Exemplo n.º 1
0
def construct_network(df):

    g = Network("800px", "100%", bgcolor="#3c4647", font_color="white")
    for artist in df.artist:
        g.add_node(artist, label=artist, color="#26d18f")
    for related in df.related:
        g.add_node(related, label=related, color="#8965c7")
    g.add_edges(list(zip(df.artist, df.related)))
    counts = df.related.value_counts()
    for node in g.nodes:
        freq = str(counts.get(node['id'], 1))
        # nodes with a value will scale their size
        # nodes with a title will include a hover tooltip on the node
        node.update({"value": freq, "title": f"Frequency: {freq}"})
    g.inherit_edge_colors("to")
    for e in g.edges:
        edge_label = f'{e["from"]} ---> {e["to"]}'
        e.update({"title": edge_label})
    g.barnes_hut(gravity=-17950,
                 central_gravity=4.1,
                 spring_length=220,
                 spring_strength=.140,
                 damping=.66,
                 overlap=1)
    g.show("spotify_example.html")
Exemplo n.º 2
0
def show(graph, output_filename):
    """
    Saves an HTML file locally containing a
    visualization of the graph, and returns
    a pyvis Network instance of the graph.
    """
    g = Network(directed=graph.is_directed)
    g.add_nodes(graph.nodes)
    g.add_edges(graph.edges)
    g.show(output_filename)
    return g
Exemplo n.º 3
0
class Vis:
    def __init__(self, artists, adjacency):
        self.artists = artists
        self.adjacency = adjacency
        self.network = Network(height='1500px', width='1500px')

    def init_network(self):
        id = list(self.artists.keys())

        label = [a['name'] for _, a in self.artists.items()]
        size = [a['popularity'] / 10 for _, a in self.artists.items()]

        self.network.add_nodes(id, label=label, size=size)

        [
            self.network.add_edges([(key, v) for v in value])
            for key, value in self.adjacency.items()
        ]

    def show_network(self):
        self.network.show('net.html')
def show(graph, output_filename):
    g = Network(directed=True)
    g.add_nodes(graph.nodes)
    g.add_edges(graph.edges)
    g.show(output_filename)
    return g
def show3(graph, output_filename):
    g = Network(directed=False)
    g.add_nodes(graph.nodes)
    g.add_edges(graph.edges)
    g.show(output_filename)
    def network_vis(self,
                    use_eqp=False,
                    iter_matrix=False,
                    spec_layout=False,
                    lin=False,
                    lin_dyn=None,
                    title="Network Visualization",
                    save_img=False,
                    filename='network_viz'):
        """
        Creates a visualization of the network G
        Parameters:
            G (DirectedGraph): A DirectedGraph object to visualize
            iter_matrix (ndarray): allows you to explicitly pass in the
                dynamics matrix of G. If left as False, then we run the
                dynamics simulation here
            spec_layout (bool): if False will display with random layout,
                otherwise it will use the spectral layout option
            lin (bool): Adds edge labels if the dynamics are linear
            lin_dyn (ndarray): the linear dynamics array
            title (str): Title of visualization
            save_img (bool): if True, saves the visualization with name
                'filename'
            filename (str): filename
        """

        if use_eqp:
            colors = self.colors
            group_dict = {}
            for color in colors.keys():
                for node in colors[color]:
                    group_dict[self.labeler[node]] = color

        else:
            # find synchronized communities
            communities = self.detect_sync(iters=80)

            # create a dictionary mapping each node to its community
            group_dict = {}
            for i in range(len(communities)):
                for node in communities[i][0]:
                    group_dict[node] = i

        # create (and relabel) a pyvis graph object
        net = Network(directed=True)
        net.barnes_hut(gravity=-30000, spring_length=7500)
        net.show_buttons(filter_=['physics'])
        nxG = nx.relabel.relabel_nodes(nx.DiGraph(self.A.T), self.labeler)

        # set community membership as an attribute of nxG
        nx.set_node_attributes(nxG, group_dict, name='community')

        # generate random colors
        c = [
            '#' + str(hex(np.random.randint(0, 16777215)))[2:]
            for i in list(colors)
        ]

        # add nodes to the pyvis object and color them according to group_dict
        for node in group_dict.keys():
            net.add_node(node, color=c[group_dict[node]], value=1)

        # add edges directly from networkx object
        net.add_edges(nxG.edges())

        # show visualization as html
        net.show('visualize.html')
Exemplo n.º 7
0
class MyNetwork:
    def __init__(self):
        self.lock = threading.RLock()

        self.g: ig.Graph = None  # 网络对象
        self.vg: pyvis.network.Network = None  # 动态可视化网络对象
        self.vertex_df: pd.DataFrame = None  # 节点文件表

        # 度、度分布、聚集系数、介数、中心性、度相关性
        self.vertex_count = None  # 节点数
        self.edge_count = None  # 边数
        self.avg_degree = None  # 平均度
        self.max_degree = None  # 最大度
        self.degree_list = None  # 节点度列表
        self.diameter = None  # 网络直径
        self.avg_path_len = None  # 平均路经长
        self.clustering_coefficient = None  # 聚集系数
        self.density = None  # 网络密度
        self.betweenness = None  # 介数中心性列表
        self.closeness = None  # 紧密中心性列表
        self.clique_number = None  # 团数量
        self.page_rank = None  # pagerank值
        self.colors = ['#70f3ff', '#44cef6', '#3eede7', '#1685a9', '#177cb0', '#065279', '#003472', '#4b5cc4',
                       '#a1afc9', '#2e4e7e',
                       '#3b2e7e', '#4a4266', '#426666', '#425066', '#574266', '#8d4bbb', '#815463', '#815476',
                       '#4c221b', '#003371',
                       '#56004f', '#801dae', '#4c8dae', '#b0a4e3', '#cca4e3', '#edd1d8', '#e4c6d0', '#ff461f',
                       '#ff2d51', '#f36838',
                       '#ed5736', '#ff4777', '#f00056', '#ffb3a7', '#f47983', '#db5a6b', '#c93756', '#f9906f',
                       '#f05654', '#ff2121',
                       '#f20c00', '#8c4356', '#c83c23', '#9d2933', '#ff4c00', '#ff4e20', '#f35336', '#dc3023',
                       '#ff3300', '#cb3a56',
                       '#a98175', '#b36d61', '#ef7a82', '#ff0097', '#c32136', '#be002f', '#c91f37', '#bf242a',
                       '#c3272b', '#9d2933',
                       '#60281e', '#622a1d', '#bce672', '#c9dd22', '#bddd22', '#afdd22', '#a3d900', '#9ed900',
                       '#9ed048', '#96ce54',
                       '#00bc12', '#0eb83a', '#0eb83a', '#0aa344', '#16a951', '#21a675', '#057748', '#0c8918',
                       '#00e500', '#40de5a',
                       '#00e079', '#00e09e', '#3de1ad', '#2add9c', '#2edfa3', '#7fecad', '#a4e2c6', '#7bcfa6',
                       '#1bd1a5', '#48c0a3',
                       '#549688', '#789262', '#758a99', '#50616d', '#424c50', '#41555d', '#eaff56', '#fff143',
                       '#faff72', '#ffa631',
                       '#ffa400', '#fa8c35', '#ff8c31', '#ff8936', '#ff7500', '#ffb61e', '#ffc773', '#ffc64b',
                       '#f2be45', '#f0c239',
                       '#e9bb1d', '#d9b611', '#eacd76', '#eedeb0', '#d3b17d', '#e29c45', '#a78e44', '#c89b40',
                       '#ae7000', '#ca6924',
                       '#b25d25', '#b35c44', '#9b4400', '#9c5333', '#a88462', '#896c39', '#827100', '#6e511e',
                       '#7c4b00', '#955539',
                       '#845a33', '#ffffff', '#e9e7ef', '#f0f0f4', '#e9f1f6', '#f0fcff', '#e3f9fd', '#d6ecf0',
                       '#fffbf0', '#f2ecde',
                       '#fcefe8', '#fff2df', '#f3f9f1', '#e0eee8', '#e0f0e9', '#c0ebd7', '#bbcdc5', '#c2ccd0',
                       '#bacac6', '#808080',
                       '#75878a', '#88ada6', '#6b6882', '#725e82', '#3d3b4f', '#392f41', '#75664d', '#5d513c',
                       '#665757', '#493131',
                       '#312520', '#161823']
        self.community_detect_algorithm_dict = None

    def get_network_properties_json(self) -> str:
        '''
        网络属性组成的json格式数据
        :return:
        '''
        directed = "有向图" if self.g.is_directed() else "无向图"
        data = f'{{' \
               f'"IsDirected":\"{directed}\",' \
               f'"VertexCount":{self.vertex_count},' \
               f'"EdgeCount":{self.edge_count},' \
               f'"AvgDegree":{self.avg_degree},' \
               f'"MaxDegree":{self.max_degree},' \
               f'"Diameter":{self.diameter},' \
               f'"AvgPathLen":{self.avg_path_len},' \
               f'"ClusteringCoefficient":{self.clustering_coefficient},' \
               f'"Density":{self.density},' \
               f'"CliqueCount":{self.clique_number},' \
               f'}}'
        # f'"DegreeList":{self.degree_list},' \
        # f'"BetweennessList":{self.betweenness},' \
        # f'"ClosenessList":{self.closeness}' \

        return data

    def generate_graph_from_dataframe(self, v: pd.DataFrame, e: pd.DataFrame, directed=False) -> None:
        '''
        从dataframe中初始化网络,并获取网络各类属性值
        :param v: 节点表
        :param e: 边表
        :param directed: 是否是有向图
        '''

        # 加锁
        self.lock.acquire()
        try:
            # self.vertex_df = v
            # 生成网络图对象
            self.g = ig.Graph.DataFrame(edges=e, vertices=v, directed=directed)  # igraph图对象
            self.vg = Network(height='100%', width='100%', directed=directed)  # 可视化图对象
            self.vg.add_nodes([i for i in range(self.g.vcount())])
            self.vg.add_edges(self.g.get_edgelist())
            self.vg.show_buttons(filter_=['physics'])
            # 获取网络属性
            self.vertex_count = self.g.vcount()  # 节点数
            self.edge_count = self.g.ecount()  # 边数
            self.avg_degree = np.average(self.g.degree())  # 平均度
            self.max_degree = self.g.maxdegree()  # 最大度
            self.degree_list = self.g.degree()  # 节点度列表
            self.diameter = self.g.diameter()  # 网络直径
            self.avg_path_len = self.g.average_path_length()  # 平均路经长
            self.clustering_coefficient = self.g.transitivity_undirected()  # 聚集系数
            self.density = self.g.density()  # 网络密度
            self.clique_number = self.g.clique_number()  # 团数量

            self.g.vs.set_attribute_values(attrname='_度_', values=self.degree_list)

            # self.betweenness = self.g.betweenness()  # 介数列表
            self.betweenness = [-1 if np.isnan(v) else v for v in self.g.betweenness()]
            self.g.vs.set_attribute_values(attrname='_介数_', values=self.betweenness)
            # self.closeness = self.g.closeness()  # 紧密中心性列表
            self.closeness = [-1 if np.isnan(v) else v for v in self.g.closeness()]
            self.g.vs.set_attribute_values(attrname='_紧密中心性_', values=self.closeness)
            self.page_rank = [-1 if np.isnan(v) else v for v in self.g.pagerank()]
            self.g.vs.set_attribute_values(attrname='_PageRank_', values=self.page_rank)

            self.community_detect_algorithm_dict = {
                'EdgeBetweenness': self.g.community_edge_betweenness,  # 速度慢
                'FastGreedy': self.g.community_fastgreedy,  # 不能有重复边
                'InfoMap': self.g.community_infomap,  # 返回VertexClustering
                'LabelPropagation': self.g.community_label_propagation,
                'LeadingEigenvector': self.g.community_leading_eigenvector,  # 速度较慢
                # 'LeadingEigenvectorNaive': self.g.community_leading_eigenvector_naive,
                'Leiden': self.g.community_leiden,
                'MultiLevel': self.g.community_multilevel,
                'SpinGlass': self.g.community_spinglass,  # 速度慢
                'WalkTrap': self.g.community_walktrap
            }
        finally:
            self.lock.release()

    def export_network(self, path: str, isHtml: int = 1, vertex_size: str = '', vertex_color: str = '',
                       vertex_label: str = '', edge_weight: str = '', layout: str = 'kk'
                       ):
        '''
        网络可视化
        :param path: 保存路径
        :param isHtml: 是否生成HTML文件或是svg图片
        :param vertex_size: 节点大小       _默认_、_度_、_介数_、_紧密中心性_、其他数值属性
        :param vertex_color: 节点颜色      _默认_#789262、_随机_、_度_、_介数_、_紧密中心性_、其他属性
        :param vertex_label: 节点标签,默认为节点ID
        :param edge_weight: 边宽度         _默认_、其他数值属性
        :param layout: 静态图布局
        :param size: 静态图图像大小
        '''
        self.lock.acquire()
        try:
            if vertex_size != '':
                if vertex_size == '_默认_':
                    vertex_size = None
                elif vertex_size == "_度_":
                    vertex_size = [int(30 + d * 40) for d in self.value_map(self.degree_list, 1, 10)]
                elif vertex_size == "_介数_":
                    vertex_size = [int(30 + d * 40) for d in self.value_map(self.betweenness, 1, 10)]
                elif vertex_size == "_紧密中心性_":
                    vertex_size = [int(30 + d * 40) for d in self.value_map(self.closeness, 1, 10)]
                else:
                    if vertex_size in self.g.vs.attribute_names():

                        try:
                            x = np.array(self.g.vs.get_attribute_values(vertex_size))
                            vertex_size = [int(30 + d * 40) for d in self.value_map(x, 1, 10)]
                        except Exception as e:
                            vertex_size = None
            else:
                vertex_size = None

            if vertex_color != '':
                if vertex_color == '_默认_':
                    # vertex_color = [f"#{vertex_color.split('#')[-1]}"] * self.vertex_count
                    vertex_color = None
                elif vertex_color == "_随机_":
                    colors = random.sample(self.colors, 20)
                    vertex_color = [random.choice(colors) for _ in range(self.vertex_count)]
                elif vertex_color == "_度_":
                    vertex_color = self.value2color(self.degree_list, 10)
                elif vertex_color == "_介数_":
                    vertex_color = self.value2color(self.betweenness, 10)
                elif vertex_color == "_紧密中心性_":
                    vertex_color = self.value2color(self.closeness, 10)
                else:
                    if vertex_color in self.g.vs.attribute_names():
                        attr = self.g.vs.get_attribute_values(vertex_color)

                        try:
                            x = np.array(attr)
                            vertex_color = self.value2color(x, 10)
                        except Exception as e:
                            vertex_color = self.category2color(attr)
            else:
                vertex_color = None

            if vertex_label == "_默认_":
                if 'name' in self.g.vs.attribute_names():
                    vertex_label = [str(i) for i in self.g.vs.get_attribute_values('name')]
                else:
                    vertex_label = [str(i) for i in range(self.vertex_count)]
            else:
                if vertex_label in self.g.vs.attribute_names():
                    vertex_label = [str(i) for i in self.g.vs.get_attribute_values(vertex_label)]
                else:
                    vertex_label = [str(i) for i in range(self.vertex_count)]

            if edge_weight in self.g.es.attribute_names():
                if edge_weight == 'dist':
                    edge_weight = [int(10 + i * 20) for i in
                                   1.0 / np.array(self.value_map(self.g.es.get_attribute_values('dist'), 0.2, 1))]
                else:
                    edge_weight = None
            else:
                edge_weight = None

            if isHtml == 1:
                nodes = self.vg.nodes
                ids = [i for i in range(self.vertex_count)]
                if vertex_size is not None:
                    for i in ids:
                        nodes[i]['value'] = vertex_size[i]
                if vertex_color is not None:
                    for i in ids:
                        nodes[i]['color'] = vertex_color[i]
                if vertex_label is not None:
                    for i in ids:
                        nodes[i]['label'] = vertex_label[i]

                for i in ids:
                    nodes[i]['title'] = f"<br>ID:{i} 标签:{nodes[i]['label']} 度:{self.degree_list[i]}<br>" \
                                        f"<br>介数:{self.betweenness[i]} 紧密中心度:{self.closeness[i]}<br>"

                if edge_weight is not None:
                    i = 0
                    for edge in self.vg.edges:
                        edge['value'] = edge_weight[i]
                        i += 1

                # self.vg.force_atlas_2based()
                self.vg.show_buttons()
                self.vg.write_html(path)
                # self.vg.show(path)
            else:
                if vertex_size is None:
                    vertex_size = 20
                if layout == '':
                    layout = 'circle'
                ig.plot(self.g, target=path, vertex_size=vertex_size, vertex_color=vertex_color,
                        vertex_label=vertex_label,
                        edge_width=edge_weight, layout=layout)
        finally:
            self.lock.release()

    def community_detect(self, path: str, algorithm: str) -> int:
        '''
        执行社团发现算法,并生成网络图
        :param path:
        :param algorithm:
        :return:
        '''

        self.lock.acquire()

        try:
            community: [ig.VertexDendrogram, ig.VertexClustering] = self.community_detect_algorithm_dict[algorithm]()
            # count = community.optimal_count  # 社团数量

            if type(community) is ig.VertexClustering:
                vertex_community = community.membership
            else:
                vertex_community = community.as_clustering().membership  # 节点所在社团
            vertex_colors = self.category2color(vertex_community)

            # print(f'社团数:{max(vertex_community) + 1}')
            for i in range(self.vertex_count):
                self.vg.nodes[i]['color'] = vertex_colors[i]
                self.vg.nodes[i]['title'] = f"<br>ID:{i} 标签:{self.vg.nodes[i]['label']} 度:{self.degree_list[i]}<br>" \
                                            f"<br>介数:{self.betweenness[i]} 紧密中心度:{self.closeness[i]}<br> <br>社团:{vertex_community[i]}<br>"

            self.vg.write_html(path)

            self.g.vs.set_attribute_values(attrname='_社团_', values=vertex_community)
            return max(vertex_community) + 1
        finally:
            self.lock.release()

    def value_map(self, nums, target_min, target_max):
        '''
        将数值映射到另一个区间
        :param nums:
        :param target_min:
        :param target_max:
        :return:
        '''
        x = nums
        if type(nums) is not np.ndarray:
            x = np.array(nums)
        s_min = np.min(x)
        s_max = np.max(x)
        return target_min + (target_max - target_min) / (s_max - s_min) * (x - s_min)

    def value2color(self, nums, color_num):
        '''
        连续值映射为颜色
        :param nums: 值
        :param color_num: 映射的颜色数
        :return:
        '''
        x = self.value_map(nums, 1, color_num)
        colors = random.sample(self.colors, color_num + 1)
        return [colors[math.ceil(c)] for c in x]

    def category2color(self, category):
        '''
        离散值转颜色
        :param category: 离散数据
        :return:
        '''
        u_c = list(set(category))
        random.shuffle(self.colors)
        color_dict = {}

        i = 0
        color_len = len(self.colors)
        for c in u_c:
            color_dict[c] = self.colors[i]
            i += 1
            if i >= color_len:
                i = color_len - 1

        return [color_dict[c] for c in category]

    def shortest_path_1_to_n(self, start_node_id) -> list:
        self.g.vs.find()
        return self.g.get_shortest_paths(v=start_node_id)
Exemplo n.º 8
0
def darw_relations_graph(reference_data, ID_COLUMN, notebook=False):
    """Creates an temporary XML file to visualize relations
            returns  temp filename"""

    node_data = reference_data.drop_duplicates([ID_COLUMN, "KEY"]).pivot(
        index=ID_COLUMN, columns="KEY")["VALUE"]

    columns = node_data.columns

    if "IdentifiedObject.name" in columns:
        node_data = node_data[[
            "Type", "IdentifiedObject.name"
        ]].rename(columns={"IdentifiedObject.name": "name"})
    elif "Model.profile" in columns:
        node_data = node_data[["Type", "Model.profile"
                               ]].rename(columns={"Model.profile": "name"})
    else:
        node_data = node_data[["Type"]]
        node_data["name"] = ""

    # Visulise with pyvis

    graph = Network(directed=True, width="100%", height=750, notebook=notebook)
    # node_name = urlparse(dataframe[dataframe.KEY == "Model.profile"].VALUE.tolist()[0]).path  # FullModel does not have IdentifiedObject.name

    # Add nodes/objects
    for ID, node in node_data.iterrows():
        object_data = reference_data.query("{} == '{}'".format(ID_COLUMN, ID))

        node_name = u"{} - {}".format(node["Type"], node["name"])
        node_title = object_data[[
            ID_COLUMN, "KEY", "VALUE", "INSTANCE_ID"
        ]].rename(columns={
            ID_COLUMN: "ID"
        }).to_html(index=False)  # Add object data table to node hover titel
        node_level = object_data.level.tolist()[0]

        graph.add_node(ID,
                       node_name,
                       title=node_title,
                       size=10,
                       level=node_level)

    # Add connections

    reference_data_columns = reference_data.columns

    if "ID_FROM" in reference_data_columns and "ID_TO" in reference_data_columns:

        connections = list(reference_data[[
            "ID_FROM", "ID_TO"
        ]].dropna().drop_duplicates().to_records(index=False))
        graph.add_edges(connections)

    # Set options

    graph.set_options("""
    var options = {
        "nodes": {
            "shape": "dot",
            "size": 10
        },
        "edges": {
            "color": {
                "inherit": true
            },
            "smooth": false
        },
        "layout": {
            "hierarchical": {
                "enabled": true,
                "direction": "LR",
                "sortMethod": "directed"
            }
        },
        "interaction": {
            "navigationButtons": true
        },
        "physics": {
            "hierarchicalRepulsion": {
                "centralGravity": 0,
                "springLength": 75,
                "nodeDistance": 145,
                "damping": 0.2
            },
            "maxVelocity": 28,
            "minVelocity": 0.75,
            "solver": "hierarchicalRepulsion"
        }
    }""")

    # graph.show_buttons()

    graph.set_options = options

    if notebook == False:
        # Change directory to temp
        os.chdir(tempfile.mkdtemp())

        # Create unique filename
        from_UUID = reference_data[ID_COLUMN].tolist()[0]
        file_name = r"{}.html".format(from_UUID)

        # Show graph
        graph.show(file_name)

        # Returns file path
        return os.path.abspath(file_name)

    return graph
Exemplo n.º 9
0
nodes_df['borderWidthSelected'] = list(np.repeat(20.0, nodes_df.shape[0]))


## Visualizing a Network

Plotting the network using `pyvis`.

Gvis = Network("768px","1600px", notebook=False,heading="Semantic Network")
# # Gvis.from_nx(G)
edges_in = list(edges_df.to_records(index=False))
#Gvis.add_nodes(list(G.nodes), value=nodes_df['size2'], color=nodes_df['color'], borderWidthSelected = nodes_df['borderWidthSelected'])

for i in range(nodes_df.shape[0]):
  Gvis.add_node(list(G.nodes)[i], value=nodes_df.loc[i,'size2'], group=nodes_df.loc[i,'group'])#, color=nodes_df.loc[i,'color'], borderWidthSelected = nodes_df.loc[i,'borderWidthSelected'])

Gvis.add_edges(edges_in)
#Gvis.show_buttons()
Gvis.set_options("""
  var options = {
    "nodes": {
      "borderWidth": 0,
      "color": {
        "highlight": {
          "border": "rgba(221,171,197,1)",
          "background": "rgba(248,178,255,1)"
        }
      },
      "shadow": {
        "enabled": true
      }
    },
Exemplo n.º 10
0
    '#e9e7ef', '#f0f0f4', '#e9f1f6', '#f0fcff', '#e3f9fd', '#d6ecf0',
    '#fffbf0', '#f2ecde', '#fcefe8', '#fff2df', '#f3f9f1', '#e0eee8',
    '#e0f0e9', '#c0ebd7', '#bbcdc5', '#c2ccd0', '#bacac6', '#808080',
    '#75878a', '#88ada6', '#6b6882', '#725e82', '#3d3b4f', '#392f41',
    '#75664d', '#5d513c', '#665757', '#493131', '#312520', '#161823'
]
random.shuffle(colors)
print(colors[:5])

vg = Network(height='100%', width='100%', heading='交通网络图', directed=True)
vg.add_nodes(
    [i for i in range(g.vcount())],
    value=[20 + d * 15 for d in g.degree()],  # 节点大小
    label=g.vs.get_attribute_values('Label'),  # 节点标签,显示在点下方,缩小自动隐藏
    color=[random.choice(colors[:20]) for i in range(g.vcount())])
vg.add_edges(g.get_edgelist())
# for edge in vg.edges:
#     # edge['value'] = random.randint(1,20)
#     edge['color'] = 'red'
# # vg.set_edge_smooth(smooth_type='dynamic')

for node in vg.nodes:
    # node['color'] = 'red'
    # node["title"] = "Neighbors:<br>" + "<br>".join(neighbor_map[node["id"]])  # 节点标题,鼠标移动到点上面时显示
    node["title"] = f"<br>ID:{node['id']} Label:{node['label']}<br>"

# vg.set_template()
# vg.force_atlas_2based()
vg.show_buttons(filter_=['physics'])
vg.show('a.html')
Exemplo n.º 11
0
def network(request, n, f):
    fileType = f
    inputFile = n
    htmlFile = "./NetworkViewer/networks/" + n.split(".")[0] + ".html"

    # The network parameters to be displayed are initiated. All parameters can not be calculated for all types of networks
    diameter = 0
    clusteringCoeff = 0
    cliques = 0
    degree = 0
    connectedComponents = 0
    stronglyConnectedomponents = 0

    # Different file types needs to be handeled in different ways
    ngx = None
    if fileType == 'geneSpider':
        # Gene spider matrix is read as a matrix that is then transposed, in order to get the directions right
        networkDf = pd.read_csv(os.path.join(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
            'media/' + inputFile),
                                sep=',',
                                header=None)
        networkDfTransposed = networkDf.T
        nxg = nx.from_numpy_matrix(np.array(networkDfTransposed),
                                   create_using=nx.MultiDiGraph())
    elif fileType == 'adjacencyList':
        # Adjacency lists/Edge lists are red as undirected pandas edgelists
        networkDf = pd.read_csv(os.path.join(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
            'media/' + inputFile),
                                sep='\s+',
                                header=None)
        nxg = nx.from_pandas_edgelist(networkDf, source=0, target=1)
    elif fileType == 'directedAdjacencyList':
        # Directed edge lists need to be read as directed pandas edgelists
        networkDf = pd.read_csv(os.path.join(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
            'media/' + inputFile),
                                sep='\s+',
                                header=None)
        nxg = nx.from_pandas_edgelist(networkDf,
                                      source=0,
                                      target=1,
                                      create_using=nx.MultiDiGraph())
    elif fileType == 'adjacencyMatrix':
        # Adjacency matrix need to be read as an undirected matrix
        networkDf = pd.read_csv(os.path.join(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
            'media/' + inputFile),
                                sep=',',
                                header=None)
        nxg = nx.from_numpy_matrix(np.array(networkDf))
    elif fileType == 'directedAdjacencyMatrix':
        # Directed Adjacency matrix need to be read as a directed matrix
        networkDf = pd.read_csv(os.path.join(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
            'media/' + inputFile),
                                sep=',',
                                header=None)
        nxg = nx.from_numpy_matrix(np.array(networkDf),
                                   create_using=nx.MultiDiGraph())
    elif fileType == 'funCoup':
        # FunCoup-network-files contains several columns defining the evidence types and scores. Here, they are red as edge lists, only taking the genes and their edges into account
        networkDf = pd.read_csv(os.path.join(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
            'media/' + inputFile),
                                sep='\t')
        networkDfGenes = networkDf[['2:Gene1', '3:Gene2']]
        nxg = nx.from_pandas_edgelist(networkDfGenes,
                                      source='2:Gene1',
                                      target='3:Gene2')

    # The networkx-networks are drawn as png-images, since the pyvis can not handle other formats than html.
    pos = nx.spring_layout(nxg)
    nx.draw(nxg, pos, with_labels=True)
    # nx.draw_networkx_edge_labels(nxg, pos, with_labels = True)
    plt.savefig("./NetworkViewer/templates/NetworkViewer/networks/" +
                inputFile.split(".")[0] + ".png",
                format="PNG")
    plt.clf()

    # Initiating pyvis interactive network with customized graphics
    g = Network()
    g.barnes_hut(gravity=-2000,
                 central_gravity=0.02,
                 spring_length=1,
                 spring_strength=0.000001,
                 damping=0.09,
                 overlap=0)
    g.toggle_physics(True)

    # Calculating network prooperties from the networkx graphs
    if nx.is_directed(nxg):
        g.directed = True
        stronglyConnectedomponents = nx.number_strongly_connected_components(
            nxg)
    else:
        connectedComponents = nx.number_connected_components(nxg)
        if connectedComponents == 1:
            diameter = nx.diameter(nxg, e=None)
        clusteringCoeffs = nx.clustering(nxg)
        clusteringCoeff = np.mean(list(clusteringCoeffs.values()))
        allCliques = nx.find_cliques(nxg)
        cliques = len(list(allCliques))
    degrees = nxg.degree()
    degreesOnly = []
    for node, degree in degrees:
        degreesOnly.append(degree)
    degree = np.mean(degreesOnly)
    maxDegree = np.max(degreesOnly)

    # Filling the pyvis graph with nodes and edges from the networkx graph.
    allNodes = list(nxg.nodes)
    allSizes = []
    # The nodes gets sizes according to their degree
    for d in degreesOnly:
        allSizes.append(40 * (d / maxDegree))
    g.add_nodes(allNodes, size=allSizes)
    # The edges gets width according to their weights
    allEdges = nxg.edges(data=True)
    edges = []
    for a, b, w in allEdges:
        edges.append((a, b, w.get('weight')))
    g.add_edges(edges)
    g.height = "100%"
    g.width = "100%"
    # The pyvis graph is saved as an html file, that is embedded in the network viewer-vindow
    g.save_graph("./NetworkViewer/templates/NetworkViewer/networks/" +
                 inputFile.split(".")[0] + ".html")

    # Exporting network properties to the html-view
    context = {
        "diameter": ("%.2f" % diameter),
        "clustering": ("%.2f" % clusteringCoeff),
        "cliques": ("%.2f" % cliques),
        "degree": ("%.2f" % degree),
        "connectedComponents": connectedComponents,
        "stronglyConnectedomponents": stronglyConnectedomponents,
        "inputFile": inputFile,
        "htmlFile": htmlFile
    }
    return render(request, 'NetworkViewer/viewNetwork.html', context)
Exemplo n.º 12
0
    def plotNetwork(
            self,
            source: str,
            target: str,
            filename: str = "net.html",
            size: Tuple[int, int] = (500, 500),
    ):
        try:
            paths = nx.all_shortest_paths(self, source, target)
        except nx.NetworkXNoPath as e:
            print("No path")
        finally:
            paths = list(paths)
            nodes = list(set(chain.from_iterable(paths)))
            edges = [(p[i], p[i + 1]) for p in paths
                     for i in range(0,
                                    len(p) - 1)]

            g = Network(height=size[0], width=size[1], directed=True)
            g.add_nodes(
                nodes,
                color=[
                    "red"
                    if n == source else "green" if n == target else "blue"
                    for n in nodes
                ],
            )
            g.add_edges(edges)
            g.set_options("""
            {
"nodes": {
    "font": {
        "size": 9
    },
    "scaling": {
        "max": 36
    },
    "shadow": {
        "enabled": true
    }
},
"edges": {
    "arrows": {
        "to": {
            "enabled": true,
            "scaleFactor": 1.4
        }
    },
    "smooth": false
},
"layout": {
    "hierarchical": {
        "enabled": true,
        "sortMethod": "directed"
    }
},
"interaction": {
    "keyboard": {
        "enabled": true
    }
},
"physics": {
    "hierarchicalRepulsion": {
        "centralGravity": 0,
        "nodeDistance": 225
    },
    "minVelocity": 0.75,
    "solver": "hierarchicalRepulsion"
}
}""")
            return g
Exemplo n.º 13
0
    selected_edges = negative_edges[n]

    #Get list of nodes
    #Keep only the kinases names (i.e. remove the z-scores) from the list of edges
    nodes_bf = [(a, b) for a, b, c in selected_edges]
    #Flatten list of edges tuples to list of nodes
    nodes = list(itertools.chain(*nodes_bf))
    #Remove duplicates from the list
    nodes_list = list(dict.fromkeys(nodes))

    #Add nodes & edges to graph
    networkgraph.add_nodes(nodes_list,
                           value=[10] * len(nodes_list),
                           title=nodes_list,
                           label=nodes_list)
    networkgraph.add_edges(selected_edges)

    #Show to which kinases each kinase is connected
    #Show to which kinases each kinase is connected
    kinases_map = networkgraph.get_adj_list()
    network_map = networkgraph.get_edges()
    for key, value in kinases_map.items():
        kinases_map[key] = ([
            functools.reduce(operator.add,
                             ((x,
                               str([(y["width"]) for y in network_map
                                    if x in y["from"] and key in y["to"]
                                    or x in y["to"] and key in y["from"]]))))
            for x in value
        ])