def read_attributes(path): print("Reading execution attributes from ", path) attr = ExecutionAttribute() lines = [line.rstrip('\n') for line in open(path)] attr.seq = int(lines[0].split("=", 1)[1]) attr.img_width = int(lines[1].split("=", 1)[1]) attr.img_height = int(lines[2].split("=", 1)[1]) attr.path = lines[3].split("=", 1)[1] attr.summ_basename = lines[4].split("=", 1)[1] attr.epochs = int(lines[5].split("=", 1)[1]) attr.batch_size = int(lines[6].split("=", 1)[1]) attr.train_data_dir = lines[7].split("=", 1)[1] attr.validation_data_dir = lines[8].split("=", 1)[1] attr.test_data_dir = lines[9].split("=", 1)[1] attr.steps_train = int(lines[10].split("=", 1)[1]) attr.steps_valid = int(lines[11].split("=", 1)[1]) attr.steps_test = int(lines[12].split("=", 1)[1]) attr.architecture = lines[13].split("=", 1)[1] attr.curr_basename = lines[14].split("=", 1)[1] return attr
# fix seed for reproducible results (only works on CPU, not GPU) # seed = 9 # np.random.seed(seed=seed) # tf.set_random_seed(seed=seed) # Summary Information SUMMARY_PATH = "/mnt/data/results" NETWORK_FORMAT = "Unimodal" IMAGE_FORMAT = "2D" SUMMARY_BASEPATH = create_results_dir(SUMMARY_PATH, NETWORK_FORMAT, IMAGE_FORMAT) # Execution Attributes attr = ExecutionAttribute() attr.architecture = 'InceptionV3' results_path = create_results_dir(SUMMARY_BASEPATH, 'fine-tuning', attr.architecture) attr.summ_basename = get_base_name(results_path) attr.s3_path = NETWORK_FORMAT + '/' + IMAGE_FORMAT attr.path = '/mnt/data/image/2d/sem_pre_proc' attr.set_dir_names() attr.batch_size = 128 # try 4, 8, 16, 32, 64, 128, 256 dependent on CPU/GPU memory capacity (powers of 2 values). attr.epochs = 500 # how many times to execute the training/validation/test cycle CYCLES = 1 for i in range(0, CYCLES):
# Summary Information IMG_TYPE = "com_pre_proc/" SUMMARY_PATH = "/mnt/data/results" # SUMMARY_PATH="c:/temp/results" # SUMMARY_PATH="/tmp/results" NETWORK_FORMAT = "Multimodal" IMAGE_FORMAT = "2D" SUMMARY_BASEPATH = create_results_dir(SUMMARY_PATH, NETWORK_FORMAT, IMAGE_FORMAT) INTERMEDIATE_FUSION = True LATE_FUSION = False # Execution Attributes attr = ExecutionAttribute() attr.architecture = 'vgg19' attr.csv_path = 'csv/clinical_data.csv' attr.s3_path = NETWORK_FORMAT + '/' + IMAGE_FORMAT attr.numpy_path = '/mnt/data/image/2d/numpy/' + IMG_TYPE # attr.numpy_path = '/home/amenegotto/dataset/2d/numpy/' + IMG_TYPE attr.path = '/mnt/data/image/2d/' + IMG_TYPE results_path = create_results_dir(SUMMARY_BASEPATH, 'fine-tuning', attr.architecture) attr.summ_basename = get_base_name(results_path) attr.set_dir_names() attr.batch_size = 128 attr.epochs = 500 attr.img_width = 224 attr.img_height = 224
# Summary Information SUMMARY_PATH="/mnt/data/fine-tuning/Xception" #SUMMARY_PATH="c:/temp/results" #SUMMARY_PATH="/tmp/results" NETWORK_FORMAT="Unimodal" IMAGE_FORMAT="2D" SUMMARY_BASEPATH=create_results_dir(SUMMARY_PATH, NETWORK_FORMAT, IMAGE_FORMAT) # how many times to execute the training/validation/test CYCLES = 1 # # Execution Attributes INITIAL_EPOCH=1 attr = ExecutionAttribute() attr.architecture = 'Xception' results_path = create_results_dir('/mnt/data', 'fine-tuning', attr.architecture) attr.summ_basename = get_base_name(results_path) attr.path='/mnt/data/image/2d/com_pre_proc' attr.set_dir_names() attr.batch_size = 64 # try 4, 8, 16, 32, 64, 128, 256 dependent on CPU/GPU memory capacity (powers of 2 values). attr.epochs = 15 # hyper parameters for model nb_classes = 2 # number of classes based_model_last_block_layer_number = 126 # value is based on based model selected. attr.img_width, attr.img_height = 299, 299 # change based on the shape/structure of your images learn_rate = 1e-4 # sgd learning rate momentum = .9 # sgd momentum to avoid local minimum transformation_ratio = .05 # how aggressive will be the data augmentation/transformation