def test_sample_empty_transformed_conditions(): """Test that None is passed to ``_sample_batch`` if transformed conditions are empty. The ``Sample`` method is expected to: - Return sampled data and pass None to ``sample_batch`` as the ``transformed_conditions``. Input: - Number of rows to sample - Conditions Output: - Sampled data """ # Setup model = GaussianCopula() data = pd.DataFrame({ 'column1': list(range(100)), 'column2': list(range(100)), 'column3': list(range(100)) }) conditions = {'column1': 25} conditions_series = pd.Series([25, 25, 25, 25, 25], name='column1') model._sample_batch = Mock() sampled = pd.DataFrame({ 'column1': [28, 28], 'column2': [37, 37], 'column3': [93, 93], }) model._sample_batch.return_value = sampled model.fit(data) model._metadata = Mock() model._metadata.get_fields.return_value = ['column1', 'column2', 'column3'] model._metadata.transform.return_value = pd.DataFrame() model._metadata.make_ids_unique.side_effect = lambda x: x # Run output = model.sample(5, conditions=conditions, graceful_reject_sampling=True) # Assert expected_output = pd.DataFrame({ 'column1': [28, 28], 'column2': [37, 37], 'column3': [93, 93], }) _, args, kwargs = model._metadata.transform.mock_calls[0] pd.testing.assert_series_equal(args[0]['column1'], conditions_series) assert kwargs['on_missing_column'] == 'drop' model._metadata.transform.assert_called_once() model._sample_batch.assert_called_with(5, 100, 10, conditions, None, 0.01) pd.testing.assert_frame_equal(output, expected_output)
def test__sample_batch_zero_valid(self): """Test the `BaseTabularModel._sample_batch` method with zero valid rows. Expect that the requested number of rows are returned, if the first `_sample_rows` call returns zero valid rows, and the second one returns enough valid rows. See https://github.com/sdv-dev/SDV/issues/285. Input: - num_rows = 5 - condition on `column1` = 2 Output: - The requested number of sampled rows (5). """ # Setup gaussian_copula = Mock(spec_set=GaussianCopula) valid_sampled_data = pd.DataFrame({ "column1": [28, 28, 21, 1, 2], "column2": [37, 37, 1, 4, 5], "column3": [93, 93, 6, 4, 12], }) gaussian_copula._sample_rows.side_effect = [(pd.DataFrame({}), 0), (valid_sampled_data, 5)] conditions = { 'column1': 2, 'column1': 2, 'column1': 2, 'column1': 2, 'column1': 2, } # Run output = GaussianCopula._sample_batch(gaussian_copula, num_rows=5, conditions=conditions) # Assert assert gaussian_copula._sample_rows.call_count == 2 assert len(output) == 5
def test_sample_batches_transform_conditions_correctly(): """Test that transformed conditions are batched correctly. The ``Sample`` method is expected to: - Return sampled data and call ``_sample_batch`` for every unique transformed condition group. Input: - Number of rows to sample - Conditions Output: - Sampled data """ # Setup model = GaussianCopula() data = pd.DataFrame({ 'column1': list(range(100)), 'column2': list(range(100)), 'column3': list(range(100)) }) conditions = {'column1': [25, 25, 25, 30, 30]} conditions_series = pd.Series([25, 25, 25, 30, 30], name='column1') model._sample_batch = Mock() expected_outputs = [ pd.DataFrame({ 'column1': [25, 25, 25], 'column2': [37, 37, 37], 'column3': [93, 93, 93], }), pd.DataFrame({ 'column1': [30], 'column2': [37], 'column3': [93], }), pd.DataFrame({ 'column1': [30], 'column2': [37], 'column3': [93], }) ] model._sample_batch.side_effect = expected_outputs model.fit(data) model._metadata = Mock() model._metadata.get_fields.return_value = ['column1', 'column2', 'column3'] model._metadata.transform.return_value = pd.DataFrame( [[50], [50], [50], [60], [70]], columns=['transformed_column']) # Run model.sample(5, conditions=conditions, graceful_reject_sampling=True) # Assert _, args, kwargs = model._metadata.transform.mock_calls[0] pd.testing.assert_series_equal(args[0]['column1'], conditions_series) assert kwargs['on_missing_column'] == 'drop' model._metadata.transform.assert_called_once() model._sample_batch.assert_any_call(3, 100, 10, {'column1': 25}, {'transformed_column': 50}, 0.01) model._sample_batch.assert_any_call(1, 100, 10, {'column1': 30}, {'transformed_column': 60}, 0.01) model._sample_batch.assert_any_call(1, 100, 10, {'column1': 30}, {'transformed_column': 70}, 0.01)