Exemplo n.º 1
0
    def new_draw(self):
        """
        draw the ARN using the class attributes

        Args:
            nothing

        Returns:
            a local generated web page

        """
        got_net = Network(height="750px",
                          width="100%",
                          bgcolor="#222222",
                          font_color="white")
        got_net.heading = "Nucleotids"
        # set the physics layout of the network
        got_net.barnes_hut()
        cp = 0
        for nuk in self.list_nucleotide:
            for tuples in nuk.tup:
                if tuples.relation in self.grps.keys():
                    relation_type = self.grps.get(tuples.relation)
                else:
                    relation_type = 0
                relation_type = str(nuk.paired_type)
                got_net.add_node(tuples.tup[0],
                                 label="(" + str(tuples.tup[0]) + ")" +
                                 " -> " + str(tuples.tup[1]) + " : " +
                                 str(relation_type),
                                 group=relation_type)
                got_net.add_node(tuples.tup[1],
                                 label="(" + str(tuples.tup[1]) + ")" +
                                 " -> " + str(tuples.tup[0]) + " : " +
                                 str(relation_type),
                                 group=relation_type)
                got_net.add_edge(tuples.tup[0], tuples.tup[1])
        cp += 1

        # got_net.add_node(src, src, title=src)
        # got_net.add_node(dst, dst, title=dst)
        # got_net.add_edge(src, dst, value=w)

        # neighbor_map = got_net.get_adj_list()

        # add neighbor data to node hover data
        '''for node in got_net.nodes:
            node["title"] += " Neighbors:<br>" + \
                "<br>".join(neighbor_map[node["id"]])
            node["value"] = len(neighbor_map[node["id"]])'''

        got_net.show("networkRNA.html")
Exemplo n.º 2
0
    def draw_list(self):
        """
        draw the ARN using the class attributes

        Args:
            nothing

        Returns:
            a local generated web page

        """
        got_net = Network(height="750px",
                          width="100%",
                          bgcolor="#222222",
                          font_color="white")
        got_net.heading = "motif detected"
        # set the physics layout of the network
        got_net.barnes_hut()
        cp = 0
        for nuk in self.list_motif:
            for tuples in nuk.tup:
                if tuples.relation in self.grps.keys():
                    relation_type = self.grps.get(tuples.relation)
                else:
                    relation_type = 0
                relation_type = str(nuk.paired_type)
                got_net.add_node(tuples.tup[0],
                                 label="(" + str(tuples.tup[0]) + ")" +
                                 " -> " + str(tuples.tup[1]) + " : " +
                                 str(relation_type),
                                 group=relation_type)
                got_net.add_node(tuples.tup[1],
                                 label="(" + str(tuples.tup[1]) + ")" +
                                 " -> " + str(tuples.tup[0]) + " : " +
                                 str(relation_type),
                                 group=relation_type)
                got_net.add_edge(tuples.tup[0], tuples.tup[1])
        cp += 1
Exemplo n.º 3
0
    def draw_graph_with_pyvis(triples_df,
                              dataset_name,
                              cause_column,
                              treat_column,
                              food_column='term1',
                              disease_column='term2',
                              food_node_color='green',
                              disease_node_color='darkgrey',
                              cause_color='lightcoral',
                              treat_color='palegreen'):
        nt = Network("800px", "100%")
        nt.heading = f'Food-disease relations identified in dataset: {dataset_name}'
        triples_df[food_column] = triples_df[food_column].apply(
            lambda x: x.lower())
        triples_df[disease_column] = triples_df[disease_column].apply(
            lambda x: x.lower())
        unique_pairs = triples_df.groupby([
            food_column, disease_column, 'entity_id_y', 'foodon', 'snomedct',
            'hansard', 'hansardClosest', 'hansardParent', 'synonyms'
        ]).mean()[[cause_column, treat_column]]
        unique_pairs = unique_pairs[(unique_pairs[cause_column] > 0) |
                                    (unique_pairs[treat_column] > 0)]
        print(unique_pairs)

        results = []
        for index_columns in unique_pairs.index:
            term1, term2, doid, foodon, snomedct, hansard, hansard_closest, hansard_parent, synonyms = index_columns
            all_evidence = triples_df[triples_df[food_column] == term1][
                triples_df[disease_column] == term2]['relation_candidates']
            if len(set(all_evidence.values)) > 1:

                all_evidence = '______'.join(set(all_evidence.values))
                label_term1 = triples_df[triples_df[food_column] == term1][
                    'term1'].value_counts().idxmax()
                label_term2 = triples_df[triples_df[disease_column] == term2][
                    'term2'].value_counts().idxmax()
                nt.add_node(term1,
                            label=label_term1,
                            color=food_node_color,
                            size=15)
                nt.add_node(term2,
                            label=label_term2,
                            color=disease_node_color,
                            size=15)
                row = unique_pairs.loc[index_columns, :]
                edge_color = cause_color if row[cause_column] > row[
                    treat_column] else treat_color if row[cause_column] < row[
                        treat_column] else 'purple'
                results.append({
                    'term1': label_term1,
                    'term2': label_term2,
                    'evidence': all_evidence,
                    'treat': row[treat_column],
                    'cause': row[cause_column],
                    'doid': doid,
                    'foodon': foodon,
                    'snomedct': snomedct,
                    'hansard': hansard,
                    'hansardClosest': hansard_closest,
                    'hansardParent': hansard_parent,
                    'synonyms': synonyms
                })
                edge_label = f'treat: {row[treat_column]} cause: {row[cause_column]} \n{all_evidence}'
                nt.add_edge(term1,
                            term2,
                            title=edge_label,
                            color=edge_color,
                            width=5)
        nt.show_buttons(
            filter_=['physics', 'nodes', 'edges', 'selection', 'layout'])
        pd.DataFrame(results).to_csv('visualization_triples_sum.csv')
        print(len(nt.edges))
        # nt.enable_physics(True)
        nt.show("nx.html")