示例#1
0
def read_attributes(path):
    print("Reading execution attributes from ", path)
    attr = ExecutionAttribute()

    lines = [line.rstrip('\n') for line in open(path)]

    attr.seq = int(lines[0].split("=", 1)[1])
    attr.img_width = int(lines[1].split("=", 1)[1])
    attr.img_height = int(lines[2].split("=", 1)[1])
    attr.path = lines[3].split("=", 1)[1]
    attr.summ_basename = lines[4].split("=", 1)[1]
    attr.epochs = int(lines[5].split("=", 1)[1])
    attr.batch_size = int(lines[6].split("=", 1)[1])
    attr.train_data_dir = lines[7].split("=", 1)[1]
    attr.validation_data_dir = lines[8].split("=", 1)[1]
    attr.test_data_dir = lines[9].split("=", 1)[1]
    attr.steps_train = int(lines[10].split("=", 1)[1])
    attr.steps_valid = int(lines[11].split("=", 1)[1])
    attr.steps_test = int(lines[12].split("=", 1)[1])
    attr.architecture = lines[13].split("=", 1)[1]
    attr.curr_basename = lines[14].split("=", 1)[1]

    return attr
示例#2
0
#tf.set_random_seed(seed=seed)

# Summary Information
SUMMARY_PATH = "/mnt/data/results"
# SUMMARY_PATH="c:/temp/results"
# SUMMARY_PATH="/tmp/results"
NETWORK_FORMAT = "Unimodal"
IMAGE_FORMAT = "2D"
SUMMARY_BASEPATH = create_results_dir(SUMMARY_PATH, NETWORK_FORMAT, IMAGE_FORMAT)

# how many times to execute the training/validation/test cycle
CYCLES = 20

#
# Execution Attributes
attr = ExecutionAttribute()

# dimensions of our images.
attr.img_width, attr.img_height = 96, 96

# network parameters
# attr.path='C:/Users/hp/Downloads/cars_train'
# attr.path='/home/amenegotto/dataset/2d/sem_pre_proc_mini/
attr.path = '/mnt/data/image/2d/com_pre_proc/'
attr.summ_basename = get_base_name(SUMMARY_BASEPATH)
attr.s3_path = NETWORK_FORMAT + '/' + IMAGE_FORMAT
attr.epochs = 100
attr.batch_size = 128
attr.set_dir_names()

if K.image_data_format() == 'channels_first':