((root,v))
    
    # TODO parallelize this
    while place:
        u, v = place.pop() # u is the parent of v
        p, x = emb[u,:], emb[v,:]
        rp = poincare_reflect0(x, p, precision=prc)
        arg = mpm.acos(rp[0]/mpm.norm(rp))
        if rp[1] < 0:
            arg = 2*mpm.pi - arg
            
        theta = 2*mpm.pi / tree.degree[v]
        i=0
        for w in tree[v]:
            if w == u: continue
            i+=1
            if weighted:
                r = mpm.tanh(tau*tree[v][w]["weight"])
            else:
                r = mpm.tanh(tau)
            w_emb = r * mpm.matrix([mpm.cos(arg+theta*i),mpm.sin(arg+theta*i)]).T
            w_emb = poincare_reflect0(x, w_emb, precision=prc)
            emb[w,:] = w_emb
            place.append((v,w))
    return emb
Exemplo n.º 24
0
 def eval(self, z):
     return mpmath.acos(z)
Exemplo n.º 25
0
from units import *
from copy import copy

def sqrt(x):
  if hasattr(x,'unit'):
    return math.sqrt(x.number) | x.unit**0.5 
  return math.sqrt(x)  

#trigonometric convenience functions which are "unit aware"
sin=lambda x: math.sin(1.*x)
cos=lambda x: math.cos(1.*x)
tan=lambda x: math.tan(1.*x)
cot=lambda x: math.cot(1.*x)

asin=lambda x: math.asin(x) | rad
acos=lambda x: math.acos(x) | rad
atan=lambda x: math.atan(x) | rad
atan2=lambda x,y: math.atan2(x,y) | rad

#~ cos=math.cos
#~ sin=math.sin
#~ tan=math.tan
#~ cosh=math.cosh
#~ sinh=math.sinh
#~ tanh=math.tanh
#~ acos=math.acos
#~ asin=math.asin
#~ atan=math.atan
acosh=math.acosh
asinh=math.asinh
atanh=math.atanh
Exemplo n.º 26
0
def fermat_length(a,x):
    F = mp.ellipf(mp.acos((0.5-x) / (0.5+x)), 0.5)
    return a*(F + sqrt(2*x*(4*x**2+1))) / sqrt(18)
Exemplo n.º 27
0
def vector_angle(vec1, vec2):
    abs_vec1 = absolute(vec1)
    abs_vec2 = absolute(vec2)
    prod_12 = sum([alem*blem for alem,blem in zip(vec1, vec2)])
    return math.acos(prod_12/(abs_vec1*abs_vec2))
Exemplo n.º 28
0
def solveCubicPolynomial( a, b, c, d ):
    # pylint: disable=invalid-name
    '''
    This function applies the cubic formula to solve a polynomial
    with coefficients of a, b, c and d.
    '''
    if mp.dps < 50:
        mp.dps = 50

    if a == 0:
        return solveQuadraticPolynomial( b, c, d )

    f = fdiv( fsub( fdiv( fmul( 3, c ), a ), fdiv( power( b, 2 ), power( a, 2 ) ) ), 3 )

    g = fdiv( fadd( fsub( fdiv( fmul( 2, power( b, 3 ) ), power( a, 3 ) ),
                          fdiv( fprod( [ 9, b, c ] ), power( a, 2 ) ) ),
                    fdiv( fmul( 27, d ), a ) ), 27 )
    h = fadd( fdiv( power( g, 2 ), 4 ), fdiv( power( f, 3 ), 27 ) )

    # all three roots are the same
    if h == 0:
        x1 = fneg( root( fdiv( d, a ), 3 ) )
        x2 = x1
        x3 = x2
    # two imaginary and one real root
    elif h > 0:
        r = fadd( fneg( fdiv( g, 2 ) ), sqrt( h ) )

        if r < 0:
            s = fneg( root( fneg( r ), 3 ) )
        else:
            s = root( r, 3 )

        t = fsub( fneg( fdiv( g, 2 ) ), sqrt( h ) )

        if t < 0:
            u = fneg( root( fneg( t ), 3 ) )
        else:
            u = root( t, 3 )

        x1 = fsub( fadd( s, u ), fdiv( b, fmul( 3, a ) ) )

        real = fsub( fdiv( fneg( fadd( s, u ) ), 2 ), fdiv( b, fmul( 3, a ) ) )
        imaginary = fdiv( fmul( fsub( s, u ), sqrt( 3 ) ), 2 )

        x2 = mpc( real, imaginary )
        x3 = mpc( real, fneg( imaginary ) )
    # all real roots
    else:
        j = sqrt( fsub( fdiv( power( g, 2 ), 4 ), h ) )
        k = acos( fneg( fdiv( g, fmul( 2, j ) ) ) )

        if j < 0:
            l = fneg( root( fneg( j ), 3 ) )
        else:
            l = root( j, 3 )

        m = cos( fdiv( k, 3 ) )
        n = fmul( sqrt( 3 ), sin( fdiv( k, 3 ) ) )
        p = fneg( fdiv( b, fmul( 3, a ) ) )

        x1 = fsub( fmul( fmul( 2, l ), cos( fdiv( k, 3 ) ) ), fdiv( b, fmul( 3, a ) ) )
        x2 = fadd( fmul( fneg( l ), fadd( m, n ) ), p )
        x3 = fadd( fmul( fneg( l ), fsub( m, n ) ), p )

    return [ chop( x1 ), chop( x2 ), chop( x3 ) ]
Exemplo n.º 29
0
 'root': ['primitive', [lambda x, y: mp.root(x, y[0]), None]],  # y's root 
 'unitroots': ['primitive', [lambda x, y: Vector(mp.unitroots(x)),
                             None]],  #  
 'hypot': ['primitive', [lambda x, y: mp.hypot(x, y[0]),
                         None]],  # sqrt(x**2+y**2) 
 #
 'sin': ['primitive', [lambda x, y: mp.sin(x), None]],
 'cos': ['primitive', [lambda x, y: mp.cos(x), None]],
 'tan': ['primitive', [lambda x, y: mp.tan(x), None]],
 'sinpi': ['primitive', [lambda x, y: mp.sinpi(x), None]],  #sin(x * pi) 
 'cospi': ['primitive', [lambda x, y: mp.cospi(x), None]],
 'sec': ['primitive', [lambda x, y: mp.sec(x), None]],
 'csc': ['primitive', [lambda x, y: mp.csc(x), None]],
 'cot': ['primitive', [lambda x, y: mp.cot(x), None]],
 'asin': ['primitive', [lambda x, y: mp.asin(x), None]],
 'acos': ['primitive', [lambda x, y: mp.acos(x), None]],
 'atan': ['primitive', [lambda x, y: mp.atan(x), None]],
 'atan2': ['primitive', [lambda x, y: mp.atan2(y[0], x), None]],
 'asec': ['primitive', [lambda x, y: mp.asec(x), None]],
 'acsc': ['primitive', [lambda x, y: mp.acsc(x), None]],
 'acot': ['primitive', [lambda x, y: mp.acot(x), None]],
 'sinc': ['primitive', [lambda x, y: mp.sinc(x), None]],
 'sincpi': ['primitive', [lambda x, y: mp.sincpi(x), None]],
 'degrees': ['primitive', [lambda x, y: mp.degrees(x),
                           None]],  #radian - >degree 
 'radians': ['primitive', [lambda x, y: mp.radians(x),
                           None]],  #degree - >radian 
 #
 'exp': ['primitive', [lambda x, y: mp.exp(x), None]],
 'expj': ['primitive', [lambda x, y: mp.expj(x), None]],  #exp(x*i) 
 'expjpi': ['primitive', [lambda x, y: mp.expjpi(x), None]],  #exp(x*i*pi)
Exemplo n.º 30
0
def arccos_degrees(x):
    """Return arccosine of x in degrees."""
    return normalized_degrees_from_radians(acos(x))
def acos(op):
    expr = mpmath.acos(op)
    return convertFromRadians(expr)
Exemplo n.º 32
0
    def move(self, alpha, v, t):
        if alpha == 0:
            self.x1 += v * t
            self.x2 += v * t
            return
        reverse_alpha = False
        reverse_v = False
        alpha = mpmath.radians(alpha)
        if alpha < 0:
            alpha = -alpha
            reverse_alpha = True

        if v < 0:
            v = -v
            reverse_v = True

        R = self.l * mpmath.cot(alpha) + 0.5 * self.d  # outer radius
        r = self.l * mpmath.cot(alpha) - 0.5 * self.d  # inner radius
        w = v / R  # angular velocity
        beta = w * t  # angle that has been turned after the move viewed from the center of the circle
        assert (beta < mpmath.pi)  # make sure it still forms a triangle
        theta = 0.5 * beta  # the angle of deviation from the original orientation
        m = 2 * R * mpmath.sin(theta)  # displacement of outer rear wheel
        n = 2 * r * mpmath.sin(theta)  # displacement of inner rear wheel
        if not reverse_alpha and not reverse_v:
            delta_x1, delta_y1 = mpmath.cos(theta) * m, mpmath.sin(theta) * m
            delta_x2, delta_y2 = mpmath.cos(theta) * n, mpmath.sin(theta) * n
        elif reverse_alpha and not reverse_v:
            delta_x2, delta_y2 = mpmath.cos(theta) * m, -mpmath.sin(theta) * m
            delta_x1, delta_y1 = mpmath.cos(theta) * n, -mpmath.sin(theta) * n
        elif not reverse_alpha and reverse_v:
            delta_x1, delta_y1 = -mpmath.cos(theta) * m, mpmath.sin(theta) * m
            delta_x2, delta_y2 = -mpmath.cos(theta) * n, mpmath.sin(theta) * n
        else:
            delta_x2, delta_y2 = -mpmath.cos(theta) * m, -mpmath.sin(theta) * m
            delta_x1, delta_y1 = -mpmath.cos(theta) * n, -mpmath.sin(theta) * n

        delta_x1 = float(delta_x1)
        delta_y1 = float(delta_y1)
        delta_x2 = float(delta_x2)
        delta_y2 = float(delta_y2)

        # the current calculation is based on this relative reference system
        # we need to map this coordinate in the relative reference system back to the absolute system

        # use the dot product of the rear wheel line to find the rotation from the relative reference system to the absolute system
        if self.y1 != 0 or self.y2 != 10:  # no rotation is needed
            bottom = np.sqrt(((self.x2 - self.x1) * (self.x2 - self.x1) +
                              (self.y2 - self.y1) * (self.y2 - self.y1))) * 10
            top = (self.y2 - self.y1) * 10
            cosine_value = float(top / bottom)
            rotation = mpmath.acos(cosine_value)
            # print(rotation)
            if self.x1 < self.x2:  # since arccos does not give direction, we need to do a check here
                rotation = -rotation
            # let A be the linear transformation that maps a relative referenced coordinate to an absolute referenced coordinate
            A = np.asarray(
                [[float(mpmath.cos(rotation)),
                  float(-mpmath.sin(rotation))],
                 [float(mpmath.sin(rotation)),
                  float(mpmath.cos(rotation))]])
            # then we map delta_1 and delta_2 to the absolute reference system
            relative_delta_1 = np.asarray([delta_x1, delta_y1])
            relative_delta_2 = np.asarray([delta_x2, delta_y2])
            absolute_delta_1 = np.matmul(A, relative_delta_1)
            absolute_delta_2 = np.matmul(A, relative_delta_2)
            delta_x1 = absolute_delta_1[0]
            delta_y1 = absolute_delta_1[1]
            delta_x2 = absolute_delta_2[0]
            delta_y2 = absolute_delta_2[1]
        # make vector addition in the absolute reference system
        self.x1 += delta_x1
        self.x2 += delta_x2
        self.y1 += delta_y1
        self.y2 += delta_y2
        dist = mpmath.sqrt((self.x1 - self.x2) * (self.x1 - self.x2) +
                           (self.y2 - self.y1) * (self.y2 - self.y1))
        assert abs(dist - self.d) <= self.d * 1e-4
Exemplo n.º 33
0
def alpha(phi: float, incl: float):
    """Returns observer coordinate of photon given phi (BHF) and inclination (BHF)"""
    return mpmath.acos(cosAlpha(phi, incl))