LATE_FUSION = False # how many times to execute the training/validation/test cycle CYCLES = 1 # Execution Attributes attr = ExecutionAttribute() # dimensions of our images. attr.img_width, attr.img_height = 96, 96 # network parameters attr.csv_path = 'csv/clinical_data.csv' attr.path = '/mnt/data/image/2d/' + IMG_TYPE # attr.path = '/home/amenegotto/dataset/2d/' + IMG_TYPE attr.numpy_path = '/mnt/data/image/2d/numpy/' + IMG_TYPE # attr.numpy_path = '/home/amenegotto/dataset/2d/numpy/' + IMG_TYPE attr.summ_basename = get_base_name(SUMMARY_BASEPATH) attr.epochs = 2 attr.batch_size = 32 attr.set_dir_names() if K.image_data_format() == 'channels_first': input_image_s = (3, attr.img_width, attr.img_height) else: input_image_s = (attr.img_width, attr.img_height, 3) input_attributes_s = (20,) for i in range(0, CYCLES):
# SUMMARY_PATH="/tmp/results" NETWORK_FORMAT = "Multimodal" IMAGE_FORMAT = "2D" SUMMARY_BASEPATH = create_results_dir(SUMMARY_PATH, NETWORK_FORMAT, IMAGE_FORMAT) INTERMEDIATE_FUSION = False LATE_FUSION = True # how many times to execute the training/validation/test cycle CYCLES = 1 # # Execution Attributes attr = ExecutionAttribute() # numpy_path = '/home/amenegotto/dataset/2d/numpy/sem_pre_proc_mini/' attr.numpy_path = '/mnt/data/image/2d/numpy/sem_pre_proc/' # dimensions of our images. attr.img_width, attr.img_height = 96, 96 # network parameters # attr.path='C:/Users/hp/Downloads/cars_train' # attr.path='/home/amenegotto/dataset/2d/sem_pre_proc_mini/ attr.csv_path = 'csv/clinical_data.csv' # attr.path = '/mnt/data/image/2d/com_pre_proc/' attr.summ_basename = get_base_name(SUMMARY_BASEPATH) attr.epochs = 5 attr.batch_size = 32 attr.set_dir_names() if K.image_data_format() == 'channels_first': input_image_s = (3, attr.img_width, attr.img_height)