示例#1
0
def test_gaussian_copula():
    users = load_demo(metadata=False)['users']

    field_types = {
        'age': {
            'type': 'numerical',
            'subtype': 'integer',
        },
        'country': {
            'type': 'categorical'
        }
    }
    anonymize_fields = {'country': 'country_code'}

    gc = GaussianCopula(
        field_names=['user_id', 'country', 'gender', 'age'],
        field_types=field_types,
        primary_key='user_id',
        anonymize_fields=anonymize_fields,
        categorical_transformer='one_hot_encoding',
    )
    gc.fit(users)

    parameters = gc.get_parameters()
    new_gc = GaussianCopula(
        table_metadata=gc.get_metadata(),
        categorical_transformer='one_hot_encoding',
    )
    new_gc.set_parameters(parameters)

    sampled = new_gc.sample()

    # test shape is right
    assert sampled.shape == users.shape

    # test user_id has been generated as an ID field
    assert list(sampled['user_id']) == list(range(0, len(users)))

    # country codes have been replaced with new ones
    assert set(sampled.country.unique()) != set(users.country.unique())

    metadata = gc.get_metadata().to_dict()
    assert metadata['fields'] == {
        'user_id': {
            'type': 'id',
            'subtype': 'integer'
        },
        'country': {
            'type': 'categorical'
        },
        'gender': {
            'type': 'categorical'
        },
        'age': {
            'type': 'numerical',
            'subtype': 'integer'
        }
    }

    assert 'model_kwargs' in metadata
示例#2
0
    def test_get_parameters_non_parametric(self):
        """Test the ``get_parameters`` method when model is parametric.

        If there is at least one distributions in the model that is not
        parametric, a NonParametricError should be raised.

        Setup:
        - ``self._model`` is set to a ``GaussianMultivariate`` that
          uses ``GaussianKDE`` as its ``distribution``.

        Side Effects:
        - A NonParametricError is raised.
        """
        # Setup
        gm = GaussianMultivariate(distribution=GaussianKDE())
        data = pd.DataFrame([1, 1, 1])
        gm.fit(data)
        gc = Mock()
        gc._model = gm

        # Run, Assert
        with pytest.raises(NonParametricError):
            GaussianCopula.get_parameters(gc)
示例#3
0
def test_gaussian_copula():
    users = load_demo(metadata=False)['users']

    field_types = {
        'age': {
            'type': 'numerical',
            'subtype': 'integer',
        },
        'country': {
            'type': 'categorical'
        }
    }
    anonymize_fields = {'country': 'country_code'}

    # If distribution is non parametric, get_parameters fails
    gc = GaussianCopula(
        field_names=['user_id', 'country', 'gender', 'age'],
        field_types=field_types,
        primary_key='user_id',
        anonymize_fields=anonymize_fields,
        field_distributions={'age': 'gamma'},
        default_distribution='gaussian_kde',
    )
    gc.fit(users)
    with pytest.raises(NonParametricError):
        parameters = gc.get_parameters()

    # If distribution is parametric, copula can be recreated
    gc = GaussianCopula(
        field_names=['user_id', 'country', 'gender', 'age'],
        field_types=field_types,
        primary_key='user_id',
        anonymize_fields=anonymize_fields,
        field_distributions={'age': 'gamma'},
        default_distribution='bounded',
    )
    gc.fit(users)

    parameters = gc.get_parameters()
    new_gc = GaussianCopula(table_metadata=gc.get_metadata(), )
    new_gc.set_parameters(parameters)

    # Validate sampled dat
    sampled = new_gc.sample()

    # test shape is right
    assert sampled.shape == users.shape

    # test user_id has been generated as an ID field
    assert list(sampled['user_id']) == list(range(0, len(users)))

    # country codes have been replaced with new ones
    assert set(sampled.country.unique()) != set(users.country.unique())

    # Validate metadata
    metadata = gc.get_metadata().to_dict()
    assert metadata['fields'] == {
        'user_id': {
            'type': 'id',
            'subtype': 'integer',
            'transformer': 'integer',
        },
        'country': {
            'type': 'categorical',
            'pii': True,
            'pii_category': 'country_code',
            'transformer': 'one_hot_encoding',
        },
        'gender': {
            'type': 'categorical',
            'transformer': 'one_hot_encoding',
        },
        'age': {
            'type': 'numerical',
            'subtype': 'integer',
            'transformer': 'integer',
        }
    }

    assert 'model_kwargs' in metadata
    assert 'GaussianCopula' in metadata['model_kwargs']