Пример #1
0
    def __init__(self, bzrc):
        self.bzrc = bzrc
        self.constants = self.bzrc.get_constants()
        self.commands = []
        mytanks, othertanks, flags, shots = self.bzrc.get_lots_o_stuff()
        self.numoftanks = len(mytanks)
        self.timeuntilshot = [0]*self.numoftanks
        self.ismoving = [True]*self.numoftanks

        # Create Grid of points
        truepositive = float(self.constants['truepositive'])
        truenegative = float(self.constants['truenegative'])
        self.grid = Grid(800, 800, truepositive, truenegative)
        self.grid.init_window(800, 800)

        # For PD Control
        self.old_angle = [0]*self.numoftanks
        self.old_speed = [0]*self.numoftanks

        self.sample_radius = 100
        self.k = 0.1
        self.field = PotentialFieldsCalculator(self.grid, self.sample_radius, 80.0, 0.0, 0.3, 0.45)
Пример #2
0
class Agent(object):
    """Class handles all command and control logic for a teams tanks."""

    def __init__(self, bzrc):
        self.bzrc = bzrc
        self.constants = self.bzrc.get_constants()
        self.commands = []
        mytanks, othertanks, flags, shots = self.bzrc.get_lots_o_stuff()
        self.numoftanks = len(mytanks)
        self.timeuntilshot = [0]*self.numoftanks
        self.ismoving = [True]*self.numoftanks

        # Create Grid of points
        truepositive = float(self.constants['truepositive'])
        truenegative = float(self.constants['truenegative'])
        self.grid = Grid(800, 800, truepositive, truenegative)
        self.grid.init_window(800, 800)

        # For PD Control
        self.old_angle = [0]*self.numoftanks
        self.old_speed = [0]*self.numoftanks

        self.sample_radius = 100
        self.k = 0.1
        self.field = PotentialFieldsCalculator(self.grid, self.sample_radius, 80.0, 0.0, 0.3, 0.45)

    def tick(self, time_diff):
        """Some time has passed; decide what to do next."""

        mytanks, othertanks, flags, shots = self.bzrc.get_lots_o_stuff()
        self.mytanks = mytanks

        self.commands = []

        for tank in mytanks:
            # update the grid
            self.grid.update(self.bzrc.get_occgrid(tank.index))

            # move
            self.create_command(tank, time_diff)

        self.grid.draw_grid()

        results = self.bzrc.do_commands(self.commands)

    def create_command(self, tank, time_diff):
        """Set command to move to given coordinates."""

        #pprint (vars(tank))

        speed = 1
        angvel = 0
        shoot = True
        kp = 1
        kd = -.07

        if time_diff <= 0:
            return

        # get potential field at this location and add to enemy coords
        x, y = self.field.calculate_potential(tank.x, tank.y)

        # PD Controller - angle
        target_angle = math.atan2(y, x)
        angle_remaining = self.angle_remaining(tank.angle, target_angle)
        angvel = self.pd_angvel(tank, target_angle, time_diff)

        if angvel > 1:
            angvel = 1
        elif angvel < -1:
            angvel = -1

        if abs(angle_remaining) <= math.pi / 6:
            speed = self.pd_speed(tank, x, y, time_diff)
        else:
            speed = 1 - abs(angle_remaining / math.pi)

        if speed > 1:
            speed = 1.0
        elif speed < -1:
            speed = -1.0

        #print "speed", speed

        #self.printSurrounding(tank.x, tank.y, 3)

        command = Command(tank.index, speed, angvel, shoot)
        self.commands.append(command)
        self.old_angle[tank.index] = tank.angle

    def printSurrounding(self, x, y, radius):
        print ':::New Grid:::', x, y
        surroundingGrid = self.grid.getSurroundings(x, y, radius)
        for x in range(len(surroundingGrid)):
            print surroundingGrid[x]

    def pd_angvel(self, tank, target_angle, time_diff):
        """PD Controller for the angular velocity of the tank."""

        kp = 1.0
        kd = -0.2

        angle_remaining = self.angle_remaining(tank.angle, target_angle)
        differential = self.angle_remaining(self.old_angle[tank.index], tank.angle) / time_diff

        angvel = ( kp * angle_remaining ) + ( kd * differential )
        return angvel

    def pd_speed(self, tank, target_x, target_y, time_diff):
        """PD Controller for the speed of the tank."""

        kp = 1.0
        kd = -0.2

        x_remaining = target_x - tank.x
        y_remaining = target_y - tank.y
        distance_remaining = math.sqrt( ( x_remaining ) ** 2 + ( y_remaining ) ** 2 )
        current_speed = math.sqrt( tank.vx ** 2 + tank.vy ** 2 )
        differential = current_speed - self.old_speed[tank.index] / time_diff

        speed = ( kp * distance_remaining ) + ( kd * differential )
        return speed

    def angle_remaining(self, tank_angle, target_angle):
        """Find the angle remaining (in radians) between the tank and the target."""

        tank_angle = self.normalize_angle(tank_angle)
        target_angle = self.normalize_angle(target_angle)

        # If the angles are on the same hemisphere, target - tank.
        if tank_angle * target_angle > 0:
            return target_angle - tank_angle

        # Otherwise they are on opposite hemispheres.
        positive_angle = max(tank_angle, target_angle)
        negative_angle = min(tank_angle, target_angle)

        tank_positive = True
        if tank_angle < 0:
            tank_positive = False

        # Compare the angles to turn right and left.
        right_angle = -1 * ( positive_angle - negative_angle )
        left_angle = 2 * math.pi - positive_angle + negative_angle

        if not tank_positive:
            temp_angle = -1 * right_angle
            right_angle = -1 * left_angle
            left_angle = temp_angle

        # Pick the smallest angle.
        if abs(right_angle) <= abs(left_angle):
            return right_angle

        return left_angle

    def normalize_angle(self, angle):
        """Make any angle be between +/- pi."""
        angle -= 2 * math.pi * int (angle / (2 * math.pi))
        if angle <= -math.pi:
            angle += 2 * math.pi
        elif angle > math.pi:
            angle -= 2 * math.pi
        return angle