Exemplo n.º 1
0
    def drawActivityResourceGraph_advanced(self, ActivityRscMatrix, weight_threshold, directed, splitted):
        
        rows, cols = np.where(ActivityRscMatrix > weight_threshold)
        weights = list();
        
        for x in range(len(rows)):
            weights.append(ActivityRscMatrix[rows[x]][cols[x]])
        
        got_net = Network(height="750px", width="100%", bgcolor="black", font_color="#f57b2b", directed= directed)
        
        # set the physics layout of the network
        got_net.barnes_hut()
      
        edge_data = zip(rows, cols, weights)
        
        counter = 1
        for e in edge_data:
            src = self.activityList[e[0]]  # convert ids to labels
            dst = self.resourceList[e[1]]
            w = e[2] 
    
            # I have to add some options here, there is no parameter
            highlight = {'border': "#3de975", 'background': "#41e9df"}
            if(splitted):
                got_net.add_node(src, src, title=src, labelHighlightBold=True, color={'highlight': highlight},shape='square')
                got_net.add_node(dst+ "__" +str(counter) , dst , title=dst , labelHighlightBold=True, color={'border': "#dd4b39", 'background': "#dd4b39", 'highlight': highlight})
                got_net.add_edge(src, dst+ "__" +str(counter), value=w, title=w)
                counter +=1
            else:
                got_net.add_node(src, src, title=src, labelHighlightBold=True, color={'highlight': highlight},shape='square')
                got_net.add_node(dst , dst, title=dst , labelHighlightBold=True, color={'border': "#dd4b39", 'background': "#dd4b39", 'highlight': highlight})
                got_net.add_edge(src, dst , value=w, title=w)

        neighbor_map = got_net.get_adj_list()
        
        dict = got_net.get_edges()
        
        self.getResourceList()
        
        # add neighbor data to node hover data
        for node in got_net.nodes:
            counter = 0
            if(directed):
                node["title"] = "<h3>" + node["title"] + " Output Links: </h3>"
            else:
                node["title"] = "<h3>" + node["title"] + " Links: </h3>"
            for neighbor in neighbor_map[node["id"]]:
                if(counter % 10 == 0):
                    node["title"] += "<br>::: " + neighbor        
                else:
                    node["title"] += " ::: " + neighbor
                node["value"] = len(neighbor_map[node["id"]])
                counter += 1
        
        got_net.show_buttons(filter_=['nodes', 'edges', 'physics'])
        got_net.show_buttons(filter_=['physics'])
        
        got_net.show("PMSocial.html")
Exemplo n.º 2
0
 def drawRscRscGraph_advanced(self, RscRscMatrix, weight_threshold, directed, encryption):
     
     rows, cols = np.where(RscRscMatrix > weight_threshold)
     weights = list();
     
     for x in range(len(rows)):
         weights.append(RscRscMatrix[rows[x]][cols[x]])
     
     #got_net = Network(height="750px", width="100%", bgcolor="white", font_color="#3de975", directed=directed)
     got_net = Network(height="750px", width="100%", bgcolor="white", font_color="black", directed=directed)
     ##f57b2b
     # set the physics layout of the network
     got_net.barnes_hut()
   
     edge_data = zip(rows, cols, weights)
     
     for e in edge_data:
         
         src = self.resourceList[e[0]]  # convert ids to labels
         dst = self.resourceList[e[1]]
         w = e[2] 
         
         if(encryption):
             src = Utilities.AES_ECB_Encrypt(self,src.encode('utf-8'))
             dst = Utilities.AES_ECB_Encrypt(self,dst.encode('utf-8'))
             
         # I have to add some options here, there is no parameter
         highlight = {'border': "#3de975", 'background': "#41e9df"}
         #color = {'border': "#000000", 'background': "#123456"}
         got_net.add_node(src, src, title=src, labelHighlightBold=True, color={'highlight': highlight})
         got_net.add_node(dst, dst, title=dst , labelHighlightBold=True, color={'highlight': highlight})
         got_net.add_edge(src, dst, value=w, title=w)
     
     neighbor_map = got_net.get_adj_list()
     
     dict = got_net.get_edges()
     
     self.getResourceList()
     
     # add neighbor data to node hover data
     for node in got_net.nodes:
         counter = 0
         if(directed):
             node["title"] = "<h3>" + node["title"] + " Output Links: </h3>"
         else:
             node["title"] = "<h3>" + node["title"] + " Links: </h3>"
         for neighbor in neighbor_map[node["id"]]:
             if(counter % 10 == 0):
                 node["title"] += "<br>::: " + neighbor        
             else:
                 node["title"] += " ::: " + neighbor
             node["value"] = len(neighbor_map[node["id"]])
             counter += 1
     
     got_net.show_buttons(filter_=['nodes', 'edges', 'physics'])
     got_net.show_buttons(filter_=['physics'])
     
     got_net.show("PMSocial.html")
Exemplo n.º 3
0
def apply(metric_values, parameters=None):
    """
    Perform SNA visualization starting from the Matrix Container object
    and the Resource-Resource matrix

    Parameters
    -------------
    metric_values
        Value of the metrics
    parameters
        Possible parameters of the algorithm, including:
            - Parameters.WEIGHT_THRESHOLD -> the weight threshold to use in displaying the graph

    Returns
    -------------
    temp_file_name
        Name of a temporary file where the visualization is placed
    """
    from pyvis.network import Network

    if parameters is None:
        parameters = {}

    weight_threshold = exec_utils.get_param_value(Parameters.WEIGHT_THRESHOLD, parameters, 0)
    directed = metric_values[2]

    temp_file_name = get_temp_file_name("html")

    rows, cols = np.where(metric_values[0] > weight_threshold)
    weights = list()

    for x in range(len(rows)):
        weights.append(metric_values[0][rows[x]][cols[x]])

    got_net = Network(height="750px", width="100%", bgcolor="black", font_color="#3de975", directed=directed)
    # set the physics layout of the network
    got_net.barnes_hut()

    edge_data = zip(rows, cols, weights)

    for e in edge_data:
        src = metric_values[1][e[0]]  # convert ids to labels
        dst = metric_values[1][e[1]]
        w = e[2]

        # I have to add some options here, there is no parameter
        highlight = {'border': "#3de975", 'background': "#41e9df"}
        # color = {'border': "#000000", 'background': "#123456"}
        got_net.add_node(src, src, title=src, labelHighlightBold=True, color={'highlight': highlight})
        got_net.add_node(dst, dst, title=dst, labelHighlightBold=True, color={'highlight': highlight})
        got_net.add_edge(src, dst, value=w, title=w)

    neighbor_map = got_net.get_adj_list()

    dict = got_net.get_edges()

    # add neighbor data to node hover data
    for node in got_net.nodes:
        counter = 0
        if directed:
            node["title"] = "<h3>" + node["title"] + " Output Links: </h3>"
        else:
            node["title"] = "<h3>" + node["title"] + " Links: </h3>"
        for neighbor in neighbor_map[node["id"]]:
            if (counter % 10 == 0):
                node["title"] += "<br>::: " + neighbor
            else:
                node["title"] += " ::: " + neighbor
            node["value"] = len(neighbor_map[node["id"]])
            counter += 1

    got_net.show_buttons(filter_=['nodes', 'edges', 'physics'])

    got_net.write_html(temp_file_name)

    return temp_file_name
Exemplo n.º 4
0
    tot_export = sum(list(map(isemptycell, [y3, y4, y5, y6, y7, y8, y9])))

    #Creation of Edges
    a.add_edge(i,
               j,
               physics=False,
               width=tot_export // 10**10,
               weight=tot_export,
               title=product)

    # G.add_node(i)
    # G.add_node(j)
    G.add_edge(i, j, weight=tot_export)

#Complete dictionary of edges
neighbor_map = a.get_edges()

#Parsing the Graph
for e_node in neighbor_map:
    if outd.get(e_node['from']) == None:
        outd[e_node['from']] = {e_node['to']}
    else:
        outd[e_node['from']].add(e_node['to'])

    if ind.get(e_node['to']) == None:
        ind[e_node['to']] = {e_node['from']}
    else:
        ind[e_node['to']].add(e_node['from'])

    if outproduct.get(e_node['title']) == None:
        outproduct[e_node['title']] = {}
Exemplo n.º 5
0
    random_weight = random.randint(1, 5)
    G.add_edge(random_node_from, random_node_to, weight=random_weight)


number_of_nodes = st.slider("Number of nodes?", 0, 200, 10)
number_of_edges = st.slider("Number of edges?", 1, 400, 20)

G = nx.DiGraph()  # initilize the graph bidirectional

for x in range(number_of_nodes):
    generate_random_node(G)

for x in range(number_of_edges):
    generate_random_edge(G)

render_demo = st.button("Render Sample Node Network")

if (render_demo):
    nt = Network('500px', '500px')
    nt.from_nx(G)

    nt.inherit_edge_colors(False)
    for ix in nt.get_edges():
        ix["width"] = ix["weight"]
    nt.write_html('demo.html')
    print(nt)
    # display(HTML('demo.html'))
    HtmlFile = open("demo.html", 'r', encoding='utf-8')
    source_code = HtmlFile.read()
    components.html(source_code, height=700)
Exemplo n.º 6
0
    def configure_graph(self, graph):
        net = Network("70%", "70%")
        net.from_nx(graph)
        net.show_buttons()

        nx_edges = list(graph.edges(data="label"))
        nx_edges.sort(key=lambda edge: edge[0])
        py_vis_edges = net.get_edges()
        py_vis_edges.sort(key=lambda edge: edge["from"])

        for i, edge in enumerate(py_vis_edges):
            edge["label"] = nx_edges[i][2]
            if (edge["from"].startswith("Step:")
                    and edge["from"].startswith("Step:")):
                edge["dashes"] = True

        out_degrees = list(graph.out_degree())
        out_degrees.sort(key=lambda tup: tup[0])
        nodes = net.nodes
        nodes.sort(key=lambda node: node["id"])
        for i, node in enumerate(nodes):
            node["shape"] = "ellipse"
            if "Scenario:" in node['id']:
                node["color"] = {
                    "background": "red",
                    "border": "red",
                    "highlight": {
                        "background": "rgba(255,186,96,1)"
                    }
                }
                node["level"] = 1
                node["label"] = node["label"].replace("Scenario:", "")
            elif out_degrees[i][1] > 0:
                node["color"] = {
                    "background": "green",
                    "border": "green",
                    "highlight": {
                        "background": "rgba(255,186,96,1)"
                    }
                }
                node["level"] = 2
                node["label"] = node["label"].replace("Step:", "")
            elif "Step:" in node['id']:
                node["color"] = {
                    "background": "blue",
                    "border": "blue",
                    "highlight": {
                        "background": "rgba(255,186,96,1)"
                    }
                }
                node["level"] = 3
                node["label"] = node["label"].replace("Step:", "")

            label = node["label"].split(" ")
            for i, word in enumerate(label):
                if i != 0 and i % 5 == 0:
                    label[i] = word + '\n'

            node["label"] = " ".join(label)

        net.show(f"{self.config.OUTPUT_DIR}/graph.html")
Exemplo n.º 7
0
    #Flatten list of edges tuples to list of nodes
    nodes = list(itertools.chain(*nodes_bf))
    #Remove duplicates from the list
    nodes_list = list(dict.fromkeys(nodes))

    #Add nodes & edges to graph
    networkgraph.add_nodes(nodes_list,
                           value=[10] * len(nodes_list),
                           title=nodes_list,
                           label=nodes_list)
    networkgraph.add_edges(selected_edges)

    #Show to which kinases each kinase is connected
    #Show to which kinases each kinase is connected
    kinases_map = networkgraph.get_adj_list()
    network_map = networkgraph.get_edges()
    for key, value in kinases_map.items():
        kinases_map[key] = ([
            functools.reduce(operator.add,
                             ((x,
                               str([(y["width"]) for y in network_map
                                    if x in y["from"] and key in y["to"]
                                    or x in y["to"] and key in y["from"]]))))
            for x in value
        ])

    nodes_numerical = {nodes_all[n]: n for n in range(len(nodes_all))}
    nodes_names = dict(zip(list(nodes_numerical.values()), nodes_all))
    edges_numerical = [(nodes_numerical[selected_edges[n][0]],
                        nodes_numerical[selected_edges[n][1]],
                        abs(selected_edges[n][2]))