示例#1
0
文件: ftdi.py 项目: greyseason/pyftdi
 def test_multiple_interface(self):
     # the following calls used to create issues (several interfaces from
     # the same device)
     ftdi1 = Ftdi()
     ftdi1.open(interface=1)
     ftdi2 = Ftdi()
     ftdi2.open(interface=2)
     import time
     for x in range(5):
         print "If#1: ", hex(ftdi1.poll_modem_status())
         print "If#2: ", ftdi2.modem_status()
         time.sleep(0.500)
     ftdi1.close()
     ftdi2.close()
示例#2
0
文件: ftdi.py 项目: etihwnad/pyftdi
    def test_multiple_interface(self):
        # the following calls used to create issues (several interfaces from
        # the same device)
        ftdi1 = Ftdi()
        ftdi1.open(interface=1)
        ftdi2 = Ftdi()
        ftdi2.open(interface=2)
        import time

        for x in range(5):
            print "If#1: ", hex(ftdi1.poll_modem_status())
            print "If#2: ", ftdi2.modem_status()
            time.sleep(0.500)
        ftdi1.close()
        ftdi2.close()
示例#3
0
文件: jtag.py 项目: Tfou57/robomow
class JtagController(object):
    """JTAG master of an FTDI device"""

    TCK_BIT = 0x01   # FTDI output
    TDI_BIT = 0x02   # FTDI output
    TDO_BIT = 0x04   # FTDI input
    TMS_BIT = 0x08   # FTDI output
    TRST_BIT = 0x10  # FTDI output, not available on 2232 JTAG debugger
    JTAG_MASK = 0x1f
    FTDI_PIPE_LEN = 512

    # Private API
    def __init__(self, trst=False, frequency=3.0E6):
        """
        trst uses the nTRST optional JTAG line to hard-reset the TAP
          controller
        """
        self._ftdi = Ftdi()
        self._trst = trst
        self._frequency = frequency
        self.direction = JtagController.TCK_BIT | \
                         JtagController.TDI_BIT | \
                         JtagController.TMS_BIT | \
                         (self._trst and JtagController.TRST_BIT or 0)
        self._last = None # Last deferred TDO bit
        self._write_buff = Array('B')

    def __del__(self):
        self.close()

    # Public API
    def configure(self, vendor, product, interface):
        """Configure the FTDI interface as a JTAG controller"""
        curfreq = self._ftdi.open_mpsse(vendor, product, interface,
                                        direction=self.direction,
                                        #initial=0x0,
                                        frequency=self._frequency)
        # FTDI requires to initialize all GPIOs before MPSSE kicks in
        cmd = Array('B', [Ftdi.SET_BITS_LOW, 0x0, self.direction])
        self._ftdi.write_data(cmd)

    def close(self):
        if self._ftdi:
            self._ftdi.close()
            self._ftdi = None

    def purge(self):
        self._ftdi.purge_buffers()

    def reset(self, sync=False):
        """Reset the attached TAP controller.
           sync sends the command immediately (no caching)
        """
        # we can either send a TRST HW signal or perform 5 cycles with TMS=1
        # to move the remote TAP controller back to 'test_logic_reset' state
        # do both for now
        if not self._ftdi:
            raise JtagError("FTDI controller terminated")
        if self._trst:
            # nTRST
            value = 0
            cmd = Array('B', [Ftdi.SET_BITS_LOW, value, self.direction])
            self._ftdi.write_data(cmd)
            time.sleep(0.1)
            # nTRST should be left to the high state
            value = JtagController.TRST_BIT
            cmd = Array('B', [Ftdi.SET_BITS_LOW, value, self.direction])
            self._ftdi.write_data(cmd)
            time.sleep(0.1)
        # TAP reset (even with HW reset, could be removed though)
        self.write_tms(BitSequence('11111'))
        if sync:
            self.sync()

    def sync(self):
        if not self._ftdi:
            raise JtagError("FTDI controller terminated")
        if self._write_buff:
            self._ftdi.write_data(self._write_buff)
            self._write_buff = Array('B')

    def write_tms(self, tms):
        """Change the TAP controller state"""
        if not isinstance(tms, BitSequence):
            raise JtagError('Expect a BitSequence')
        length = len(tms)
        if not (0 < length < 8):
            raise JtagError('Invalid TMS length')
        out = BitSequence(tms, length=8)
        # apply the last TDO bit
        if self._last is not None:
            out[7] = self._last
        # print "TMS", tms, (self._last is not None) and 'w/ Last' or ''
        # reset last bit
        self._last = None
        cmd = Array('B', [Ftdi.WRITE_BITS_TMS_NVE, length-1, out.tobyte()])
        self._stack_cmd(cmd)
        self.sync()
        #self._ftdi.validate_mpsse()

    def read(self, length):
        """Read out a sequence of bits from TDO"""
        byte_count = length//8
        bit_count = length-8*byte_count
        bs = BitSequence()
        if byte_count:
            bytes = self._read_bytes(byte_count)
            bs.append(bytes)
        if bit_count:
            bits = self._read_bits(bit_count)
            bs.append(bits)
        return bs

    def write(self, out, use_last=True):
        """Write a sequence of bits to TDI"""
        if isinstance(out, str):
            out = BitSequence(bytes_=out)
        elif not isinstance(out, BitSequence):
            out = BitSequence(out)
        if use_last:
            (out, self._last) = (out[:-1], bool(out[-1]))
        byte_count = len(out)//8
        pos = 8*byte_count
        bit_count = len(out)-pos
        if byte_count:
            self._write_bytes(out[:pos])
        if bit_count:
            self._write_bits(out[pos:])

    def shift_register(self, out, use_last=False):
        """Shift a BitSequence into the current register and retrieve the
           register output"""
        if not isinstance(out, BitSequence):
            return JtagError('Expect a BitSequence')
        length = len(out)
        if use_last:
            (out, self._last) = (out[:-1], int(out[-1]))
        byte_count = len(out)//8
        pos = 8*byte_count
        bit_count = len(out)-pos
        if not byte_count and not bit_count:
            raise JtagError("Nothing to shift")
        if byte_count:
            blen = byte_count-1
            #print "RW OUT %s" % out[:pos]
            cmd = Array('B', [Ftdi.RW_BYTES_PVE_NVE_LSB, blen, (blen>>8)&0xff])
            cmd.extend(out[:pos].tobytes(msby=True))
            self._stack_cmd(cmd)
            #print "push %d bytes" % byte_count
        if bit_count:
            #print "RW OUT %s" % out[pos:]
            cmd = Array('B', [Ftdi.RW_BITS_PVE_NVE_LSB, bit_count-1])
            cmd.append(out[pos:].tobyte())
            self._stack_cmd(cmd)
            #print "push %d bits" % bit_count
        self.sync()
        bs = BitSequence()
        byte_count = length//8
        pos = 8*byte_count
        bit_count = length-pos
        if byte_count:
            data = self._ftdi.read_data_bytes(byte_count, 4)
            if not data:
                raise JtagError('Unable to read data from FTDI')
            byteseq = BitSequence(bytes_=data, length=8*byte_count)
            #print "RW IN %s" % byteseq
            bs.append(byteseq)
            #print "pop %d bytes" % byte_count
        if bit_count:
            data = self._ftdi.read_data_bytes(1, 4)
            if not data:
                raise JtagError('Unable to read data from FTDI')
            byte = data[0]
            # need to shift bits as they are shifted in from the MSB in FTDI
            byte >>= 8-bit_count
            bitseq = BitSequence(byte, length=bit_count)
            bs.append(bitseq)
            #print "pop %d bits" % bit_count
        if len(bs) != length:
            raise AssertionError("Internal error")
        #self._ftdi.validate_mpsse()
        return bs

    def _stack_cmd(self, cmd):
        if not isinstance(cmd, Array):
            raise TypeError('Expect a byte array')
        if not self._ftdi:
            raise JtagError("FTDI controller terminated")
        # Currrent buffer + new command + send_immediate
        if (len(self._write_buff)+len(cmd)+1) >= JtagController.FTDI_PIPE_LEN:
            self.sync()
        self._write_buff.extend(cmd)

    def _read_bits(self, length):
        """Read out bits from TDO"""
        data = ''
        if length > 8:
            raise JtagError("Cannot fit into FTDI fifo")
        cmd = Array('B', [Ftdi.READ_BITS_NVE_LSB, length-1])
        self._stack_cmd(cmd)
        self.sync()
        data = self._ftdi.read_data_bytes(1, 4)
        # need to shift bits as they are shifted in from the MSB in FTDI
        byte = ord(data) >> 8-bit_count
        bs = BitSequence(byte, length=length)
        #print "READ BITS %s" % (bs)
        return bs

    def _write_bits(self, out):
        """Output bits on TDI"""
        length = len(out)
        byte = out.tobyte()
        #print "WRITE BITS %s" % out
        cmd = Array('B', [Ftdi.WRITE_BITS_NVE_LSB, length-1, byte])
        self._stack_cmd(cmd)

    def _read_bytes(self, length):
        """Read out bytes from TDO"""
        data = ''
        if length > JtagController.FTDI_PIPE_LEN:
            raise JtagError("Cannot fit into FTDI fifo")
        alen = length-1
        cmd = Array('B', [Ftdi.READ_BYTES_NVE_LSB, alen&0xff, (alen>>8)&0xff])
        self._stack_cmd(cmd)
        self.sync()
        data = self._ftdi.read_data_bytes(length, 4)
        bs = BitSequence(bytes_=data, length=8*length)
        #print "READ BYTES %s" % bs
        return bs

    def _write_bytes(self, out):
        """Output bytes on TDI"""
        bytes_ = out.tobytes(msby=True) # don't ask...
        olen = len(bytes_)-1
        #print "WRITE BYTES %s" % out
        cmd = Array('B', [Ftdi.WRITE_BYTES_NVE_LSB, olen&0xff, (olen>>8)&0xff])
        cmd.extend(bytes_)
        self._stack_cmd(cmd)
示例#4
0
文件: spi.py 项目: etihwnad/pyftdi
class SpiController(object):
    """SPI master"""

    SCK_BIT = 0x01
    DO_BIT = 0x02
    DI_BIT = 0x04
    CS_BIT = 0x08
    PAYLOAD_MAX_LENGTH = 0x10000 # 16 bits max

    def __init__(self, silent_clock=False, cs_count=4):
        """Instanciate a SpiController.
           silent_clock should be set to avoid clocking out SCLK when all /CS
           signals are released. This clock beat is used to enforce a delay
           between /CS signal activation. When weird SPI devices are used,
           SCLK beating may cause trouble. In this case, silent_clock should
           be set but beware that SCLK line should be fitted with a pull-down
           resistor, as SCLK is high-Z during this short period of time.
           cs_count is the number of /CS lines (one per device to drive on the
           SPI bus)
        """
        self._ftdi = Ftdi()
        self._cs_bits = ((SpiController.CS_BIT << cs_count) - 1) & \
                         ~(SpiController.CS_BIT - 1)
        self._ports = [None] * cs_count
        self._direction = self._cs_bits | \
                          SpiController.DO_BIT | \
                          SpiController.SCK_BIT
        self._cs_high = Array('B')
        if silent_clock:
            # Set SCLK as input to avoid emitting clock beats
            self._cs_high.extend([Ftdi.SET_BITS_LOW, self._cs_bits,
                                    self._direction&~SpiController.SCK_BIT])
        # /CS to SCLK delay, use 8 clock cycles as a HW tempo
        self._cs_high.extend([Ftdi.WRITE_BITS_TMS_NVE, 8-1, 0xff])
        # Restore idle state
        self._cs_high.extend([Ftdi.SET_BITS_LOW, self._cs_bits,
                              self._direction])
        self._immediate = Array('B', [Ftdi.SEND_IMMEDIATE])
        self._frequency = 0.0

    def configure(self, vendor, product, interface, frequency=6.0E6,
            loopback=False):
        """Configure the FTDI interface as a SPI master"""
        self._frequency = \
            self._ftdi.open_mpsse(vendor, product, interface,
                                  direction=self._direction,
                                  initial=self._cs_bits, # /CS all high
                                  frequency=frequency,
                                  loopback=loopback)

    def terminate(self):
        """Close the FTDI interface"""
        if self._ftdi:
            self._ftdi.close()
            self._ftdi = None

    def get_port(self, cs):
        """Obtain a SPI port to drive a SPI device selected by cs"""
        if not self._ftdi:
            raise SpiIOError("FTDI controller not initialized")
        if cs >= len(self._ports):
            raise SpiIOError("No such SPI port")
        if not self._ports[cs]:
            cs_state = 0xFF & ~((SpiController.CS_BIT<<cs) |
                                 SpiController.SCK_BIT |
                                 SpiController.DO_BIT)
            cs_cmd = Array('B', [Ftdi.SET_BITS_LOW,
                                 cs_state,
                                 self._direction])
            self._ports[cs] = SpiPort(self, cs_cmd)
            self._flush()
        return self._ports[cs]

    @property
    def frequency_max(self):
        """Returns the maximum SPI clock"""
        return self._ftdi.frequency_max

    @property
    def frequency(self):
        """Returns the current SPI clock"""
        return self._frequency

    def _exchange(self, frequency, cs_cmd, out, readlen):
        """Perform a half-duplex transaction with the SPI slave"""
        if not self._ftdi:
            raise SpiIOError("FTDI controller not initialized")
        if len(out) > SpiController.PAYLOAD_MAX_LENGTH:
            raise SpiIOError("Output payload is too large")
        if readlen > SpiController.PAYLOAD_MAX_LENGTH:
            raise SpiIOError("Input payload is too large")
        if self._frequency != frequency:
            freq = self._ftdi.set_frequency(frequency)
            # store the requested value, not the actual one (best effort)
            self._frequency = frequency
        write_cmd = struct.pack('<BH', Ftdi.WRITE_BYTES_NVE_MSB, len(out)-1)
        if readlen:
            read_cmd = struct.pack('<BH', Ftdi.READ_BYTES_NVE_MSB, readlen-1)
            cmd = Array('B', cs_cmd)
            cmd.fromstring(write_cmd)
            cmd.extend(out)
            cmd.fromstring(read_cmd)
            cmd.extend(self._immediate)
            cmd.extend(self._cs_high)
            self._ftdi.write_data(cmd)
            # USB read cycle may occur before the FTDI device has actually
            # sent the data, so try to read more than once if no data is
            # actually received
            data = self._ftdi.read_data_bytes(readlen, 4)
        else:
            cmd = Array('B', cs_cmd)
            cmd.fromstring(write_cmd)
            cmd.extend(out)
            cmd.extend(self._cs_high)
            self._ftdi.write_data(cmd)
            data = Array('B')
        return data

    def _flush(self):
        """Flush the HW FIFOs"""
        self._ftdi.write_data(self._immediate)
        self._ftdi.purge_buffers()
示例#5
0
文件: jtag.py 项目: greyseason/pyftdi
class JtagController(object):
    """JTAG master of an FTDI device"""

    TCK_BIT = 0x01  # FTDI output
    TDI_BIT = 0x02  # FTDI output
    TDO_BIT = 0x04  # FTDI input
    TMS_BIT = 0x08  # FTDI output
    TRST_BIT = 0x10  # FTDI output, not available on 2232 JTAG debugger
    JTAG_MASK = 0x1f
    FTDI_PIPE_LEN = 512

    # Private API
    def __init__(self, trst=False, frequency=3.0E6):
        """
        trst uses the nTRST optional JTAG line to hard-reset the TAP
          controller
        """
        self._ftdi = Ftdi()
        self._trst = trst
        self._frequency = frequency
        self.direction = JtagController.TCK_BIT | \
                         JtagController.TDI_BIT | \
                         JtagController.TMS_BIT | \
                         (self._trst and JtagController.TRST_BIT or 0)
        self._last = None  # Last deferred TDO bit
        self._write_buff = Array('B')

    def __del__(self):
        self.close()

    # Public API
    def configure(self, vendor, product, interface):
        """Configure the FTDI interface as a JTAG controller"""
        curfreq = self._ftdi.open_mpsse(
            vendor,
            product,
            interface,
            direction=self.direction,
            #initial=0x0,
            frequency=self._frequency)
        # FTDI requires to initialize all GPIOs before MPSSE kicks in
        cmd = Array('B', [Ftdi.SET_BITS_LOW, 0x0, self.direction])
        self._ftdi.write_data(cmd)

    def close(self):
        if self._ftdi:
            self._ftdi.close()
            self._ftdi = None

    def purge(self):
        self._ftdi.purge_buffers()

    def reset(self, sync=False):
        """Reset the attached TAP controller.
           sync sends the command immediately (no caching)
        """
        # we can either send a TRST HW signal or perform 5 cycles with TMS=1
        # to move the remote TAP controller back to 'test_logic_reset' state
        # do both for now
        if not self._ftdi:
            raise JtagError("FTDI controller terminated")
        if self._trst:
            # nTRST
            value = 0
            cmd = Array('B', [Ftdi.SET_BITS_LOW, value, self.direction])
            self._ftdi.write_data(cmd)
            time.sleep(0.1)
            # nTRST should be left to the high state
            value = JtagController.TRST_BIT
            cmd = Array('B', [Ftdi.SET_BITS_LOW, value, self.direction])
            self._ftdi.write_data(cmd)
            time.sleep(0.1)
        # TAP reset (even with HW reset, could be removed though)
        self.write_tms(BitSequence('11111'))
        if sync:
            self.sync()

    def sync(self):
        if not self._ftdi:
            raise JtagError("FTDI controller terminated")
        if self._write_buff:
            self._ftdi.write_data(self._write_buff)
            self._write_buff = Array('B')

    def write_tms(self, tms):
        """Change the TAP controller state"""
        if not isinstance(tms, BitSequence):
            raise JtagError('Expect a BitSequence')
        length = len(tms)
        if not (0 < length < 8):
            raise JtagError('Invalid TMS length')
        out = BitSequence(tms, length=8)
        # apply the last TDO bit
        if self._last is not None:
            out[7] = self._last
        # print "TMS", tms, (self._last is not None) and 'w/ Last' or ''
        # reset last bit
        self._last = None
        cmd = Array('B', [Ftdi.WRITE_BITS_TMS_NVE, length - 1, out.tobyte()])
        self._stack_cmd(cmd)
        self.sync()
        #self._ftdi.validate_mpsse()

    def read(self, length):
        """Read out a sequence of bits from TDO"""
        byte_count = length // 8
        bit_count = length - 8 * byte_count
        bs = BitSequence()
        if byte_count:
            bytes = self._read_bytes(byte_count)
            bs.append(bytes)
        if bit_count:
            bits = self._read_bits(bit_count)
            bs.append(bits)
        return bs

    def write(self, out, use_last=True):
        """Write a sequence of bits to TDI"""
        if isinstance(out, str):
            if len(out) > 1:
                self._write_bytes_raw(out[:-1])
                out = out[-1]
            out = BitSequence(bytes_=out)
        elif not isinstance(out, BitSequence):
            out = BitSequence(out)
        if use_last:
            (out, self._last) = (out[:-1], bool(out[-1]))
        byte_count = len(out) // 8
        pos = 8 * byte_count
        bit_count = len(out) - pos
        if byte_count:
            self._write_bytes(out[:pos])
        if bit_count:
            self._write_bits(out[pos:])

    def shift_register(self, out, use_last=False):
        """Shift a BitSequence into the current register and retrieve the
           register output"""
        if not isinstance(out, BitSequence):
            return JtagError('Expect a BitSequence')
        length = len(out)
        if use_last:
            (out, self._last) = (out[:-1], int(out[-1]))
        byte_count = len(out) // 8
        pos = 8 * byte_count
        bit_count = len(out) - pos
        if not byte_count and not bit_count:
            raise JtagError("Nothing to shift")
        if byte_count:
            blen = byte_count - 1
            #print "RW OUT %s" % out[:pos]
            cmd = Array('B',
                        [Ftdi.RW_BYTES_PVE_NVE_LSB, blen, (blen >> 8) & 0xff])
            cmd.extend(out[:pos].tobytes(msby=True))
            self._stack_cmd(cmd)
            #print "push %d bytes" % byte_count
        if bit_count:
            #print "RW OUT %s" % out[pos:]
            cmd = Array('B', [Ftdi.RW_BITS_PVE_NVE_LSB, bit_count - 1])
            cmd.append(out[pos:].tobyte())
            self._stack_cmd(cmd)
            #print "push %d bits" % bit_count
        self.sync()
        bs = BitSequence()
        byte_count = length // 8
        pos = 8 * byte_count
        bit_count = length - pos
        if byte_count:
            data = self._ftdi.read_data_bytes(byte_count, 4)
            if not data:
                raise JtagError('Unable to read data from FTDI')
            byteseq = BitSequence(bytes_=data, length=8 * byte_count)
            #print "RW IN %s" % byteseq
            bs.append(byteseq)
            #print "pop %d bytes" % byte_count
        if bit_count:
            data = self._ftdi.read_data_bytes(1, 4)
            if not data:
                raise JtagError('Unable to read data from FTDI')
            byte = data[0]
            # need to shift bits as they are shifted in from the MSB in FTDI
            byte >>= 8 - bit_count
            bitseq = BitSequence(byte, length=bit_count)
            bs.append(bitseq)
            #print "pop %d bits" % bit_count
        if len(bs) != length:
            raise AssertionError("Internal error")
        #self._ftdi.validate_mpsse()
        return bs

    def _stack_cmd(self, cmd):
        if not isinstance(cmd, Array):
            raise TypeError('Expect a byte array')
        if not self._ftdi:
            raise JtagError("FTDI controller terminated")
        # Currrent buffer + new command + send_immediate
        if (len(self._write_buff) + len(cmd) +
                1) >= JtagController.FTDI_PIPE_LEN:
            self.sync()
        self._write_buff.extend(cmd)

    def _read_bits(self, length):
        """Read out bits from TDO"""
        data = ''
        if length > 8:
            raise JtagError("Cannot fit into FTDI fifo")
        cmd = Array('B', [Ftdi.READ_BITS_NVE_LSB, length - 1])
        self._stack_cmd(cmd)
        self.sync()
        data = self._ftdi.read_data_bytes(1, 4)
        # need to shift bits as they are shifted in from the MSB in FTDI
        byte = ord(data) >> 8 - bit_count
        bs = BitSequence(byte, length=length)
        #print "READ BITS %s" % (bs)
        return bs

    def _write_bits(self, out):
        """Output bits on TDI"""
        length = len(out)
        byte = out.tobyte()
        #print "WRITE BITS %s" % out
        cmd = Array('B', [Ftdi.WRITE_BITS_NVE_LSB, length - 1, byte])
        self._stack_cmd(cmd)

    def _read_bytes(self, length):
        """Read out bytes from TDO"""
        data = ''
        if length > JtagController.FTDI_PIPE_LEN:
            raise JtagError("Cannot fit into FTDI fifo")
        alen = length - 1
        cmd = Array('B',
                    [Ftdi.READ_BYTES_NVE_LSB, alen & 0xff, (alen >> 8) & 0xff])
        self._stack_cmd(cmd)
        self.sync()
        data = self._ftdi.read_data_bytes(length, 4)
        bs = BitSequence(bytes_=data, length=8 * length)
        #print "READ BYTES %s" % bs
        return bs

    def _write_bytes(self, out):
        """Output bytes on TDI"""
        bytes_ = out.tobytes(msby=True)  # don't ask...
        olen = len(bytes_) - 1
        #print "WRITE BYTES %s" % out
        cmd = Array(
            'B', [Ftdi.WRITE_BYTES_NVE_LSB, olen & 0xff, (olen >> 8) & 0xff])
        cmd.extend(bytes_)
        self._stack_cmd(cmd)

    def _write_bytes_raw(self, out):
        """Output bytes on TDI"""
        olen = len(out) - 1
        cmd = Array(
            'B', [Ftdi.WRITE_BYTES_NVE_LSB, olen & 0xff, (olen >> 8) & 0xff])
        cmd.fromstring(out)
        self._stack_cmd(cmd)
示例#6
0
文件: spi.py 项目: greyseason/pyftdi
class SpiController(object):
    """SPI master.

        :param silent_clock: should be set to avoid clocking out SCLK when all
                             /CS signals are released. This clock beat is used
                             to enforce a delay between /CS signal activation.

                             When weird SPI devices are used, SCLK beating may
                             cause trouble. In this case, silent_clock should
                             be set but beware that SCLK line should be fitted
                             with a pull-down resistor, as SCLK is high-Z
                             during this short period of time.
        :param cs_count: is the number of /CS lines (one per device to drive on
                         the SPI bus)
    """

    SCK_BIT = 0x01
    DO_BIT = 0x02
    DI_BIT = 0x04
    CS_BIT = 0x08
    PAYLOAD_MAX_LENGTH = 0x10000 # 16 bits max

    def __init__(self, silent_clock=False, cs_count=4):
        self._ftdi = Ftdi()
        self._cs_bits = ((SpiController.CS_BIT << cs_count) - 1) & \
                         ~(SpiController.CS_BIT - 1)
        self._ports = [None] * cs_count
        self._direction = self._cs_bits | \
                          SpiController.DO_BIT | \
                          SpiController.SCK_BIT
        self._cs_high = Array('B')
        if silent_clock:
            # Set SCLK as input to avoid emitting clock beats
            self._cs_high.extend([Ftdi.SET_BITS_LOW, self._cs_bits,
                                    self._direction & ~SpiController.SCK_BIT])
        # /CS to SCLK delay, use 8 clock cycles as a HW tempo
        self._cs_high.extend([Ftdi.WRITE_BITS_TMS_NVE, 8-1, 0xff])
        # Restore idle state
        self._cs_high.extend([Ftdi.SET_BITS_LOW, self._cs_bits,
                              self._direction])
        self._immediate = Array('B', [Ftdi.SEND_IMMEDIATE])
        self._frequency = 0.0

    def configure(self, vendor, product, interface, frequency=6.0E6):
        """Configure the FTDI interface as a SPI master"""
        self._frequency = \
            self._ftdi.open_mpsse(vendor, product, interface,
                                  direction=self._direction,
                                  initial=self._cs_bits, # /CS all high
                                  frequency=frequency)

    def terminate(self):
        """Close the FTDI interface"""
        if self._ftdi:
            self._ftdi.close()
            self._ftdi = None

    def get_port(self, cs):
        """Obtain a SPI port to drive a SPI device selected by cs"""
        if not self._ftdi:
            raise SpiIOError("FTDI controller not initialized")
        if cs >= len(self._ports):
            raise SpiIOError("No such SPI port")
        if not self._ports[cs]:
            cs_state = 0xFF & ~((SpiController.CS_BIT<<cs) |
                                 SpiController.SCK_BIT |
                                 SpiController.DO_BIT)
            cs_cmd = Array('B', [Ftdi.SET_BITS_LOW,
                                 cs_state,
                                 self._direction])
            self._ports[cs] = SpiPort(self, cs_cmd)
            self._flush()
        return self._ports[cs]

    @property
    def frequency_max(self):
        """Returns the maximum SPI clock"""
        return self._ftdi.frequency_max

    @property
    def frequency(self):
        """Returns the current SPI clock"""
        return self._frequency

    def _exchange(self, frequency, cs_cmd, out, readlen):
        """Perform a half-duplex transaction with the SPI slave"""
        if not self._ftdi:
            raise SpiIOError("FTDI controller not initialized")
        if len(out) > SpiController.PAYLOAD_MAX_LENGTH:
            raise SpiIOError("Output payload is too large")
        if readlen > SpiController.PAYLOAD_MAX_LENGTH:
            raise SpiIOError("Input payload is too large")
        if self._frequency != frequency:
            freq = self._ftdi.set_frequency(frequency)
            # store the requested value, not the actual one (best effort)
            self._frequency = frequency
        write_cmd = struct.pack('<BH', Ftdi.WRITE_BYTES_NVE_MSB, len(out)-1)
        if readlen:
            read_cmd = struct.pack('<BH', Ftdi.READ_BYTES_NVE_MSB, readlen-1)
            cmd = Array('B', cs_cmd)
            cmd.fromstring(write_cmd)
            cmd.extend(out)
            cmd.fromstring(read_cmd)
            cmd.extend(self._immediate)
            cmd.extend(self._cs_high)
            self._ftdi.write_data(cmd)
            # USB read cycle may occur before the FTDI device has actually
            # sent the data, so try to read more than once if no data is
            # actually received
            data = self._ftdi.read_data_bytes(readlen, 4)
        else:
            cmd = Array('B', cs_cmd)
            cmd.fromstring(write_cmd)
            cmd.extend(out)
            cmd.extend(self._cs_high)
            self._ftdi.write_data(cmd)
            data = Array('B')
        return data

    def _flush(self):
        """Flush the HW FIFOs"""
        self._ftdi.write_data(self._immediate)
        self._ftdi.purge_buffers()
示例#7
0
class Dionysus(Olympus):
  """Dionysus

  Concrete Class that implements Dionysus specific communication functions
  """

  def __init__(self, idVendor=0x0403, idProduct=0x8530, debug = False):
    Olympus.__init__(self, debug)
    self.vendor = idVendor
    self.product = idProduct
    self.dev = Ftdi()
    self._open_dev()

    self.name = "Dionysus"

  def __del__(self):
    self.dev.close()

  def _open_dev(self):
    """_open_dev
    
    Open an FTDI communication channel

    Args:
      Nothing

    Returns:
      Nothing

    Raises:
      Exception
    """
    frequency = 30.0E6
#Latency can go down t 2 but when set there is a small chance that there is a crash
    latency = 4
    self.dev.open(self.vendor, self.product, 0)
    # Drain input buffer
    self.dev.purge_buffers()

    # Reset
    # Enable MPSSE mode
    self.dev.set_bitmode(0x00, Ftdi.BITMODE_SYNCFF)
    # Configure clock

    frequency = self.dev._set_frequency(frequency)
    # Set latency timer
    self.dev.set_latency_timer(latency)
    # Set chunk size
    self.dev.write_data_set_chunksize(0x10000)
    self.dev.read_data_set_chunksize(0x10000)

    self.dev.set_flowctrl('hw')
    self.dev.purge_buffers()


  def read(self, device_id, address, length = 1, mem_device = False):
    """read

    read data from the Olympus image

    Args:
      device_id: Device identification number, found in the DRT
      address: Address of the register/memory to read
      mem_device: True if the device is on the memory bus
      length: Number of 32 bit words to read from the FPGA

    Returns:
      A byte array containing the raw data returned from Olympus

    Raises:
      OlympusCommError
    """
    read_data = Array('B')

    write_data = Array('B', [0xCD, 0x02]) 
    if mem_device:
      if self.debug:
        print "memory device"
      write_data = Array ('B', [0xCD, 0x12])
  
    fmt_string = "%06X" % (length) 
    write_data.fromstring(fmt_string.decode('hex'))
    offset_string = "00"
    if not mem_device:
      offset_string = "%02X" % device_id

    write_data.fromstring(offset_string.decode('hex'))

    addr_string = "%06X" % address
    write_data.fromstring(addr_string.decode('hex'))
    if self.debug:
      print "data read string: " + str(write_data)

    self.dev.purge_buffers()
    self.dev.write_data(write_data)

    timeout = time.time() + self.read_timeout
    rsp = Array('B')
    while time.time() < timeout:
      response = self.dev.read_data(1)
      if len(response) > 0:
        rsp = Array('B')
        rsp.fromstring(response)
        if rsp[0] == 0xDC:
          if self.debug:
            print "Got a response"  
          break

    if len(rsp) > 0:
      if rsp[0] != 0xDC:
        if self.debug:
          print "Response not found"  
        raise OlympusCommError("Did not find identification byte (0xDC): %s" % str(rsp))
    else:
      if self.debug:      
        print "No Response found"
      raise OlympusCommError("Timeout while waiting for a response")

    #I need to watch out for the modem status bytes
    read_count = 0
    response = Array('B')
    rsp = Array('B')
    timeout = time.time() + self.read_timeout

    while (time.time() < timeout) and (read_count < (length * 4 + 8)):
      response = self.dev.read_data((length * 4 + 8 ) - read_count)
      temp  = Array('B')
      temp.fromstring(response)
      #print "temp: %s", str(temp)
      if (len(temp) > 0):
        rsp += temp
        read_count = len(rsp)
    
    if self.debug:
      print "read length = %d, total length = %d" % (len(rsp), (length * 4 + 8))
      print "time left on timeout: %d" % (timeout - time.time())

    if self.debug:
      print "response length: " + str(length * 4 + 8)
      print "response status:\n\t" + str(rsp[:8])
      print "response data:\n" + str(rsp[8:])

    return rsp[8:]
    

  def write(self, device_id, address, data=None, mem_device = False):
    """write

    Write data to an Olympus image

    Args:
      device_id: Device identification number, found in the DRT
      address: Address of the register/memory to read
      mem_device: True if the device is on the memory bus
      data: Array of raw bytes to send to the device

    Returns:
      Nothing

    Raises:
      OlympusCommError
    """
    length = len(data) / 4

    # ID 01 NN NN NN OO AA AA AA DD DD DD DD
      # ID = ID BYTE (0xCD)
      # 01 = Write Command
      # NN = Size of write (3 bytes)
      # OO = Offset of device
      # AA = Address (4 bytes)
      # DD = Data (4 bytes)

    #create an array with the identification byte (0xCD)
    #and code for write (0x01)

    data_out = Array('B', [0xCD, 0x01]) 
    if mem_device:
      if self.debug:
        print "memory device"
      data_out = Array ('B', [0xCD, 0x11])
    
    """
    print "write command:\n\t" + str(data_out[:9])
    for i in range (0, len(data_out)):
      print str(hex(data_out[i])) + ", ",
    print " "
    """

 

    #append the length into the frist 32 bits
    fmt_string = "%06X" % (length) 
    data_out.fromstring(fmt_string.decode('hex'))
    offset_string = "00"
    if not mem_device:
      offset_string = "%02X" % device_id
    data_out.fromstring(offset_string.decode('hex'))
    addr_string = "%06X" % address
    data_out.fromstring(addr_string.decode('hex'))
    
    data_out.extend(data)

    """
    #if (self.debug):
    print "data write string:\n"
    print "write command:\n\t" + str(data_out[:9])
    for i in range (0, 9):
      print str(hex(data_out[i])) + ", ",
    print " "
    """


    #print "write data:\n" + str(data_out[9:])

    #avoid the akward stale bug
    self.dev.purge_buffers()

    self.dev.write_data(data_out)
    rsp = Array('B')

    timeout = time.time() + self.read_timeout
    while time.time() < timeout:
      response = self.dev.read_data(1)
      if len(response) > 0:
        rsp = Array('B')
        rsp.fromstring(response)
        if rsp[0] == 0xDC:
          if self.debug:
            print "Got a response"  
          break

    if (len(rsp) > 0):
      if rsp[0] != 0xDC:
        if self.debug:
          print "Response not found"  
        raise OlympusCommError("Did not find identification byte (0xDC): %s" % str(rsp))

    else:
      if self.debug:
        print "No Response"
      raise OlympusCommError("Timeout while waiting for a response")

    response = self.dev.read_data(8)
    rsp = Array('B')
    rsp.fromstring(response)

    if self.debug:
      print "Response: " + str(rsp)

  def ping(self):
    """ping

    Pings the Olympus image

    Args:
      Nothing

    Returns:
      Nothing

    Raises:
      OlympusCommError
    """
    data = Array('B')
    data.extend([0XCD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
    if self.debug:
      print "Sending ping...",
    self.dev.write_data(data)
    rsp = Array('B')
    temp = Array('B')

    timeout = time.time() + self.read_timeout

    while time.time() < timeout:
      response = self.dev.read_data(5)
      if self.debug:
        print ".",
      rsp = Array('B')
      rsp.fromstring(response)
      temp.extend(rsp)
      if 0xDC in rsp:
        if self.debug:
          print "Got a response"  
          print "Response: %s" % str(temp)
        break

    if not 0xDC in rsp:
      if self.debug:
        print "ID byte not found in response"  
        print "temp: " + str(temp)
      raise OlympusCommError("Ping response did not contain ID: %s" % str(temp))

    index  = rsp.index(0xDC) + 1

    read_data = Array('B')
    read_data.extend(rsp[index:])
    num = 3 - index
    read_data.fromstring(self.dev.read_data(num))
    if self.debug:
      print "Success!"
    return


  def reset(self):
    """reset

    Software reset the Olympus FPGA Master, this may not actually reset the
    entire FPGA image

    Args:
      Nothing

    Returns:
      Nothing

    Raises:
      OlympusCommError: A failure of communication is detected
    """
    data = Array('B')
    data.extend([0XCD, 0x03, 0x00, 0x00, 0x00]);
    if self.debug:
      print "Sending reset..."
    self.dev.purge_buffers()
    self.dev.write_data(data)

  def dump_core(self):
    """dump_core

    reads the state of the wishbone master prior to a reset, useful for
    debugging

    Args:
      Nothing

    Returns:
      Array of 32-bit values to be parsed by core_analyzer

    Raises:
      AssertionError: This function must be overriden by a board specific
      implementation
      OlympusCommError: A failure of communication is detected
    """

    data = Array('B')
    data.extend([0xCD, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
    print "Sending core dump request..."

    self.dev.purge_buffers()
    self.dev.write_data(data)

    core_dump = Array('L')
    wait_time = 5
    timeout = time.time() + wait_time

    temp = Array ('B')
    while time.time() < timeout:
      response = self.dev.read_data(1)
      rsp = Array('B')
      rsp.fromstring(response)
      temp.extend(rsp)
      if 0xDC in rsp:
        print "Got a response"  
        break

    if not 0xDC in rsp:
      print "Response not found"  
      raise OlympusCommError("Response Not Found")

    rsp = Array('B')
    read_total = 4
    read_count = len(rsp)

    #get the number of items from the address
    timeout = time.time() + wait_time
    while (time.time() < timeout) and (read_count < read_total):
      response = self.dev.read_data(read_total - read_count)
      temp  = Array('B')
      temp.fromstring(response)
      if (len(temp) > 0):
        rsp += temp
        read_count = len(rsp)

    print "Length of read: %d" % len(rsp)
    print "Data: %s" % str(rsp)
    count  = ( rsp[1] << 16 | rsp[2] << 8 | rsp[3]) * 4
    print "Number of core registers: %d" % (count / 4)

    #get the core dump data
    timeout = time.time() + wait_time
    read_total  = count
    read_count  = 0
    temp = Array ('B')
    rsp = Array('B')
    while (time.time() < timeout) and (read_count < read_total):
      response = self.dev.read_data(read_total - read_count)
      temp  = Array('B')
      temp.fromstring(response)
      if (len(temp) > 0):
        rsp += temp
        read_count = len(rsp)

    print "Length read: %d" % (len(rsp) / 4)
    print "Data: %s" % str(rsp)
    core_data = Array('L')
    for i in range (0, count, 4):
      print "count: %d" % i
      core_data.append(rsp[i] << 24 | rsp[i + 1] << 16 | rsp[i + 2] << 8 | rsp[i + 3])
    
    #if self.debug:
    print "core data: " + str(core_data)

    return core_data



 

  def wait_for_interrupts(self, wait_time = 1):
    """wait_for_interrupts
    
    listen for interrupts for the specified amount of time

    Args:
      wait_time: the amount of time in seconds to wait for an interrupt

    Returns:
      True: Interrupts were detected
      False: No interrupts detected

    Raises:
      Nothing
    """
    timeout = time.time() + wait_time

    temp = Array ('B')
    while time.time() < timeout:
      response = self.dev.read_data(1)
      rsp = Array('B')
      rsp.fromstring(response)
      temp.extend(rsp)
      if 0xDC in rsp:
        if self.debug:
          print "Got a response"  
        break

    if not 0xDC in rsp:
      if self.debug:
        print "Response not found"  
      return False

    read_total = 9
    read_count = len(rsp)

    #print "read_count: %s" % str(rsp)
    while (time.time() < timeout) and (read_count < read_total):
      response = self.dev.read_data(read_total - read_count)
      temp  = Array('B')
      temp.fromstring(response)
      #print "temp: %s", str(temp)
      if (len(temp) > 0):
        rsp += temp
        read_count = len(rsp)

    #print "read_count: %s" % str(rsp)
   

    index  = rsp.index(0xDC) + 1

    read_data = Array('B')
    read_data.extend(rsp[index:])
    #print "read_data: " + str(rsp)

    self.interrupts = read_data[-4] << 24 | read_data[-3] << 16 | read_data[-2] << 8 | read_data[-1]
    
    if self.debug:
      print "interrupts: " + str(self.interrupts)
    return True


  def comm_debug(self):
    """comm_debug

    A function that the end user will probably not interract with
    This is here to simply debug a communication medium

    Args:
      Nothing

    Returns:
      Nothing

    Raises:
      Nothing
    """
    #self.dev.set_dtr_rts(True, True)
    #self.dev.set_dtr(False)
    print "CTS: " + str(self.dev.get_cts())
#    print "DSR: " + str(self.dev.get_dsr())
    s1 = self.dev.modem_status()
    print "S1: " + str(s1)