示例#1
0
文件: test_base.py 项目: sdv-dev/SDV
def test__sample_with_conditions_empty_transformed_conditions():
    """Test that None is passed to ``_sample_batch`` if transformed conditions are empty.

    The ``Sample`` method is expected to:
    - Return sampled data and pass None to ``sample_batch`` as the
    ``transformed_conditions``.

    Input:
    - Number of rows to sample
    - Conditions

    Output:
    - Sampled data
    """
    # Setup
    model = GaussianCopula()
    data = pd.DataFrame({
        'column1': list(range(100)),
        'column2': list(range(100)),
        'column3': list(range(100))
    })

    conditions = {'column1': 25}
    conditions_series = pd.Series([25, 25, 25, 25, 25], name='column1')
    model._sample_batch = Mock()
    sampled = pd.DataFrame({
        'column1': [28, 28],
        'column2': [37, 37],
        'column3': [93, 93],
    })
    model._sample_batch.return_value = sampled
    model.fit(data)
    model._metadata = Mock()
    model._metadata.get_fields.return_value = ['column1', 'column2', 'column3']
    model._metadata.transform.return_value = pd.DataFrame()
    model._metadata.make_ids_unique.side_effect = lambda x: x

    # Run
    output = model._sample_with_conditions(pd.DataFrame([conditions] * 5), 100,
                                           None)

    # Assert
    expected_output = pd.DataFrame({
        'column1': [28, 28],
        'column2': [37, 37],
        'column3': [93, 93],
    })
    _, args, kwargs = model._metadata.transform.mock_calls[0]
    pd.testing.assert_series_equal(args[0]['column1'], conditions_series)
    model._metadata.transform.assert_called_once()
    model._sample_batch.assert_called_with(5, 100, None, conditions, None,
                                           0.01, None, None)
    pd.testing.assert_frame_equal(output, expected_output)
示例#2
0
文件: test_base.py 项目: sdv-dev/SDV
def test__sample_with_conditions_transform_conditions_correctly():
    """Test that transformed conditions are batched correctly.

    The ``Sample`` method is expected to:
    - Return sampled data and call ``_sample_batch`` for every unique transformed
    condition group.

    Input:
    - Number of rows to sample
    - Conditions

    Output:
    - Sampled data
    """
    # Setup
    model = GaussianCopula()
    data = pd.DataFrame({
        'column1': list(range(100)),
        'column2': list(range(100)),
        'column3': list(range(100))
    })

    condition_values = [25, 25, 25, 30, 30]
    conditions_series = pd.Series([25, 25, 25, 30, 30], name='column1')
    model._sample_batch = Mock()
    expected_outputs = [
        pd.DataFrame({
            'column1': [25, 25, 25],
            'column2': [37, 37, 37],
            'column3': [93, 93, 93],
        }),
        pd.DataFrame({
            'column1': [30],
            'column2': [37],
            'column3': [93],
        }),
        pd.DataFrame({
            'column1': [30],
            'column2': [37],
            'column3': [93],
        })
    ]
    model._sample_batch.side_effect = expected_outputs
    model.fit(data)
    model._metadata = Mock()
    model._metadata.get_fields.return_value = ['column1', 'column2', 'column3']
    model._metadata.transform.return_value = pd.DataFrame(
        [[50], [50], [50], [60], [70]], columns=['transformed_column'])

    # Run
    model._sample_with_conditions(pd.DataFrame({'column1': condition_values}),
                                  100, None)

    # Assert
    _, args, kwargs = model._metadata.transform.mock_calls[0]
    pd.testing.assert_series_equal(args[0]['column1'], conditions_series)
    model._metadata.transform.assert_called_once()
    model._sample_batch.assert_any_call(
        3,
        100,
        None,
        {'column1': 25},
        {'transformed_column': 50},
        0.01,
        None,
        None,
    )
    model._sample_batch.assert_any_call(
        1,
        100,
        None,
        {'column1': 30},
        {'transformed_column': 60},
        0.01,
        None,
        None,
    )
    model._sample_batch.assert_any_call(
        1,
        100,
        None,
        {'column1': 30},
        {'transformed_column': 70},
        0.01,
        None,
        None,
    )